ВЛИЯНИЕ ЧИСЛА МАХА УДАРНОЙ ВОЛНЫ НА РОСТ ЗОНЫ ТУРБУЛЕНТНОГО ПЕРЕМЕШИВАНИЯ НА КОНТАКТНОЙ ГРАНИЦЕ ГАЗОВ

А. С. Соколова, Н. В. Невмержицкий, Е. Д. Сеньковский, Е. А. Сотсков, А. А. Половников, Е. А. Левкина, Л. А. Лобов

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Введение

Гидродинамические неустойчивости (Рэлея-Тейлора, Рихтмайера-Мешкова [1-3]) и связанное с ними турбулентное перемешивание являются одним из препятствий при попытках достижения высоких плотностей энергии.

Для описания развития этих неустойчивостей применяются численные методы и различного рода полуэмпирические модели. Все они требуют калибровки по результатам экспериментов. При этом важно, чтобы длина волны λ и амплитуда a_0 начальных возмущений на контактной границе (КГ) веществ в экспериментах были известны.

С течением времени развитие малых начальных возмущений на границе приводит к турбулентному перемешиванию (ТП) контактирующих сред, при этом ширина зоны перемешивания растет со временем.

Различными авторами предложено несколько приближенных выражений для оценки скорости роста зоны ТП, развивающейся из неустойчивости Р–М.

Согласно [4] (*k*–є модель) получены следующие выражения для момента перехода от этапа развития неустойчивости к ТП и зависимости ширины ЗТП от времени

$$t_0 = \frac{\text{Rev}}{4(a_*A_\perp Uk)^2},\tag{1}$$

$$L = \frac{4}{k} \left[1 + \frac{a_* |A_+| Uk^2}{5,5p} \left(t - t_0 \right) \right]^P, \qquad (2)$$

где $k = \frac{2\pi}{\lambda}$ – волновое число; U – скорость КГ; λ –

длина волны; A_+ , $a_* = a_0 \left(1 - \frac{U}{D} \right)$ – число Атвуда и амплитуда возмущений после взаимодействия УВ с

КГ; *D* – скорость падающей на контактную границу ударной волны.

Отметим, что k— ε модель является общепризнанной. Ее используют многие исследователи, хотя она не лишена недостатков [4].

Показатель степени p характеризует степень затухания турбулентности. По данным [4] p = 0,3; по данным [5] $-p \sim 0,25$. В экспериментах [6], имитирующих обжатие мишеней инерциального термоядерного синтеза, при скорости УВ $D \approx 40$ км/с получено значение $p \approx 0.5\pm0.1$. Такое высокое значение p в [6] строго не объясняется.

В 2003 году в ИФВ РФЯЦ-ВНИИЭФ создана методика, позволяющая исследовать развитие турбулентного перемешивания на контактной границе газов в диапазоне чисел Маха ударной волны от 1,5 до 10. При помощи этой методики проведен ряд экспериментов по исследованию развития возмущений и турбулентного перемешивания на контактной границе газов [7]. В этих работах при исследовании ТП начальные возмущения специально не задавались. Ими служили фрагменты разрушившейся плоской полимерной пленки, изначально разделяющей газы.

В данной работе представлены результаты аналогичных экспериментов с заданными на контактной границе периодическими трехмерными возмущениями, а также обработка результатов экспериментов по формуле (2).

Техника экспериментов

Эксперименты проводились на ударной трубе по схеме рис. 1.

Ударная труба состояла из камеры высокого (драйвер) и низкого давлений и глушителя. Камера высокого давления герметично отделялась от камеры низкого давления мембраной из лавсана толщиной $\sigma = 0.05 \div 0.15$ мм. Камера низкого давления состояла

Рис. 1. Схема ударной трубы (размеры даны в мм): 1 – камера высокого давления; 2 – мембрана; 3 – канал входной; 4 – разделительная пленка (КГ); 5 – измерительная секция; 6 – канал выходной; 7 – мембрана; Д₁, Д₂, Д₃ – датчики давления

из входного и выходного каналов и измерительной секции с внутренним сечением 40×40 мм. Измерительная секция от входного канала герметично отделялась тонкой ($\sigma \approx 2$ мкм) полимерной пленкой с заданными периодическими 3D-возмущениями, выходной канал от глушителя – мембраной из лавсана, толщиной 0,05 мм.

Объем измерительной секции и выходного канала заполнялся «тяжелым» газом – SF₆ ($\rho_0 = 6,5$ г/л, C₀ = 129,5 м/с), CO₂ ($\rho_0 = 1,9$ г/л, C₀ = 270 м/с). В выходном канале и глушителе находился воздух ($\rho_0 = 1,205$ г/л, C₀ = 342 м/с) при атмосферных условиях.

Газы изначально находились при атмосферных условиях. Чистота газов определялась по интерферометру ШИ11 и составляла не менее 97 %. Драйвер заполнялся газовой взрывчатой смесью (ГВС) C₂H₂+2,5O₂ с избыточным давлением или сжатым гелием.

Работа установки

После подрыва ГВС вниз по течению распространяется детонационная волна (ДВ). При касании ДВ мембраны последняя разрушается, происходит распад разрыва: в легкий газ (в камеру низкого давления) идет ударная волна. При прохождении УВ через тонкую пленку (границу раздела «легкого» и «тяжелого» газов) опять происходит распад разрыва: в «тяжелый» и «легкий» газ идут УВ. При этом тонкая пленка разрушается, контактная граница газов ускоряется, на ней возникает Р–М неустойчивость, приводящая к росту возмущений и образованию зоны перемешивания контактирующих газов, растущей со временем по ширине.

Регистрация течения проводилась шлирен-методом скоростной видеокамерой СФР-7 в покадровом режиме. Скорость УВ в газах определялась по временным показаниям датчиков давления $Д_1$, J_2 , J_3 и по кинограммам экспериментов. Эксперименты проводились при температуре $T = 21\pm2$ °C.

Начальные возмущения на контактной границе задавались при помощи тонкой полимерной пленки следующим образом. Сырая пленка накладывалась на торец измерительной секции. Затем на нее устанавливалась матрица с 25 металлическими пуансонами диаметром 4 мм со скруглением на конце R = 2 мм. Затем снизу подавался сжатый воздух давлением ≈ 0.05 атм: под действием воздуха пленка между пуансонами прогибалась. После высыхания пленки воздух стравливался, и под матрицей создавалось разрежение ≈ 0.05 атм, пленка отходила от пуансонов, пуансоны убирались. В итоге получалась тонкая пленка с трехмерными синусоидальными возмущениями с длиной волны $\lambda = 8$ мм и высотой до $a_0 =$ = 1,5 мм. На рис. 2 представлена фотография такой пленки с заданными 3D возмущениями.

Судя по интерференционным цветам, толщина пленки составляла $\sigma \approx 2$ мкм. Такая пленка при чис-

Рис. 2. Фотография пленки с заданными 3D-возмущениями без пуансонов

лах Маха ударной волны M > 5 разлагается [8] и мало влияет на характер течения. При меньших числах Маха фрагменты пленки могут приводить к дополнительной турбулезации потока, но это не является определяющим в развитии зоны перемешивания.

Расчеты газодинамического течения

Одномерные газодинамические расчеты течения в экспериментах проводились по программе «POCA» [18] в плоской геометрии (без учета ТП). На рис. 3 представлена общая схема расчетов.

Рис. 3. Схемы расчетов

Параметры и геометрические размеры областей 1–3 взяты в соответствии с проведенными экспериментами.

При расчетах в областях 2 и 3 использовалось уравнение состояния идеального газа.

Для описания процесса в ГВС так же применялся УРС идеального газа с $\rho_0 = 0,0012375$ г/см³ и $\gamma =$ = 1,16. Применялась модель мгновенной детонации всей области.

Результаты расчетов приведены на рис. 4, где D_1 и D_2 – скорости УВ в газах 1 и 2, полученные в расчетах. Расчеты показывают, что на исследуемую контактную границу газов отраженные волны не приходят за время регистрации. Расчетные значения D_1 и D_2 близки к экспериментальным (см. табл. 1).

а – граница Воздух-SF₆ (D_1 = 1850 м/с, D_2 = 1100 м/с); б – граница Воздух-CO₂ (D_1 = 1800 м/с, D_2 = 1500 м/с)

Рис. 4. Расчетные X(t) диаграммы течений при $P_{\Gamma BC} = 9,5$ атм

таолица і

Номер опыта	Вид КГ	Драйвер, <i>Р</i> ₀ , атм	γ_1	γ ₂	<i>D</i> ₁ , м/с	<i>D</i> ₂ , м/с	<i>D</i> _{2P} , м/с	U _{КГ Р} , м/с	M_1	M ₂	ρ _{2S} , г/л	ρ _{1<i>S</i>} , г/л	А
893	B-SF ₆	11	1,39	1,074	822	452	426	373	2,38	3,5	52,8	5,8	0,8
894	B-SF ₆	30	1,378	1,07	1236	652	693	644	3,6	5,2	97	8,9	0,83
895	B-SF ₆	33	1,37	1,07	1304	689	733	687	3,8	5,3	102,8	9,2	0,84
899	B-SF ₆	84	1,33	1,064	1956	1144	1117	1110	5,7	8,8	151,9	12,7	0,85
901	B-SF ₆	13	1,39	1,074	821	412	425	373	2,4	3,2	60,6	6,8	0,81
966	B-SF ₆	17,6	1,378	1,2	1214	923	1014	865	3,6	3,4	12,9	6,1	0,36
971	B-CO ₂	45,2	1,344	1,168	1900	1380	1608	1448	5,6	5,1	19,1	8,1	0,4
972	B-CO ₂	44,2	1,344	1,17	1883	1604	1591	1430	5,5	5,9	18,8	8	0,4

Обозначения в таблице: P_0 – давление в драйвере ударной трубы; γ_1 – эффективный показатель адиабаты воздуха из [9] (принимался по экспериментальному значению D_1); γ_2 – эффективный показатель адиабаты газа 2 (SF₆, CO₂), (взят из [10] по ожидаемой в экспериментах температуре и давлению); D_1 и D_2 – экспериментальное значение скорости ударной волны в газах 1 и 2 соответственно; D_{2p} – расчетное значение скорости УВ в газе 2; $U_{K\Gamma P}$ – расчетное значение скорости КГ; M_1 и M_2 – число Маха ударной волны в газе 1 и в газе 2 соответственно; ρ_{1S} – плотность в газе 1 (в воздухе) после распада разрыва (с учетом отраженной волны); ρ_{2S} – плотность в газе 2 после распада разрыва.

Результаты экспериментов и их анализ

Длина волны возмущений в экспериментах была постоянной и, согласно [7], определялась как $\lambda = = ((\lambda_x)^{-2} + (\lambda_y)^{-2})^{-1/2}$. В экспериментах λ_x , $\lambda_y = 8\pm 0,3$ мм, тогда $\lambda = 5,6\pm 0,2$ мм.

В табл. 1 представлены условия проведения экспериментов и результаты расчетов параметров течения, возникающих после распада разрыва на КГ, рассчитанные по методу Ф. К. Годунова.

В табл. 2 представлены некоторые параметры течения, которые принимались при описании ширины зоны перемешивания к-є моделью. На рис. 5 и 6 представлены характерные кинограммы течения в экспериментах, на рис. 7 и 8 – зависимости ширины зоны перемешивания *L* от времени *t*.

По приведенным результатам видно, что

• с ростом амплитуды начальных возмущений ширина зоны перемешивания увеличивается, что учитывается в *k*-*є* модели, периодическая структура в зоне перемешивания наблюдается длительное время;

• при числах Маха ударной волны в тяжелом газе $M_2 \leq 3,6 \ k$ - ϵ модель описывает ширину зоны перемешивания с показателем степени, равным $P \approx 0,3$;

• при увеличении числа Маха $3,6 \le M_2 \le 9,5$ показатель степени k- ϵ модели увеличивается до $P \approx 0,5$.

Таблица 2

№ опыта	Вид КГ	M ₂	<i>а</i> ₀ , мм	<i>а</i> *, мм	a_0/a_*	λ/a_*	$10^{-7} \Pi a \cdot c$	$10^{-7} \Pi a \cdot c$	$10^{-6} \text{ m}^2/\text{c}$	Re_{\max} , 10^6	<i>t</i> ₀ , мкс
893	B-SF ₆	3,5	1,8	1	1,8	5,6	306	290	1,02	0,85	2
894	B-SF ₆	5,2	0,9	0,52	1,73	10,8	484	300	0,74	0,9	2,6
895	B-SF ₆	5,3	0,6	0,33	1,82	17	510	300	0,72	0,67	3,6
899	B-SF ₆	8,8	1,2	0,57	2,11	9,8	732	468	0,73	2	1,2
901	B-SF ₆	3,2	0,55	0,3	1,8	18,7	339	253	0,88	0,3	6,5
966	B-SF ₆	3,4	1	0,42	2,4	13,3	430,1	351	4,1	0,076	5,4
971	B-CO ₂	5,1	1	0,35	2,9	16	519	494	3,7	0,14	3,5
972	B-CO ₂	5,9	0,8	0,27	3	20,7	519	494	3,8	0,104	4,4

Примечание: v – коэффициент кинематической вязкости (v = $\frac{(\mu_{\rm T} + \mu_{\pi})}{(\rho_{2S} + \rho_{1S})}$, где $\mu_{\rm T}$ и μ_{π} – коэффициенты динамической вязкости газов. Они определялись с учетом давления и температуры в эксперименте); Re_{max} – максимальное число Рейнольдса Re_{max} = $\frac{8}{e} \times \frac{\overline{\lambda}}{2\pi} \times \frac{|a_{lin}|}{v}$, где $a_{lin} = = A_+ (2\pi/\overline{\lambda})Ua_*$); t_0 – время перехода развития возмущений в турбулентную стадию (по формуле (1)).

б

552 MKC

Рис. 5. Развитие турбулентного перемешивания на границе воздух – SF₆ при одинаковых значениях M₂ и различных амплитудах 3D-возмущений. УВ – ударная волна; ЗТП – зона турбулентного перемешивания; КГ – начальное положение контактной границы: а – опыт № 901; б – опыт № 893

Рис. 6. Кинограммы экспериментов с CO₂, КГ – контактная граница; ЗТП – зона турбулентного перемешивания: а – опыт № 966; б – опыт № 972

Воздух-СО2

Рис. 8. *L*(*t*)-диаграммы опытов с CO₂: *p* – расчетный показатель степени по *k*–є модели; + – эксперимент

Заключение

Таким образом результаты расчетов показывают, что с увеличение числа Маза ударной волны ширина зоны перемешивания и скорость ее роста увеличивается. Это увеличение может быть связано с более медленным затуханием турбулентности с повышением интенсивности ударной волны. Необходима корректировка показателя степени P в k- ε модели по числу Маха УВ.

Литература

1. Taylor G. I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. Roy. Soc. 1950. Vol. A201. P. 192.

2. Richtmyer R. D. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 1960. Vol. 13. P. 297.

3. Мешков Е. Е. Неустойчивость границы раздела двух газов, ускоряемой ударной волной. Изв. АН СССР. МЖГ. 1969, № 5. Р. 151–158.

4. Авраменко М. И. О *k*-є модели турбулентности. Снежинск: Изд-во НАΖW-ВНИИТФ, 2005.

5. Беленький С. З., Фрадкин Е. С. Теория турбулентного перемешивания // Труды ФИАН. Т. XXIX. 1965. С. 207–238.

6. Dimonte G. Nonlinear evolution of the Rayleigh-Taylor and Richtmayer-Meshkov instabilities // Phys. of Plasmas. 1999. Vol. 6, N 5. P. 2009–2015.

7. Невмержицкий Н. В., Разин А. Н., Сотсков Е. А., Сеньковский Е. Д., Кривонос О. Л., Точилина Л. В., Дудин В. И., Никулин А. А., Устиненко В. А. Исследование развития турбулентного перемешивания и возмущений в газах с повышенной сжимаемостью при числах Маха ударной волны от 2 до 9 // Доклад на 10 Международный семинар по физике турбулентного перемешивания сжимаемых сред. Франция. Париж. Июль 2006.

8. Власов Ю. А., Герасимов С. И., Губков Е. В., Дудин В. И., Копышев В. П., Мешков Е. Е., Никулин А. А., Рябов В. П., Тилькунов В. А. Ударная труба с ГВС-драйвером. Препринт 47–96. РФЯЦ-ВНИИЭФ, 1996.

9. Физика взрыва / Под ред. Л. П. Орленко. М.: ФИЗМАТЛИТ. 2004.

10. Зубарев В. Н., Козлов А. Д., Кузнецов В. М. и др. Теплофизические свойства технически важных газов при высоких температурах и давлениях: Справочник. М.: Энергоатомиздат. 1989.