ВЫСОКОВОЛЬТНЫЙ ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ГЕНЕРАТОР С ЛАЗЕРНОЙ СИНХРОНИЗАЦИЕЙ ДЛЯ ПИТАНИЯ СПЕЦИАЛЬНОГО ФОТОЭЛЕМЕНТА СВЧ-ГЕНЕРАТОРА

А. А. Зубков, Н. В. Купырин, Н. Н. Хавронин

ФГУП «РФЯЦ-ВНИИТФ им. акад. Е. И. Забабахина», г. Снежинск Челябинской обл.

Введение

Источник импульсного питания фотоэлемента представляет собой генератор, собранный по схеме Введенского на основе разрядника с лазерным поджигом. Он предназначен для подачи короткого высоковольтного импульса напряжения на фотокатод специального фотоэлемента (ФЭК) СВЧ-генератора в момент его облучения лазерным пучком ультракороткой длительности, создающим сверхсветовую бегущую волну фотоэлектронной эмиссии.

Основные технические характеристики Φ ЭК [1] (нагрузка генератора):

диаметр фотокатода	5 см;
– зазор фотокатод-анод	24 мм;
– волновое сопротивление	75 Ом;
– емкость	2050 пф.
_	

Основные параметры импульса лазерного поджига генератора:

- длина волны пускового импульса лазерного излучения 1053 нм;
- длительность пускового лазерного импульса 150 пс;
- энергия пускового лазерного импульса ≈ 1 мДж;
- диаметр пучка в фокусе объектива 200 мкм;
- максимальная частота следования импульсов 0,3 Γ ц.

Требования к характеристикам генератора:

- полярность импульса напряжения отрицательная;
- амплитуда импульса напряжения ≤ 100 кВ;
- длительность импульса напряжения на полувысоте ≤ 10 нс;
- длительность фронта импульса напряжения на уровне 0,1-0,9 < 2 нс;
- задержка срабатывания генератора при запуске лазерным импульсом < 50 нс;
- нестабильность задержки срабатывания $\leq \pm 2$ нс.

Конструкция генератора

На рис. 1 представлена схема генератора. Отработка схемы генератора и конструкции его разрядника была проведена на макете, рассчитанном на выходное напряжение до 60 кВ [2].

Рис. 1. Схема генератора импульсного питания ФЭК: Π_1 – формирующий кабель; Π_2 – согласующий кабель; Π_3 – передающий кабель; Π_4 – зарядный кабель; R_3 – зарядное сопротивление; R_C – согласующее сопротивление; Π_3 – омический делитель напряжения

Отличие данной конструкции генератора от его макета состоит в следующем:

- увеличены все зазоры от элементов, находящихся под постоянным и импульсным напряжением, до заземленного корпуса генератора (по маслу до 50 мм, по поверхности изоляторов до 85 мм);
- уменьшена длительность импульса напряжения до 7 нс (длина формирующего кабеля ≈ 1 м) для уменьшения вероятности пробоя вакуумного промежутка ФЭКа при увеличении подаваемого на него напряжения до $100~{\rm kB}$;
- изменена конструкция корпуса разрядника для возможности его использования на напряжения до 100 кВ и давления до 25 ати;
- конструктивно изменен ввод газа в разрядник для возможности регулировки зазора без разборки самого разрядника.

Доработанная конструкция генератора и его составных частей позволила в несколько раз сократить время и усилия при перестройке генератора с одного напряжения на другое, расширить диапазон рабочих напряжений для одного зазора в разряднике.

В качестве формирующего и согласующего кабелей используется кабель марки КВИ-120 длиной порядка 1 и 1,5 м соответственно, в качестве передающего – кабель марки РК75-7-21 длиной 3 м со специальным разъемом для подключения к ФЭК (предоставлен ФГУП-ВНИИОФИ). Зазор в разряднике регулируется от 0 до 8,5 мм, а давление в нем – от 0 до 25 ати. В качестве рабочего газа в разряднике используется азот высокой очистки.

Характеристики генератора

Под характеристиками генератора понимаются параметры импульса напряжения на нагрузке (амплитуда, длительности фронта на уровне 0,1–0,9 и импульса на полувысоте), а также время задержки срабатывания генератора и его разброс при различных комбинациях зазора и давления в разряднике в зависимости от зарядного напряжения.

Нагрузку генератора ФЭК, можно представить как вакуумный промежуток с бесконечно большим сопротивлением. Т. к. волновое сопротивление передающего кабеля 75 Ом (Π_3 на рис. 1), то в качестве имитации вакуумного промежутка ФЭК можно использовать высокоомное сопротивление порядка единиц килоом. В экспериментах в качестве нагрузки генератора использовался высокоомный (R_2 = 2,95 кОм) омический делитель напряжения ($K_{дел}$ = 2306), размещенный непосредственно в корпусе ФЭК.

В экспериментах зазор в разряднике изменялся от 0.25 до 2.25 мм, а давление в нем – от 0 до 20 ати.

Типичные осциллограммы импульсов напряжения на делителе Д1 и на высокоомной омической нагрузке представлены на рис. 2.

Рис. 2. Типичные осциллограммы импульсов напряжения на делителе Д1 и на высокоомной омической нагрузке: лазер — пусковой импульс лазерного излучения. Зарядное напряжение генератора — 80 кВ, зазор в разряднике — 2,25 мм, давление в разряднике — 12,5 ати. Масштаб напряжения — 10 кВ/делении, масштаб времени — 5 нс/деление

В ходе экспериментов были получены следующие характеристики генератора:

- амплитуда импульса напряжения на нагрузке регулируется в диапазоне (10–100) кВ;
- длительность импульса напряжения на нагрузке на полувысоте 7 нс;
- длительность фронта импульса напряжения на нагрузке на уровне 0,1-0,9 2 нс;
- частота следования импульсов напряжения на нагрузке 0,3 Γ ц.

Частота следования импульсов напряжения на нагрузке, в данных экспериментах, определялась только частотными возможностями лазера. Частота, с которой может работать данный генератор, определяется мощностью источника питания и количеством одновременно подключенных нагрузок. Максимальная частота при подключенных четырех нагрузках может составлять порядка 100 Гц.

Далее были проведены эксперименты по определению времени задержки срабатывания генератора и его разброс при различных комбинациях зазора и давления в разряднике в зависимости от зарядного напряжения.

Результаты этих экспериментов представлены в таблице, где время указано в наносекундах как среднеарифметическое значение плюс/минус среднеквадратичное отклонение по 5 экспериментам. В качестве результатов представлены только те значения, которые удовлетворяют требованиям к характеристикам генератора: задержка срабатывания генератора при запуске лазерным импульсом не более 40 нс (за исключением задержки передающего кабеля не менее 10 нс), нестабильность задержки срабатывания менее 4 нс.

Так же были проведены эксперименты по отработке генератора, когда в качестве нагрузки использовался коаксиальный фотоэлемент (ФЭК). В экспериментах фиксировались показания датчика Д1 при подаче основного лазерного импульса излучения на ФЭК и без его подачи. Расположение датчика Д1 позволяет регистрировать не только основной импульс напряжения (импульс напряжения бегущей волны к нагрузке), но и отраженный от нее.

На рис. 3 представлены типичные осциллограммы двух этих экспериментов.

Рис. 3. Типичные осциллограммы импульсов напряжения на делителе Д1 при подаче основного лазерного импульса на фотокатод ФЭКа (Д1) и без его подачи (Д1*): лазер — пусковой импульс лазерного излучения. Зарядное напряжение генератора — 30 кВ, зазор в разряднике — 1,75 мм, давление в разряднике — 5,5 ати. Масштаб напряжения Д1, Д1* — 2 кВ/деление, масштаб времени — 5 нс/деление

Задержки срабатывания * генератора при различных зазорах в разряднике (h), в зависимости от давления в разряднике (P) и зарядного напряжения (U) генератора

				h =	0,75 мм					
<i>U</i> , кВ/ <i>P</i> , ати	и	10		20		30			40	
3,0		5,1 ± 0,3								
3,5		$7,6 \pm 0,3$								
4,0		15,7±0,4								
4,5		34,9 ± 1,9								
8,0				5,8±0	0,3					
8,5				9,1±0	0,3					
9,0				15,6±	0,7					
11,5						(5,9 ± 0,1			
12,0						1	11,2±0,5			
12,5							$8,2 \pm 0,5$			
15,0									7,4±0,7	
15,5									$10,7 \pm 0,9$	
16,0									11,9 ± 1,2	
			•	h=	: 1,25 мм	•				
<i>U</i> , кВ/ <i>P</i> , ати	А	20	3	0	4	10		50	60	
5,0	10,	$2 \pm 0,4$								
5,5	19,	7 ± 0.7								
7,0			6,1	± 0,5						
7,5			9,0	±0,3						
8,0			15,4	±0,3						
10,5					9,9	±0,3				
11,0					16,0	±0,4				
11,5					15,7	±1,1				
13,0							8,9	9 ± 0.3		
13,5							14,	9±1,4		
15,5									$13,0 \pm 0,3$	
16,0									$13,0 \pm 0,4$	
				h =	1,75 мм					
U , к B/P , ати	30		40	50)	60)	70	80	
5,5	$11,6 \pm 0,4$									
6,0	$24,8 \pm 1,8$									
7,5		10,	$7 \pm 0,3$							
8,0		23,	1 ± 0.8							
9,0				11,1 ±	±0,5					
9,5				19,7 ±	±1,5					
11,5						8,9 ±	0,5			
12,0						18,2	± 1,0			
13,0								$9,3 \pm 0,3$		
13,5								$11,8 \pm 0,6$		
15,5									$12,2 \pm 0,5$	
16,0									$15,4 \pm 1,1$	

^{*} среднеарифметическое значение плюс/минус среднеквадратичное отклонение по 5 измерениям, указанное в наносекундах.

h = 2,25 mm								
U , к B/P , ати	40	50	60	70	80	90	100	
5,5	$11,3 \pm 0,6$							
6,0	$26,2 \pm 0,5$							
7,0		$9,9 \pm 0,3$						
7,5		12,6±0,6						
8,0		29,8±1,6						
9,0			11,8±0,3					
9,5			14,0±0,3					
10,5				10,6±0,6				
11,0				25,0±1,4				
12,5					11,7±0,5			
13,0					17,4 ± 1,0			
14,0						10,5 ± 0,4		
14,5						18,2 ± 1,1		
15,5							$12,0\pm 0,7$	
16,0							22,1 ± 1,3	

По осциллограммам на рис. З задержка срабатывания генератора с учетом передающего кабеля (задержка кабеля 17 нс) составила 29 нс (задержка между пусковым и основным лазерным импульсом была выставлена 28,5 нс). По отраженному от нагрузки сигналу на осциллограмме Д1 виден момент, когда происходит замыкание катод-анодного промежутка ФЭКа (срыв напряжения на Д1 – точка А на рис. 3), по времени этот момент соответствует моменту подачи основного импульса лазерного излучения на фотокатод ФЭКа. Из сравнения отраженных сигналов на осциллограммах Д1 и Д1* получаем, что основной лазерный импульс излучения подается на фотокатод в момент, когда на нем формируется максимальная амплитуда напряжения.

Исходя из принципа работы и конструкции генератора имеется возможность поднятия его выходного напряжения без увеличения зарядного напряжения, за счет рассогласования волновых сопротивлений в контуре генератора (при полном согласовании волновых сопротивлений в контуре его выходное напряжение равно зарядному). Это возможно увеличив количество подключаемых формирующих кабелей (Π_1 на рис. 1) или отключая согласующий кабель (Л₂ на рис. 1). Увеличивая число формирующих кабелей до 4 штук (количество ограничено конструкцией генератора), мы тем самым уменьшаем их суммарное волновое сопротивление (кабели подключаются параллельно), а отключая согласующий кабель, мы увеличиваем «выходное» волновое сопротивление («выходное» волновое сопротивление складывается из волновых сопротивлений параллельно подключенных формирующего и передающего кабелей).

Исследование данной возможности было проведено на макете генератора импульсного питания фотоэлемента, в качестве нагрузки генератора использовался высокоомный делитель напряжения. Эти эксперименты проводились в два этапа. На первом этапе изменялось количество формирующих линий без отключения согласующего кабеля. На втором этапе проводились аналогичные эксперименты, но с отключенным согласующим кабелем. В экспериментах запуск генератора осуществлялся не лазерным импульсом, а в режиме самопробоя разрядника, при этом зазор в разряднике выставлялся 0,9 мм, а давление — 5,8 ати, напряжение самопробоя составило 20 кВ.

На рис. 4 представлены осциллограммы импульсов напряжения на внутреннем делителе Д1 и на нагрузке генератора для первого этапа экспериментов, а на рис. 5 – для второго этапа.

Из осциллограмм на рис. 4 и 5 видно, что при увеличении числа формирующих кабелей до 4 штук амплитуда напряжения на нагрузке генератора возрастает до значения 1,5 от зарядного, аналогичная ситуация (увеличение напряжения на нагрузке генератора) наблюдается и при отключении согласующего кабеля. Максимальная амплитуда напряжения на нагрузке генератора (1,7 от зарядного) достигается при использовании 4 формирующих кабелей и отключенном согласующем (осциллограммы на рис. 5 г). Также из осциллограмм видно, что при изменении числа формирующих кабелей и/или отключении согласующего меняется форма импульса напряжения на делителе Д1 и на нагрузке генератора (без изменения фронта). Это связано с появлением отражений в контуре генератора за счет его рассогласования.

Рис. 4. Осциллограммы импульсов напряжения на делителе Д1 и на нагрузке при разном количестве подключенных формирующих и согласующем кабеле

Рис. 5. Осциллограммы импульсов напряжения на делителе Д1 и на нагрузке при разном количестве подключенных формирующих кабелей и отключенном согласующем кабеле

Заключение

Описанный в работе генератор имеет следующие параметры:

- амплитуда импульса напряжения на нагрузке регулируется в диапазоне (10–100) кВ;
- длительность импульса напряжения на нагрузке на полувысоте 7 нс;
- длительность фронта импульса напряжения на нагрузке на уровне 0,1–0,9 2 нс;
- задержка срабатывания генератора при запуске лазерным импульсом < 40 нс;
- нестабильность задержки срабатывания

 $\leq \pm 2$ HC;

 частота следования импульсов напряжения

0,3 Гц.

Так же в работе была показана возможность увеличения напряжения на нагрузке относительно зарядного напряжения генератора (до 1,7 раза) без изменения его конструкции. Увеличение напряжения на нагрузке относительно зарядного напряжения приводит к изменению формы импульса напряжения на нагрузке без изменения его фронта.

Литература

- 1. Брюхневич Г. И., Воронкова Н. П., Пекарская Л. З., Шрамко Ф. Ф. Научно-технический отчет ФГУП-ВНИИОФИ по НИР «Разработка макета фотоэмиссионного элемента для широкополосного СВЧ-генератора». 15.12.2006 г.
- 2. Зубков А. А., Купырин Н. В., Хавронин Н. Н. Высоковольтный генератор импульсного питания фотоэлемента // Становление и развитие научных исследований в высшей школе: Сборник трудов. Т. 2. Томск, 2009. С. 293–300.