ПОСТРОЕНИЕ СЕТКИ ПРОТЯГИВАНИЕМ 2,5D ПОВЕРХНОСТНЫХ ЯЧЕЕК В ОТДЕЛЬНОМ ОБЪЕМЕ

А. Г. Гиниятуллина, В. В. Лазарев, Р. В. Мартенс

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Ввеление

В настоящее время все большую роль в разработке и совершенствовании промышленных изделий и конструкций стало играть компьютерное моделирование и инженерный анализ. Они позволяют существенно сократить затраты времени и средств на разработку, создание и модернизацию различных технических устройств.

В рамках работ по созданию препостпроцессора «ЛОГОС.ПреПост» для отечественного пакета программ инженерного анализа «ЛОГОС», ведется разработка гибридного генератора сеток, предназначенного для подготовки качественных сеточных моделей для решения задач прочности. «ЛОГОС.ПреПост» — это единая система для задания начальных данных и генерации сеток для численного решения задач инженерного анализа, проведения визуальной предобработки сеточной модели, а также для предоставления графических интерфейсов для подготовки и выполнения инженерного анализа с использованием отечественных счетных кодов и постобработки результатов счета.

Наиболее сложной и ресурсоемкой задачей, занимающей большую часть времени при подготовке задачи к расчету, является генерация сеток. В настоящее время в «ЛОГОС.ПреПост» ведется разработка гибридного генератора сеток, предназначенного для подготовки качественных сеточных моделей для решения задач прочности.

Процесс построения сетки на геометрии гибридным генератором включает в себя следующие основные этапы:

- 1) нарезание геометрии на «блоки»;
- 2) распознавание «блоков»;
- 3) генерация сеток в «блоках» различными способами: регулярная сетка, сетка протягиванием, нерегулярная сетка [1].

Подобный подход реализован в коммерческих программных продуктах ABAQUS, ANSYS, HyperMesh и др.

Данная работа посвящена одному из способов построения 3D сетки в «блоке» – протягиванием поверхностных ячеек в объеме.

Общие принципы

Протягивание (вытягивание, экструзия) – одна из наиболее эффективных техник генерации шести-

гранных сеток в 2,5D объемах. 2,5D объем – это объем, который имеет топологически постоянный поперечный срез вдоль одной оси, которую называют «ось протягивания»[4]. Для таких объектов известна параметризация поверхности. Многие геометрические объекты могут быть разбиты на подобласти, имеющие ось симметрии или топологически эквивалентные таким областям (например, цилиндру) [3].

В настоящее время в ЛОГОС-ПреПост реализовано построение сетки протягиванием в 2,5D объеме, имеющем одну грань-источник и одну грань-цель — так называемое One-to-one протягивание. Объемы, которые имеют несколько граней-источников или граней-целей, могут быть разделены с помощью декомпозиции на 2,5D объемы, имеющие одну граньисточник и одну грань-цель. Поэтому далее речь пойдет именно о таких объемах.

В 2,5D объемах выделяют следующие составные элементы (рис. 1):

- поверхность-источник (грань-источник);
- поверхность-цель (грань-цель);
- набор боковых граней.

Грань-источник и грань-цель также называют основаниями объема.

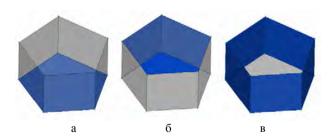


Рис. 1. Составные элементы 2,5D объемов: а – граньисточник, б – грань-цель, в – боковые грани

Грань-источник (рис. 1а) и грань-цель (рис. 1б) могут иметь разные площади и кривизну. Более того, нет ограничения на количество ребер, описывающих эти поверхности. Однако они должны быть топологически эквивалентными. Это означает, что они должны иметь одинаковое количество отверстий и логических сторон. Все боковые грани (рис. 1в) должны быть пригодными для построения регулярной четырехугольной сетки, то есть иметь четыре логических стороны. На рис. 2 приведены примеры 2,5D геометрических объемов.

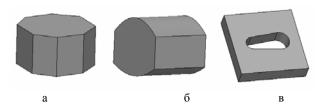


Рис. 2. Примеры 2,5D геометрических объемов: а – геометрия 1, б – геометрия 2, в – геометрия 3

Общая процедура построения объемной сетки протягиванием в 2,5D объеме состоит из следующих четырех шагов:

- построение поверхностной сетки на граниисточнике или получение ее от смежного по этой грани объема - шаг 1.
- проекция поверхностной сетки с граниисточника на грань-цель (гарантируя этим, что исходная сетка и сетка на грани-цели будут иметь одинаковую сеточную структуру) – шаг 2.
- построение структурированной четырехугольной сетки на боковых гранях – шаг 3.
- построение узлов внутри объема и создание объемных элементов – шаг 4.

Две наиболее сложные задачи при реализации метода протягивания: шаг 2 и шаг 4.

В ЛОГОС-ПреПост построение сетки методом протягивания реализовано на базе генератора блочных сеток [5].

В основе построения блочных сеток лежит похожая идея: геометрическая область представляется в виде композиции шестигранных или четырехугольных топологических блоков. Таким образом, данный метод основывается на замене пользовательской геометрической модели на ее блочное представление. На каждой грани и каждом блоке строятся регулярные сетки, которые затем объединяются в единую нерегулярную сетку.

Операция протягивания, напротив, выполняется над нерегулярной сеткой на грани, и полученная в результате нее объемная сетка на блоке также нерегулярна.

Чтобы применить этот подход к организации данных для протягивания, были введены дополнительные топологические объекты для представления ранее неподдерживаемых типов геометрических элементов:

- произвольная топологическая грань, с которой связана нерегулярная поверхностная сетка;
 - топологический блок под протягивание.

Произвольная топологическая грань представляет геометрическую грань, имеющую произвольное количество ребер и контуров.

Топологический блок под протягивание представляет геометрический объем, у которого выделены грань-источник и грань-цель, являющиеся произвольными топологическими гранями, и набор боковых граней, заданных четырехугольными топологическими гранями.

Таким образом, исходными данными, на основе которых задаются параметры сетки, и выполняется ее построение в генераторе блочных сеток (рис. 3) являются:

- 1) геометрический 2,5D объем и представляющий его топологический блок под протягивание;
- 2) разбиение ребер геометрии, которое определяет размер ячеек сетки на гранях и толщину каждого слоя. В генераторе блочных сеток реализованы разбиения: равномерное, геометрическое, симметричное геометрическое и бигеометрическое.

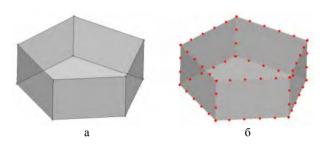


Рис. 3. Исходные данные для построения сетки протягиванием: a-2.5D объем, 6- разбиение ребер геометрии

Коротко о реализации в ЛОГОС-ПреПост всех шагов алгоритма на базе генератора блочных сеток:

- шаг 1 поверхностная сетка на граниисточнике строится методом подвижного фронта с помощью генератора неструктурированных конечно-элементных сеток в ЛОГОС-ПреПост (рис. 4а);
- шаг 2 для проекции поверхностной сетки на грани-цели реализован метод приближения аффинного отображения по методу наименьших квадратов [6, 7] (рис. 4б). После построения выполняется сглаживание полученной сетки по Лапласу;
- шаг 3 структурированные сетки на боковых четырехугольных гранях строятся самим генератором блочных сеток (рис. 4в);
- шаг 4 создание узлов внутри объема осуществляется модифицированным методом BMSweep, который будет более подробно рассмотрен в данной работе [4] (рис. 4г).

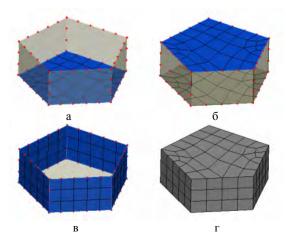


Рис. 4. Данные, получаемые на каждом шаге построения сетки протягиванием: а — шаг 1, б — шаг 2, в — шаг 3, Γ — шаг 4

Конечно, существуют и другие методы нахождения узлов внутри объема, основанные на аффинном преобразовании, методе наименьших квадратов и сглаживании [2, 4, 6, 7]. Однако в некоторых случаях они оказываются неэффективными либо из-за времени работы, либо из-за сингулярности матрицы преобразования, либо из-за некачественных элементов, получающихся в итоге.

Алгоритм BMSweep построения 3D сетки протягиванием

Для построения узлов внутри топологического блока под протягивание был выбран алгоритм «Sweeping via Background Mesh Interpolation» или сокращенно BMSweep — алгоритм, определяющий положение узлов внутри объема с помощью фоновой сетки. Алгоритм BMSweep, созданный группой специалистов из ANSYS, является одним из наиболее простых и универсальных алгоритмов. Интерполяционный метод предусматривает качественное создание элементов, даже если граница будет меняться.

Авторы алгоритма BMSweep заявляют его следующие преимущества:

- возможность построить сетку на любых 2,5D объемах;
 - малая вычислительная сложность;
- не требует плоских грани-источника и границели;
- не требует параллельности грани-источника и грани-цели;
- не требует сглаживания после начального размещения внутренних узлов;
- не требует совпадения формы грани-источника и грани-цели (Пока грань-источник и граньцель имеют одинаковое количество циклов, области могут иметь разную поверхность и форму);
- не требует постоянную форму поперечного сечения вдоль направления протягивания, но требует постоянную топологию поперечного сечения.

При реализации алгоритм BMSweep, представленный в статье [4], был модифицирован для корректного построения узлов в случае, когда граница грани-источника и грани-цели неплоская или не перпендикулярна направлению протягивания. Для этого скалярную поправку положения узла, которая должна учитывать кривизну, заменили векторной величиной, которая изменяется вместе с направлением протягивания. Подробнее об этом будет написано ниже.

Для работы алгоритма BMSweep должны быть подготовлены следующие данные:

- 1) объем, на котором строится сетка (топологический блок под протягивание);
- на грани-источнике должна быть построена сетка, состоящая из четырехугольников и/или треугольников;
- 3) на грани-цели должна быть построена сетка с такими же элементами, как и на грани-источнике. Например, переносом сетки с грани-источника на

грань-цель методом приближения аффинного отображения по методу наименьших квадратов [6, 7];

4) все боковые грани области должны иметь регулярную, четырехугольную сетку, согласованную с сеткой на смежных гранях.

Если все данные подготовлены корректно, то каждому узлу на границе грани-источнике будет соответствовать узел на боковой поверхности на каждом слое и узел на грани-цели.

Алгоритм BMSweep состоит из следующих шагов:

- 1) построение фоновой сетки;
- 2) вычисление интерполяционной информации с помощью фоновой сетки;
- 3) вычисление положения каждого внутреннего узла на всех слоях на основе фоновой сетки и полученной на предыдущем шаге интерполяционной информации;
 - 4) формирование новых объемных элементов. Рассмотрим подробнее эти шаги.

1. Построение фоновой сетки

Фоновая сетка необходима для задания «каркаса», относительно которого можно вычислить положение внутренних узлов. Фоновая сетка генерируется тесселяцией области, ограниченной узлами контуров сетки на грани-источнике. Так как тесселяцию проще выполнить в 2D, то используем для нее параметрические координаты граничных узлов граниисточника. На рис. 5 показаны граничные узлы исходной сетки, спроецированные на параметрическую область, и сетка, полученная тесселяцией области, которую они ограничивают. Эта сетка используется в качестве фоновой для блока.

Фоновая сетка должна быть построена только с использованием граничных узлов. Это требование обусловлено тем, что при работе алгоритма фоновая сетка будет продвигаться от слоя к слою вдоль направления протягивания, в то время как ни один из промежуточных слоев не имеет пока внутренних узлов, соответствующих внутренним узлам исходной сетки.

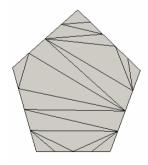


Рис. 5. Фоновая сетка в параметрической области

2. Вычисление интерполяционной информации

Для каждого внутреннего узла исходной сетки необходимо вычислить следующую интерполяционную информацию:

1) треугольник фоновой сетки, который содержит этот узел;

- 2) барицентрические координаты узла в найденном треугольнике на грани-источнике и на грани-цели;
- вектор смещения от грани-источника и от грани-цели.

Треугольник фоновой сетки

Для каждого внутреннего узла i исходной сетки находим его параметрические координаты $\left(U_i^S, V_i^S\right)$ в параметрической области грани-источника. Затем с помощью них ищем «базовый» треугольник T_i — треугольник фоновой сетки в параметрической области, который содержит рассматриваемый узел. Базовый треугольник для внутреннего узла ищется только один раз и только на одной из гранейоснований, в данном случае — на грани-источнике, но используется для вычисления барицентрических координат данного узла на обоих основаниях. Вполне возможно, что один треугольник фоновой сетки будет содержать более одного узла или же вовсе не содержать узлов.

На рис. 6 черным показана фоновая сетка в параметрической области, а красным – исходная сетка, спроецированная на нее.

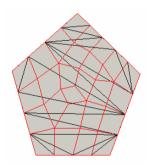


Рис. 6. Фоновая и исходная сетки в параметрической области

Чтобы избежать возможной ситуации, когда из-за недостаточной точности или погрешности вычислений (например, в случае, когда узел лежит близко к ребру) для некоторых узлов не были найдены треугольники, поиск треугольника решено было совместить с поиском барицентрических координат узлов. В качестве треугольника, «содержащего» обрабатываемый узел, принимается треугольник, в котором этот узел имеет наилучшие барицентрические координаты.

Барицентрические координаты

Барицентрические координаты вместе с треугольниками фоновой сетки используются для определения положения каждого внутреннего узла. Нужны два набора барицентрических координат для каждого внутреннего узла *i* грани-источника:

 $\left(a_{i}^{S},b_{i}^{S},c_{i}^{S}\right)$ — барицентрические координаты узла i с параметрическими координатами $\left(U_{i}^{S},V_{i}^{S}\right)$ в базовом треугольнике T_{i} фоновой сетки граничисточника.

 $\left(a_{i}^{T},b_{i}^{T},c_{i}^{T}\right)$ — барицентрические координаты соответствующего узла на грани-цели с параметрическими координатами $\left(U_{i}^{T},V_{i}^{T}\right)$ в этом же треугольнике T_{i} фоновой сетки грани-цели. При этом узел не обязательно должен принадлежать этому треугольнику.

Если форма грани-источника и грани-цели совпадают, то эти 2 набора барицентрических координат будут совпадать. Однако если форма граниисточника отличается от формы грани-цели, то барицентрические координаты могут отличаться. Фактически, если их форма решительно отличается, то треугольник фоновой сетки после переноса на граньцель может вовсе не содержать соответствующий узел, в этом случае одна или более барицентрических координат будут отрицательными, что вполне допустимо. Барицентрические координаты должны быть связаны с одним и тем же треугольником, так как каждый внутренний узел определяется линейной интерполяцией этих координат.

Вектор смещения

Вектор смещения — это вектор с началом во внутреннем узле i треугольника T_i фоновой сетки и концом в i узле 3D пространства.

Вектор смещения нулевой, если грань плоская. Если грань-источник или грань-цель не плоские, то для определения положения внутренних узлов необходимы вектора смещения. Вектор смещения как интерполяционные данные нужен для учета кривизны грани-источника и грани-цели, которая не передается фоновой сеткой. Поскольку только граничные узлы используются для построения фоновой сетки, то фоновая сетка отражает только кривизну, представленную на границе грани-источника и грани-цели.

Необходимо найти два вектора смещения для каждого внутреннего узла i грани-источника: v_i^S и v_i^T — вектор смещения от грани-источника и от грани-цели соответственно.

Пусть P_i^S — координаты внутреннего узла i грани-источника, а P_i^T — координаты соответствующего ему узла на грани-цели. $P_i^{S1}, P_i^{S2}, P_i^{S3}$ — координаты узлов треугольника T_i фоновой сетки на грани-источнике в 3D пространстве, а $P_i^{S1}, P_i^{S2}, P_i^{S3}$ — соответственно координаты узлов треугольника T_i фоновой сетки на грани-цели в 3D пространстве. Тогда формулы вычисления векторов смещения можно записать как:

$$\begin{aligned} v_i^S &= \left(a_i^S \cdot P_i^{S1} + b_i^S \cdot P_i^{S2} + c_i^S \cdot P_i^{S3}\right) - P_i^S \\ v_i^T &= \left(a_i^T \cdot P_i^{T1} + b_i^T \cdot P_i^{T2} + c_i^T \cdot P_i^{T3}\right) - P_i^T \end{aligned}$$

3. Вычисление положения узлов каждого уровня

После вычисления интерполяционной информации положение P_i^L каждого узла i на каждом слое L может быть определено за четыре шага:

- 1) вычисление барицентрических координат $\left(a_i^L,b_i^L,c_i^L\right)$ узла i в слое L с помощью линейной интерполяции барицентрических координат $\left(a_i^S,b_i^S,c_i^S\right)$ и $\left(a_i^T,b_i^T,c_i^T\right)$. Вычисление вектора смещения v_i^L для узла i в слое L линейной интерполяцией v_i^S и v_i^T векторов смещения от граничсточника и границели соответственно. В качестве интерполяционного параметра используется параметр разбиения бокового ребра блока. Это разбиение может задавать как равномерное расстояние между слоями, так и неравномерное, по определенному закону (геометрическое, симметричное геометрическое и бигеометрическое разбиение).
- 2) перемещение треугольника фоновой сетки T_i , содержащего соответствующий внутренний узел i на текущий слой L. Это достигается выбором граничных узлов на слое L, которые соответствуют узлам треугольника T_i на грани-источнике.
- 3) поворот вектора смещения v_i^L . При переходе от слоя к слою ориентация в пространстве сдвигаемой исходной сетки может меняться согласно изменению направления протягивания. Соответственным образом должен меняться и вектор смещения. Поэтому вектор смещения v_i^L для узла i на текущем слое L изменяем (поворачиваем) таким же образом, как изменилось направление протягивания в этом узле в слое L по сравнению с исходным направлением.

Пусть $V_i^{S1}, V_i^{S2}, V_i^{S3}$ — направления протягивания в узлах треугольника T_i фоновой сетки на граниисточнике в 3D пространстве, а $V_i^{L1}, V_i^{L2}, V_i^{L3}$ — направления протягивания в узлах треугольника T_i на слое L. Тогда направление протягивания внутреннего узла i на грани-источнике — V_i^S можно вычислить по формуле:

$$V_{i}^{S} = a_{i}^{S} \cdot V_{i}^{S1} + b_{i}^{S} \cdot V_{i}^{S2} + c_{i}^{S} \cdot V_{i}^{S3}$$

Аналогично вычисляется V_i^L — направление протягивания внутреннего узла i в текущем слое L:

$$V_{i}^{L} = a_{i}^{L} \cdot V_{i}^{L1} + b_{i}^{L} \cdot V_{i}^{L2} + c_{i}^{L} \cdot V_{i}^{L3}$$

Далее находим параметры поворота, выполнив который, можно из вектора $V_i^{\ S}$ получить вектор $V_i^{\ L}$:

- ось, вокруг которой осуществляется поворот, вычисляется как векторное произведение V_i^S и V_i^L ;
- угол поворота угол между векторами V_i^S и V_i^L можно найти через их скалярное произведение.

Применяем этот поворот к вектору смещения и получаем вектор смещения v_i^{LR} .

4) следующей формулой можно определить положение P_i^L внутреннего узла i в слое L:

Эта формула определяет финальное положение внутреннего узла. Проведение сглаживания не требуется. По сути, она вычисляет положение внутреннего узла с помощь интерполяции координат граничных узлов в слое *L*. Положение узлов в других слоях выше и ниже рассматриваемого слоя не влияет на положение узлов в нем. В результате положение узлов на каждом уровне изменяется вместе с граничными узлами этого уровня полностью независимо от глобальной ориентации объема. Это позволяет алгоритму BMSweep строить сетки протягиванием на объемах, которые резко скручиваются (рис. 8) и изменяются в поперечном сечении (рис. 9 и 10).

4. Формирование новых объемных элементов

Каждый слой *L* имеет такие же 2D элементы и в таком же порядке, как и первый слой, т. е. исходная сетка. Новые объемные элементы формируются в виде призм, основаниями которых являются 2D элементы с одинаковым идентификатором двух соседних слоев.

Примеры построенных сеток

На рис. 7 представлены объемные сетки, полученные протягиванием нерегулярной поверхностной сетки в 2,5D объеме на геометриях 1 и 3 из рис. 2а и 2в.

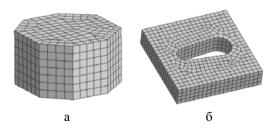


Рис. 7. Примеры объемной сетки на 2,5D объеме: а – на геометрии 1, рис. 2a; б – на геометрии 3, рис. 2в

На рис. 8 показана геометрия, поперечное сечение которой довольно сильно закручивается вокруг своей оси, приведена ее объемная сетка и один из внутренних слоев.

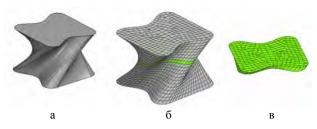


Рис. 8. Пример геометрии и объемной сетки с закручивающимся поперечным сечением: а – геометрия, б – объемная сетка, в – внутренний слой

Приведенные на рис. 9 и 10 сетки были построены на геометрии 2, приведенной на рис. 2б, которую можно использовать для протягивания в разных направлениях, так как она является топологическим шестигранником. Были выбраны два наиболее интересных направления протягивания:

- 1) вдоль протягивания меняется поперечное сечение геометрии (рис. 9);
- 2) грань-источник и грань-цель, а также их границы неплоские (рис. 10).

Для наглядности в обоих примерах на граниисточнике была построена триангуляционная сетка. На рис. 9б и 10б показан один из ее внутренних слоев.

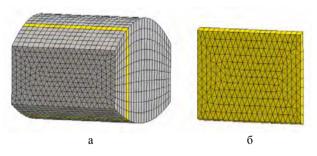


Рис. 9. Пример объемной сетки и отдельного слоя при изменении поперечного сечения вдоль оси протягивания: а – объемная сетка на геометрии 2, рис. 26; б – внутренний слой

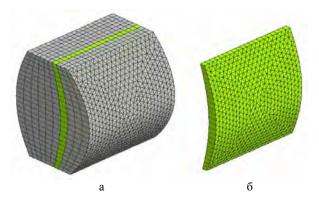


Рис. 10. Пример объемной сетки и отдельного слоя при разной кривизне грани-источника и грани-цели: а – объемная сетка на геометрии 2, рис. 26; б – внутренний слой

Генератор блочных сеток позволяет создавать составные грани. С помощью них можно расширить применимость метод протягивания. Например, в некоторых случаях можно обойти требование для бо-

ковых граней, чтобы они являлись топологическими четырехугольниками, если их можно объединить в составную грань, которая является топологическим четырехугольником и содержит противолежащие ребро грани-источника и ребро грани-цели. На рис. 11 приведена геометрия, не являющаяся 2,5D объемом (рис. 11а), но которая может быть к нему приведена, если объединить выделенные боковые грани (рис. 11б) в одну составную грань.

Рис. 11. Геометрия, которую можно привести к 2,5D объему путем объединения выделенных боковых граней в одну составную: а – геометрия, не являющаяся 2,5D объемом, б – геометрия с выделенными боковыми гранями

На рис. 12 показана объемная сетка (рис. 12а), полученная протягиванием на геометрии с рис. 11а и один из внутренних слоев объемных ячеек (рис. 12б).

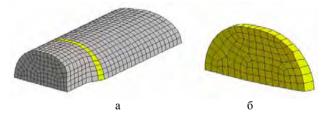


Рис. 12. Объемная сетка на геометрии с составной боковой гранью и один слой ее внутренних ячеек: а – объемная сетка, б – внутренний слой

Заключение

В ЛОГОС.ПреПост ведется разработка гибридного генератора для подготовки сеточных моделей для решения задач прочности. Гибридный генератор предназначен для построения сетки в «блоках» различными способами, одним из которых является построение сетки протягиванием. В данной работе представлен подход к построению объемной сетки протягиванием в единичном объеме и его интеграция в генератор блочных сеток. Подробно рассмотрен модифицированный метод BMSweep - метод определения положения узлов внутри объема вдоль протягивания, который позволяет строить сетку, не требуя параллельности или плоскости граней, и при этом допускает вращение и изменение формы поперечного сечения геометрии вдоль протягивания до тех пор, пока выполняется постоянство топологии поперечного сечения. В дальнейшем планируется развивать генератор, добавив возможность строить сетки на блоках, имеющих более одной граниисточника (составную грань-источник).

Литература

- 1. Фархутдинов В. Ф., Тарасов В. И., Соловьев А. Н., Борисенко О. Н., Смолкина Д. Н., Кузьменко М. В. и др. Обзор возможностей по обработке геометрических и построению сеточных моделей в ЛОГОС.Препост // Труды XIV Международной конференции «Супервычисления и математическое моделирование». 2013. С. 585–592.
- 2. Owen S. Non-Simplical Unstructured Mesh Generation. A Dissertation Submitted to The Department of Civil and Environmental Engineering Carnegie Mellon University, Pittsburgh, PA. U.S.A. in Partial Fulfillment of Requirements for the Degree of Doctor of Philosophy. 1999.
- 3. Ted D. Blacker, The Cooper Tool // Proceedings, 5th International Meshing Roundtable. 1996. P. 13–29.

- 4. Staten M. L., Canann S. A., Owen S. J. BMSweep: Locating interior nodes during sweeping // Engineering with Computers. 1999. Vol. 15, No 3, P. 212–218.
- 5. Лазарев В. В., Фархутдинов В. Ф., Данилова Т. Г., Морозова Е. В. Блочные регулярные сетки в ПреПроцессоре ЛОГОС // XII научно-техническая конференция «Молодежь в науке»: Сб. докладов, Саров, 2014. С. 67–70.
- 6. Roca X, Sarrate J, Huerta A. Surface Mesh Projection for Hexahedral Mesh Generation by Sweeping // 13th Int Meshing Roundtable. 2004. P. 169–179.
- 7. Roca X, Sarrate J. An Automatic and General Least-Squares Projection Procedure for Sweep Meshing // Engineering with Computers. 2010. Vol. 26, issue 4, P. 391–406.