ВЫСОКОВОЛЬТНЫЙ ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ГЕНЕРАТОР С ЛАЗЕРНОЙ СИНХРОНИЗАЦИЕЙ ДЛЯ ПИТАНИЯ СПЕЦИАЛЬНОГО ФОТОЭЛЕМЕНТА СВЧ-ГЕНЕРАТОРА

А. А. Зубков, Н. В. Купырин, Н. Н. Хавронин

ФГУП «РФЯЦ-ВНИИТФ им. акад. Е. И. Забабахина», г. Снежинск Челябинской обл.

Введение

Источник импульсного питания фотоэлемента представляет собой генератор, собранный по схеме Введенского на основе разрядника с лазерным поджигом. Он предназначен для подачи короткого высоковольтного импульса напряжения на фотокатод специального фотоэлемента (ФЭК) СВЧ-генератора в момент его облучения лазерным пучком ультракороткой длительности, создающим сверхсветовую бегущую волну фотоэлектронной эмиссии.

Основные технические характеристики ФЭК [1] (нагрузка генератора):

 диаметр фотокатода 	5 см;
– зазор фотокатод-анод	24 мм;
 волновое сопротивление 	75 Ом;
– емкость	2050 пф.

Основные параметры импульса лазерного поджига генератора:

 – длина волны пускового импульса 						
лазерного излучения	1053 нм;					
- длительность пускового лазерног	0					
импульса	150 пс;					
- энергия пускового лазерного						
импульса	≈1 мДж;					
– диаметр пучка в фокусе объектива 200 мкм;						
- максимальная частота следования	I					
импульсов	0,3 Гц.					
Гребования к характеристикам генератора:						
 полярность импульса 						
напряжения отр	оицательная;					
– амплитуда импульса напряжения	≤100 кВ;					
– длительность импульса напряжения						
на полувысоте	≤10 нс;					
– длительность фронта импульса на	апряжения					
на уровне 0,1–0,9	<2 нс;					
- 23 Jenwica chafari inaliug relienaror	19					

- задержка срабатывания генератора при запуске лазерным импульсом < 50 нс;
 нестабильность задержки
- срабатывания ≤±2 нс.

Конструкция генератора

На рис. 1 представлена схема генератора.

Отработка схемы генератора и конструкции его разрядника была проведена на макете, рассчитанном на выходное напряжение до 60 кВ [2].

Рис. 1. Схема генератора импульсного питания ФЭК: $\Pi_1 - \phi$ ормирующий кабель; $\Pi_2 -$ согласующий кабель; $\Pi_3 -$ передающий кабель; $\Pi_4 -$ зарядный кабель; $R_3 -$ зарядное сопротивление; $R_C -$ согласующее

сопротивление; Д1 – омический делитель напряжения

Отличие данной конструкции генератора от его макета состоит в следующем:

 увеличены все зазоры от элементов, находящихся под постоянным и импульсным напряжением, до заземленного корпуса генератора (по маслу – до 50 мм, по поверхности изоляторов – до 85 мм);

 – уменьшена длительность импульса напряжения до 7 нс (длина формирующего кабеля ≈ 1 м) для уменьшения вероятности пробоя вакуумного промежутка ФЭКа при увеличении подаваемого на него напряжения до 100 кВ;

 изменена конструкция корпуса разрядника для возможности его использования на напряжения до 100 кВ и давления до 25 ати;

 конструктивно изменен ввод газа в разрядник для возможности регулировки зазора без разборки самого разрядника.

Доработанная конструкция генератора и его составных частей позволила в несколько раз сократить время и усилия при перестройке генератора с одного напряжения на другое, расширить диапазон рабочих напряжений для одного зазора в разряднике.

В качестве формирующего и согласующего кабелей используется кабель марки КВИ-120 длиной порядка 1 и 1,5 м соответственно, в качестве передающего – кабель марки РК75-7-21 длиной 3 м со специальным разъемом для подключения к ФЭК (предоставлен ФГУП-ВНИИОФИ). Зазор в разряднике регулируется от 0 до 8,5 мм, а давление в нем – от 0 до 25 ати. В качестве рабочего газа в разряднике используется азот высокой очистки.

Характеристики генератора

Под характеристиками генератора понимаются параметры импульса напряжения на нагрузке (амплитуда, длительности фронта на уровне 0,1–0,9 и импульса на полувысоте), а также время задержки срабатывания генератора и его разброс при различных комбинациях зазора и давления в разряднике в зависимости от зарядного напряжения.

Нагрузку генератора ФЭК, можно представить как вакуумный промежуток с бесконечно большим сопротивлением. Т. к. волновое сопротивление передающего кабеля 75 Ом ($Л_3$ на рис. 1), то в качестве имитации вакуумного промежутка ФЭК можно использовать высокоомное сопротивление порядка единиц килоом. В экспериментах в качестве нагрузки генератора использовался высокоомный ($R_2 = 2,95$ кОм) омический делитель напряжения ($K_{дел} = 2306$), размещенный непосредственно в корпусе ФЭК.

В экспериментах зазор в разряднике изменялся от 0,25 до 2,25 мм, а давление в нем – от 0 до 20 ати.

Типичные осциллограммы импульсов напряжения на делителе Д1 и на высокоомной омической нагрузке представлены на рис. 2.

Рис. 2. Типичные осциллограммы импульсов напряжения на делителе Д1 и на высокоомной омической нагрузке: лазер – пусковой импульс лазерного излучения. Зарядное напряжение генератора – 80 кВ, зазор в разряднике – 2,25 мм, давление в разряднике – 12,5 ати. Масштаб напряжения – 10 кВ/делении, масштаб времени – 5 нс/деление

В ходе экспериментов были получены следующие характеристики генератора:

- амплитуда импульса напряжения на нагрузке регулируется в диапазоне (10–100) кВ;
- длительность импульса напряжения на нагрузке на полувысоте 7 нс;
- длительность фронта импульса напряжения на нагрузке на уровне 0,1–0,9 2 нс;
- частота следования импульсов напряжения на нагрузке
 0,3 Гц.

Частота следования импульсов напряжения на нагрузке, в данных экспериментах, определялась только частотными возможностями лазера. Частота, с которой может работать данный генератор, определяется мощностью источника питания и количеством одновременно подключенных нагрузок. Максимальная частота при подключенных четырех нагрузках может составлять порядка 100 Гц.

Далее были проведены эксперименты по определению времени задержки срабатывания генератора и его разброс при различных комбинациях зазора и давления в разряднике в зависимости от зарядного напряжения.

Результаты этих экспериментов представлены в таблице, где время указано в наносекундах как среднеарифметическое значение плюс/минус среднеквадратичное отклонение по 5 экспериментам. В качестве результатов представлены только те значения, которые удовлетворяют требованиям к характеристикам генератора: задержка срабатывания генератора при запуске лазерным импульсом не более 40 нс (за исключением задержки передающего кабеля не менее 10 нс), нестабильность задержки срабатывания менее 4 нс.

Так же были проведены эксперименты по отработке генератора, когда в качестве нагрузки использовался коаксиальный фотоэлемент (ФЭК). В экспериментах фиксировались показания датчика Д1 при подаче основного лазерного импульса излучения на ФЭК и без его подачи. Расположение датчика Д1 позволяет регистрировать не только основной импульс напряжения (импульс напряжения бегущей волны к нагрузке), но и отраженный от нее.

На рис. 3 представлены типичные осциллограммы двух этих экспериментов.

Рис. 3. Типичные осциллограммы импульсов напряжения на делителе Д1 при подаче основного лазерного импульса на фотокатод ФЭКа (Д1) и без его подачи (Д1*): лазер – пусковой импульс лазерного излучения. Зарядное напряжение генератора – 30 кВ, зазор в разряднике – 1,75 мм, давление в разряднике – 5,5 ати. Масштаб напряжения Д1, Д1* – 2 кВ/деление, масштаб времени – 5 нс/деление Задержки срабатывания^{*} генератора при различных зазорах в разряднике (h), в зависимости от давления в разряднике (P) и зарядного напряжения (U) генератора

					<i>h</i> =	= 0,75 мм					
<i>U</i> , кВ/ <i>P</i> , а	ти	10			20		30			40	
3,0		5.1 ± 0.3									
3,5		7	$7,6\pm0,3$								
4,0		1	$5,7\pm0,4$								
4,5		3-	$4,9 \pm 1,9$								
8,0					5,8±0	0,3					
8,5					9,1±0	0,3					
9,0					15,6±	0,7					
11,5								6,9±0,1			
12,0							11,2±0,5				
12,5							18,2±0,5				
15,0										7,4	1±0,7
15,5										10,	7±0,9
16,0										11,	9±1,2
					<i>h</i> =	= 1,25 мм			•		
<i>U</i> , кВ/ <i>P</i> , а	ти	20	0	3	0	40		50			60
5,0		10,2	±0,4								
5,5		19,7	±0,7								
7,0				6,1	±0,5						
7,5				9,0±	±0,3						
8,0				15,4	±0,3						
10,5						9,9	±0,3				
11,0						16,0	±0,4				
11,5						15,7	±1,1				
13,0								8,9	$\theta \pm 0,3$		
13,5	13,5							14,9±1,4			
15,5											13,0±0,3
16,0											13,0±0,4
					<i>h</i> =	= 1,75 мм					
<i>U</i> , кВ/ <i>P</i> , ати		30		40		50		60			80
5,5	11	,6±0,4									
6,0	24	,8±1,8									
7,5			10,7±0,3								
8,0			23,1±0,8								
9,0					11,1=	±0,5					
9,5					19,7 :	±1,5					
11,5							8,9	±0,5			
12,0							18,2	±1,0			
13,0									9,3±0,3		
13,5									11,8±0,6	,	
15,5											12,2±0,5
16,0											15,4±1,1

* среднеарифметическое значение плюс/минус среднеквадратичное отклонение по 5 измерениям, указанное в наносекундах.

<i>h</i> = 2,25 мм									
<i>U</i> , кВ/ <i>P</i> , ати	40	50	60	70	80	90	100		
5,5	11,3±0,6								
6,0	$26,2\pm0,5$								
7,0		9,9±0,3							
7,5		12,6±0,6							
8,0		29,8±1,6							
9,0			11,8±0,3						
9,5			14,0±0,3						
10,5				10,6±0,6					
11,0				25,0±1,4					
12,5					11,7±0,5				
13,0					17,4±1,0				
14,0						10,5±0,4			
14,5						18,2±1,1			
15,5							12,0±0,7		
16,0							22,1±1,3		

По осциллограммам на рис. З задержка срабатывания генератора с учетом передающего кабеля (задержка кабеля 17 нс) составила 29 нс (задержка между пусковым и основным лазерным импульсом была выставлена 28,5 нс). По отраженному от нагрузки сигналу на осциллограмме Д1 виден момент, когда происходит замыкание катод-анодного промежутка ФЭКа (срыв напряжения на Д1 – точка А на рис. 3), по времени этот момент соответствует моменту подачи основного импульса лазерного излучения на фотокатод ФЭКа. Из сравнения отраженных сигналов на осциллограммах Д1 и Д1* получаем, что основной лазерный импульс излучения подается на фотокатод в момент, когда на нем формируется максимальная амплитуда напряжения.

Исходя из принципа работы и конструкции генератора имеется возможность поднятия его выходного напряжения без увеличения зарядного напряжения, за счет рассогласования волновых сопротивлений в контуре генератора (при полном согласовании волновых сопротивлений в контуре его выходное напряжение равно зарядному). Это возможно увеличив количество подключаемых формирующих кабелей (Л₁ на рис. 1) или отключая согласующий кабель (Л₂ на рис. 1). Увеличивая число формирующих кабелей до 4 штук (количество ограничено конструкцией генератора), мы тем самым уменьшаем их суммарное волновое сопротивление (кабели подключаются параллельно), а отключая согласующий кабель, мы увеличиваем «выходное» волновое сопротивление («выходное» волновое сопротивление складывается из волновых сопротивлений параллельно подключенных формирующего и передающего кабелей).

Исследование данной возможности было проведено на макете генератора импульсного питания фотоэлемента, в качестве нагрузки генератора использовался высокоомный делитель напряжения. Эти эксперименты проводились в два этапа. На первом этапе изменялось количество формирующих линий без отключения согласующего кабеля. На втором этапе проводились аналогичные эксперименты, но с отключенным согласующим кабелем. В экспериментах запуск генератора осуществлялся не лазерным импульсом, а в режиме самопробоя разрядника, при этом зазор в разряднике выставлялся 0,9 мм, а давление – 5,8 ати, напряжение самопробоя составило 20 кВ.

На рис. 4 представлены осциллограммы импульсов напряжения на внутреннем делителе Д1 и на нагрузке генератора для первого этапа экспериментов, а на рис. 5 – для второго этапа.

Из осциллограмм на рис. 4 и 5 видно, что при увеличении числа формирующих кабелей до 4 штук амплитуда напряжения на нагрузке генератора возрастает до значения 1,5 от зарядного, аналогичная ситуация (увеличение напряжения на нагрузке генератора) наблюдается и при отключении согласующего кабеля. Максимальная амплитуда напряжения на нагрузке генератора (1,7 от зарядного) достигается при использовании 4 формирующих кабелей и отключенном согласующем (осциллограммы на рис. 5 г). Также из осциллограмм видно, что при изменении числа формирующих кабелей и/или отключении согласующего меняется форма импульса напряжения на делителе Д1 и на нагрузке генератора (без изменения фронта). Это связано с появлением отражений в контуре генератора за счет его рассогласования.

Рис. 4. Осциллограммы импульсов напряжения на делителе Д1 и на нагрузке при разном количестве подключенных формирующих и согласующем кабеле

Рис. 5. Осциллограммы импульсов напряжения на делителе Д1 и на нагрузке при разном количестве подключенных формирующих кабелей и отключенном согласующем кабеле

Заключение

Описанный в работе генератор имеет следующие параметры:

- амплитуда импульса напряжения на нагрузке регулируется в диапазоне (10–100) кВ;
- длительность импульса напряжения на нагрузке на полувысоте 7 нс;
- длительность фронта импульса напряжения на нагрузке на уровне 0,1–0,9 2 нс;
- задержка срабатывания генератора при запуске лазерным импульсом < 40 нс;
- нестабильность задержки срабатывания $\leq \pm 2$ нс;
- частота следования импульсов напряжения
 0,3 Гц.

Так же в работе была показана возможность увеличения напряжения на нагрузке относительно зарядного напряжения генератора (до 1,7 раза) без изменения его конструкции. Увеличение напряжения на нагрузке относительно зарядного напряжения приводит к изменению формы импульса напряжения на нагрузке без изменения его фронта.

Литература

1. Брюхневич Г. И., Воронкова Н. П., Пекарская Л. З., Шрамко Ф. Ф. Научно-технический отчет ФГУП-ВНИИОФИ по НИР «Разработка макета фотоэмиссионного элемента для широкополосного СВЧгенератора». 15.12.2006 г.

2. Зубков А. А., Купырин Н. В., Хавронин Н. Н. Высоковольтный генератор импульсного питания фотоэлемента // Становление и развитие научных исследований в высшей школе: Сборник трудов. Т. 2. Томск, 2009. С. 293–300.