ПРИМЕНЕНИЕ КОМПЛЕКСА ЭЛЕКТРОННОЙ МИКРОСКОПИИ И АНАЛИЗА FEI QUANTA 200 3D В ОТРАБОТКЕ ПОЖАРОБЕЗОПАСНОГО КОНТЕЙНЕРА

И. А. Царева, В. В. Мокрушин

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Представляемая работа посвящена исследованию возможностей комплекса электронной микроскопии и анализа FEI Quanta 200 3D для решения фундаментальных и прикладных научно-исследовательских задач, стоящих перед РФЯЦ-ВНИИЭФ. Целью работы являлось решение конкретной задачи, связанной с изучением поведения материала в условиях пожара.

В данной работе объектом исследования являлся огнеупорный материал муллитокремнезем МКРП-340, применяемый в пожаробезопасных контейнерах (рис. 1), предназначенных для хранения и транспортировки специальных изделий. После проведения испытаний контейнера в условиях, имитирующих пожар, произошло раздутие внешней оболочки его корпуса, а также визуально заметные изменения с огнеупорным материалом.

Рис. 1. Пожаробезопасный контейнер для хранения и транспортировки специальных изделий

Муллитокремнезем представляет собой плиты, спрессованные из смеси оксидов алюминия и кремния на органическом связующем, представляющем собой поливинилацетат (ПВА) [-CH₂-CH(OCOCH₃)-]_n. В данной работе исследовались образцы муллитокремнезема, извлеченные из колпака контейнера и его корпуса после испытаний в условиях пожара, а также исходный образец муллитокремнезема до его помещения в контейнер. Методический подход в исследовании причин деформации корпуса пожаробезопасного контейнера после проведения испытаний в условиях пожара заключался в сопоставлении структуры поверхности электронно-микроскопических (ЭМ) изображений и элементного химического состава трех вышеуказанных образцов.

Внешний осмотр огнеупорного материала показал, что муллитокремнезем, извлеченный из-под колпака контейнера, был разрыхлен и потерял свою целостность, т. е. легко распадался на отдельные волокна. Материал же, взятый из корпуса, сохранял свою целостность и практически не отличался по консистенции от исходного муллитокремнезема, поставляемого в виде плит. Оба образца, извлеченные из контейнера после пожара, обуглились.

На рис. 2 представлены ЭМ изображения фрагментов материала, взятого из корпуса (а) и колпака (б) контейнера после испытаний в условиях пожара, а также исходного муллитокремнезема в состоянии поставки (в) при увеличениях 300× и 1200×. Сопоставление ЭМ изображений свидетельствует об отсутствии видимой разницы во внутренней структуре сравниваемых материалов. Можно отметить лишь факт ухудшения качества получаемых ЭМ изображений в ряду: образец после пожара, взятый из корпуса контейнера, → образец после пожара, взятый из колпака контейнера, → исходный образец муллитокремнезема. Ухудшение качества, возможно, связано с падением проводимости образцов, что приводит к электрической зарядке их поверхности, и таким образом к «засвечиванию» некоторых фрагментов ЭМ, а также к образованию продольных полос на отдельных участках изображений [1].

С помощью метода рентгеновского энергодисперсионного спектрального анализа (X-ray energy dispersive spectral analyses, XEDS) [2] был проведен сравнительный элементный анализ исследуемых образцов муллитокремнезема до и после испытаний в условиях пожара. Спектры XEDS, полученные для данных образцов при одинаковом увеличении 300×, представлены на рис. 3. Площадь сканирования ЭМ изображений, обработанная для получения данных спектров, соответствовала изображениям, приведенным на рис. 3.

б

Рис. 2. ЭМ изображения образцов муллитокремнезема, взятых из корпуса (а) и колпака (б) контейнера после его испытания в условиях пожара, а также исходный образец (в) муллитокремнезема при увеличениях 300× и 1200×

в Рис. 2. Окончание

Рис. 3. Спектры XEDS анализа, полученные для фрагментов образцов муллитокремнезема, взятых из корпуса (а) и колпака (б) контейнера после испытания в условиях пожара, а также исходный образец (в) муллитокремнезема

в Рис. 3. Окончание

Элементный анализ проводился в зависимости от масштаба изображений, что позволяло проследить изменение содержания элементов на поверхности в зависимости от размеров площади сканирования и давало возможность получать более полное представление о распределении элементов по поверхности. XEDS анализ в данном случае нельзя считать строго количественным, так как образец состоит из негомогенного материала (смесь неорганических оксидов в органическом связующем). Однако значения содержания элементов, полученные в одинаковых условиях, позволяют сравнивать между собой свойства исследуемых образцов. Поскольку огнеупорный материал вел себя по-разному в разных частях контейнера, испытуемого в условиях, имитирующих пожар, в данном исследовании наибольший

интерес представляет определение содержания углерода, связанное с поведением органического связующего в условиях пожара.

В таблице приведены значения содержания углерода в исследованных образцах в двух произвольно выбранных фрагментах при различных масштабах областей сканирования. Из таблицы видно, что в среднем содержание углерода в образце, взятом из корпуса, уменьшилось по сравнению с исходным материалом на ~10-30 %, а в материале, отобранном из колпака контейнера, на ~70 %.

Значения содержания углерода (масс.	%)
в исследованных образцах	

Увели- чение, крат	Образцы муллитокремнезема					
	исходный		из корпуса контейнера		из колпака контейнера	
	точка 1	точка 2	точка 1	точка 2	точка 1	точка 2
150	17,94	17,62	16,25	15,35	5,77	6,03
300	18,08	17,97	16,35	13,96	6,02	6,08
600	18,21	17,75	17,35	13,49	5,76	5,84
1200	18,18	17,97	16,66	11,58	6,02	4,83
2400	17,53	16,6	16,86	8,05	-	3,54
5000	17,37	14,04	16,53	6,44	5,86	2,84
10000	17,34	9,52	14,79	6,5	7,07	3,21
20000	18,14	9,04	15,03	6,94	6,98	2,9
40000	_	8,87	15,45	7,38	6,28	3,42
80000	19,79	8,95	-	-	-	-
Среднее значение	18,06	13,83	16,14	9,97	6,22	4,30
Относи- тельное изменение, отн. ед.	_	_	0,11	0,28	0,66	0,69

Согласно результатам испытаний, после испытания в условиях пожара корпус контейнера оказался раздутым, а верхняя часть макета ловушки, находящаяся под колпаком контейнера, обуглилась. По термопаре, прикрепленной к корпусу ловушки в области корпуса контейнера, была зафиксирована максимальная температура ~150 °C, причем после снятия нагрева температура стала уменьшаться. Термопара в верхней части ловушки со стороны колпака показала максимум температуры ~400 °C при том, что после снятия нагрева температура температура продолжала расти. Такой характер нагрева свидетельствует о том, что под колпаком контейнера продолжалось горение.

Полученные данные о составе муллитокремнезема и результаты проведенного XEDS анализа с помощью комплекса электронной микроскопии и анализа FEI Quanta 200 3D однозначно свидетельствуют о том, что источником дополнительного горения и газовыделения в условиях пожара являлось органическое связующее муллитокремнезема – поливинилацетат [4]. Уменьшение содержания углерода в образцах огнеупорного материала после испытания в пожаре говорит о том, что в корпусе протекала деструкция ПВА с частичным пиролизом с выделением паров и газов. Известно [4], что при температуре свыше 180–200 °С ПВА деструктирует с выделением уксусной кислоты ($T_{кип} = 117,8$ °С). В присутствии воздуха в условиях его ограниченного доступа могло протекать горение паров уксусной кислоты с образованием окиси и двуокиси углерода и паров воды. При пиролизе оставшейся углеводородной основы ПВА могли образовываться метан и водород, а в твердой фазе оставаться свободный углерод. Дополнительным источником газовыделения могла являться и остаточная влага, содержащаяся в исходном материале.

Наряду с частичной деструкцией и пиролизом ПВА могло протекать и более полное окисление образующихся газов поступающим из внешней среды кислородом воздуха. Судя по всему, над ловушкой со стороны колпака защитного контейнера наблюдалось горение ПВА и горючих газов, образующихся при его деструкции и пиролизе, которое продолжалось и после снятия нагрева, имитирующего пожар. Такое представление о процессах, протекающих в огнеупорном материале в разных частях контейнера, косвенно подтверждается проводимостью образцов, взятых для ЭМ исследования. Так, исходный материал ток не проводит, что во время анализа приводит к максимальной зарядке поверхности образца и наихудшему качеству ЭМ изображений. Образование свободного углерода за счет пиролиза органического связующего на поверхности волокон, состоящих из смеси оксидов, приводит, вероятно, к максимальной проводимости образца, взятого из корпуса контейнера, и к наилучшему качеству соответствующих ЭМ изображений. Выгорание органического связующего с частичным пиролизом ПВА обуславливает, вероятно, тот факт, что образец, отобранный из колпака контейнера, занимает промежуточное положение по проводимости и приводит к среднему (из трех образцов) качеству ЭМ изображений.

Таким образом, на основании проведенных исследований, для дальнейшего использования муллитокремнезема в указанных контейнерах можно рекомендовать предварительную термообработку материала с целью разложения органического связующего, а также, возможно, повышение степени герметичности полостей контейнера, где размещается огнеупорный материал, для исключения доступа воздуха. Режимы проведения термообработки могут быть установлены на основании анализа результатов экспериментов с определением содержания углерода и газовыделения из образцов до и после термообработки.

Выводы

1. С помощью комплекса для электронной микроскопии и анализа FEI Quanta 200 3D проведено исследование образца огнеупорного материала муллитокремнезема МКРП-340 в исходном состоянии, а также его образцов, отобранных из корпуса и колпака защитного контейнера для специальных изделий, после их испытаний в условиях, имитирующих пожар.

2. Анализ электронно-микроскопических изображений образцов показал, что принципиального различия во внутренней структуре образцов не наблюдается. Заметно лишь ухудшение качества изображений, вызванных зарядкой поверхности образов, отобранных из разных мест контейнера, и в исходном состоянии, за счет их разной проводимости. Качество ЭМ изображений ухудшается, а проводимость падает в ряду: образец после пожара, взятый из корпуса контейнера, → образец после пожара, взятый из колпака контейнера, → исходный образец муллитокремнезема.

3. Рентгеновский энергодисперсионный спектральный анализ показал уменьшение содержания углерода в образцах, взятых из корпуса и колпака контейнера после испытания в условиях пожара, по сравнению с образцом исходного материала, что свидетельствует о деструкции, пиролизе и частичном горении органического связующего – поливинилацетата, входящего в состав муллитокремнезема.

4. Рекомендовано проводить предварительную термообработку материала с целью осушки и разложения органического связующего для снижения содержания в огнеупорном материале газовыделяющего и горючего компонента. Выбор режимов термообработки необходимо сделать на основании экспериментов с анализом углерода и общего газосодержания в образцах муллитокремнезема до и после отжига.

Авторы выражают благодарность А. С. Мирясову за помощь в проведении экспериментов, а также А. А. Кононенко за ценные замечания, сделанные при обсуждении полученных результатов.

Литература

1. Брандон Д., Каплан У. Мир материалов и технологий. Микроструктура материалов. Методы исследования и контроля. М.: Техносфера, 2004.

2. Аналитическая химия и физико-химические методы анализа: Учебник / Под ред. А. А. Ищенко. М.: Издат. центр «Академия», 2010.

3. Химическая энциклопедия. Т. 3. М.: Научное изд-во «Большая Российская энциклопедия», 1992. С. 616.

4. Химическая энциклопедия. Т. 5. М.: Научное изд-во «Большая Российская энциклопедия», 1994. С. 32.