РОЖДЕНИЕ РЕЗОНАНСНЫХ СОСТОЯНИЙ, СОДЕРЖАЩИХ СТРАННЫЕ КВАРКИ, В Σ[−]А-ВЗАИМОДЕЙСТВИЯХ

В. В. Тарасов (от коллаборации SELEX)

ФГУП «ГНЦ РФ – ИТЭФ», Москва

Физика частиц занимается изучением наиболее скрытых деталей строения материи. Изучение свойсв таких частиц, механизмов их рождения и распада, играет ключевую роль в понимании многих процессов происходящих во Вселенной с момента Большого взрыва до настоящего времени. Теория, описывающая взаимодействия между этими частицами, называется Стандартной Моделью, а сами частицы, участвующие во взаимодействиях – адронами и лептонами.

Адроны, содержащие странные кварки, с одной стороны, еще недостаточно изучены. Систематика адронов в рамках Стандартной Модели предсказывает больше таких состояний, чем наблюдается в экспериментах. С другой стороны, странность является одним из сигналов кварк-глюонной плазмы и поэтому измерение характеристик состояний, включающих странные кварки, является актуальной задачей физики частиц.

В таблицах элементарных частиц, среди странных барионов, представлены 13 Λ^* , 9 Σ^* и 5 Ξ^* резонансов, классифицируемых как известные (3 или 4 звезды) [1]. Так, например, из всех Σ^* -гиперонов почти все известные состояния с массой более 1385 МэВ/с² определялись только с помощью парциально-волнового анализа, с сильно различающимися оценками значений массы и ширины. К настоящему времени существуют лишь две работы по прямому наблюдению в спектре эффективных масс Σ^* с массами более 1385 МэВ/с² и Λ^* с массами более 1520 МэВ/с² – эксперимент WA89 в ЦЕРНе [2] и SPHINX в Протвино [3].

Коллаборация WA89 в реакции $\Sigma^- + C(Cu) \rightarrow p + K^- + X$ в спектре эффективных масс системы pK⁻ наблюдала сигналы с массами 1520, 1670 и 1810 МэB/c² (рис. 1). Все эти сигналы были образованы в инклюзивной реакции на Σ^- -пучке с импульсом 340 ГэB/с.

Вторая работа – работа коллаборации SPHINX на протонном пучке ускорителя У-70 ИФВЭ, где наблюдался сигнал $\Lambda(1520)$, а также сигналы с массами 1670 и 1810 МэВ/с² в системе pK⁻ в реакции p + N \rightarrow \rightarrow p + K⁻ + K⁺ + N.

Векторный $\varphi^0(1020)$ -мезон является хорошо изученным состоянием (в PDG представлено более 150 работ по наблюдению этого мезона со скрытой странностью). Менее известен тензорный $2^+ f'_2(1525)$ -мезон, который, как и $\varphi^0(1020)$ -мезон, обладает скрытой странностью (кварковый состав *ss*), статистическая

Рис. 1. Спектр эффективных масс системы pK[−], где наблюдались состояния с массами 1520, 1670 и 1810 MэB/c², образующихся в инклюзивной реакции на Σ[−]-пучке (эксперимент WA 89). Стрелками показаны положения сигналов в области 1670 и 1810 MэB/c²

обеспеченность мировых данных по этому состоянию не так велика. Большинство мировых данных о мезоне f'_2 (1525) получены на пучках, не содержащих странный кварк – в таких экспериментах рождение $s\overline{s}$ состояний подавлено правилом Окубо-Цвейга-Иизуки (ОЦИ). Существует порядка 10 работ (преимущественно 70–80-х годов), где этот резонанс наблюдался на каонном пучке.

Экспериментальная установка

Название SELEX является аббревиатурой от SEgmented LargE X_F baryon spectrometer (или дословно: Многосекционный барионный спектрометр больших x_F). Основной задачей эксперимента SELEX являлось изучение свойств барионов, содержащих с-кварки, образующихся при взаимодействии гиперонов с ядрами на ускорителе Тэватрон. Набор данных происходил в течение 1996–97 гг.

На рис. 2 представлена схема установки SELEX. В эксперименте SELEX пучок протонов с энергией

Рис. 2. Схема установки SELEX

800 ГэВ падал на бериллиевую мишень. Вылетающие вперед вторичные частицы направлялись в узкий изогнутый канал, высверленный в гиперонном магните. Поскольку относительная доля гиперонов во вторичном пучке растет с энергией, данные для анализа были набраны с использованием гиперонного пучка с энергией 600±50 ГэВ. В области мишени 600 ГэВ-й вторичный пучок состоял из приблизительно 50,9 % π^- ; 46,3 % Σ^- ; 1,6 % K⁻ и 1,2 % Ξ^- .

Три дипольных магнита делят установку SELEX на 5 независимых спектрометров, называемых пучковый, вершинный, M1, M2, M3 соответственно. По отклонению треков в магнитном поле определялся импульс частиц. Для определения треков частиц использовались пропорциональные проволочные камеры (Proportional Wire Chambers или PWC), кремниевые детекторы (Silicon Detectors или SD) и векторные дрейфовые камеры (Vector Drift Chambers или VDC). С помощью кольцевого черенковского детектора (Ring Imaging Cherenkov Detector или RICH) [4] и детекторов переходного излучения (Transition Radiation Detectors или TRD) определялся тип частицы. Нейтральные частицы детектировались в электромагнитных калориметрах Фотон (PHOTON) и адронном калориметре (NCAL).

Как уже было сказано ранее, кольцевой черенковский детектор являлся одним из основных детекторов для идентификации заряженных частиц. В нем частицы проходили 10-метровый цилиндр, заполненный газом Ne. Поскольку релятивистские частицы двигались быстрее, чем скорость света в данной среде, они испускали черенковские фотоны, которые отражались от сферического зеркала и образовывали кольца на детектирующей поверхности (рис. 3).

В эксперименте SELEX черенковские фотоны отражались от зеркала с 20-метровым радиусом кривизны и фокусировались на массиве из 2848 ФЭУ-60 с диаметром рабочей области фотокатода 10 мм. RICH-детектор использовался для определения вероятности того, что данный трек является электроном, мюоном, пионом, каоном, протоном, гипероном или другой частицей.

Рис. 3. Формирование колец на детектирующей поверхности RICH

Физические результаты

На рис. 4 представлена экспериментальная зависимость радиуса кольца черенковского излучения от импульсов положительно заряженных частиц (μ^+ , π^+ , K⁺, р, Σ^+ , $\overline{\Xi}$, $\overline{\Omega}$). Из рисунка наглядно видно, что приемлемая идентификация частиц возможна до значения импульсов, где происходит слияние кривых (~300 ГэВ/с). Видна даже область импульсов, в которой возможно различить по черенковскому излучению мюоны и пионы. Для отрицательно заряженных частиц зависимость аналогичная.

чис. 4. Радиус колец в КІСН для положительно заряженных частиц

На выборке данных (60 млн. триггерных событий из всего массива данных, порядка 1 млрд. событий) в реакции $\Sigma^- + C(Cu) \rightarrow p + K^- + X$ на гиперонном пучке с импульсом 600 ГэВ/с идентифицировались протоны с импульсом от 80 до 220 ГэВ/с и заряженные каоны с импульсом от 40 до 160 ГэВ/с. Знак заряда и импульс частицы определялись по отклонению трека в магнитном поле. Отбор треков проходил в соответствии с сигналами в RICH-детекторе. Примесь Σ -гиперонов среди зарегистрированных протонов являлась незначительной, из-за того, что время жизни Σ -гиперонов существенно меньше времени жизни протонов (95,5 % всех Σ , вылетающих из мишени, распадаются до детектора RICH, при начальном значении импульса не более 600 ГэВ/с).

Отобрано 3593988 событий, содержащих протон и К⁻-мезон, вылетающих из мишени. В спектре эффективных масс системы рК⁻ (рис. 5) отчетливо видны сигналы в области 1520, 1670 и 1820 МэВ/с². При фитировании спектров использовалось разрешение установки $\sigma(M)$, полученное моделированием методом Монте-Карло для фиксированных значений эффективных масс при нулевой ширине резонансного состояния (рис. 6). Каждый сигнал в спектре эффективных масс для систем рК⁻ фитировался сверткой функций Гаусса и Брейта–Вигнера, фон описывался сложной функцией $a\{x - (m_p + m_K-)\}^{0,5} \exp(b + cx + dx^2),$ где a, b, c и d – параметры. Для поиска систематических погрешностей фон фитировался следую-

щими функциями: 1) $a\{x - (m_p + m_{K^-})\}^{0.5}(b + cx + dx^2)$ и 2) $a\{x - (m_p + m_{K^-})\}^{0.5} \exp(b + cx + dx^2)^{-1}$. Значе-ние χ^2 на степень свободы в области 1450–2050 МэВ/с² составляет 360/84, а в области 1550–2050 МэВ/с² составляет 160/86. Как видно из рис. 5, критерий согласия в районе 1545–1555 МэВ/с² существенно больше чем 1. Это говорит о возможном существовании в этой области резонансного состояния.

Рис. 5. Спектр эффективных масс системы pK[−] в диапазоне от 1,4 до 2,0 ГэB/с² при значении x_F > 0,5. Пунктирными линиями показаны фон и резонансы по отдельности

Рис. 6. Зависимость среднеквадратичного отклонения σ от эффективной массы системы pK^-

Сигнал с массой 1520 МэВ/с² соответствует известному гиперонному состоянию $\Lambda(1520)$. Природа сигналов с массами 1670 и 1820 МэВ/с² не так очевидна. Превышение сигнала над фоном в резонансах: 232570±803 событий для состояния с массой 1520 МэВ/с², 42620±976 – для состояния с массой 1670 МэВ/с² и 36070±951 – для состояния с массой 1820 МэВ/с², что соответствует 206, 67 и 52 стандартным отклонениям соответственно. Статистическая обеспеченность сигналов не вызывает сомнений.

Исследована зависимость наблюдаемых сигналов в системе pK^- от фейнмановской переменной x_F . Оказалось, что при больших значениях x_F происходит относительное увеличение сигналов над фоном. Этот эффект может быть связан с механизмом лидирования.

При значении 0,6 < $x_{\rm F}$ < 0,7 в спектре эффективных масс системы pK⁻ имеется указание на сигнал в области 2100 MэB/c² с массой 2123±3 MэB/c² и шириной 13±9 MэB/c² (рис. 7). Значение χ^2 = 1, число событий в сигнале 39±11. Статистическая обеспеченность этого сигнала составляет всего около четырех стандартных отклонений. Ближайшим кандидатом из таблицы элементарных частиц является Σ (2100) с шириной 70±30 МэB/c² и с самым низким статусом (*).

Рис. 7. Спектр эффективных масс системы pK при значениях 0,6 < x_F < 0,7

Для определения изотопического спина наблюдаемых резонансов в системе pK^- в области 1,67 и 1,82 ГэВ/с² был проведен анализ спектра эффективных масс системы pK_S^0 . В данном спектре при различных значениях фейнмановской переменной x_F какие-либо значимые сигналы не обнаружены. Таким образом, наблюдаемые нами сигналы в спектре pK^- скорее всего соответствуют гиперонным состояниям с изотопическим спином 0.

Полученные характеристики гиперонов вместе с данными PDG приведены в таблице (указаны как статистические, так и систематические погрешности).

Таблица Результаты фитирования спектров рК⁻и К⁺К⁻

Адрон	M _{PDG} , MэB/c ²	$\Gamma_{PDG},$ M ∂ B/c ²	М _{эксп} , МэВ/с ²	Γ _{эксп.} , МэВ/с ²
Λ(1520)	1519,5±1	15,6±1	1518,7±0,1±1,0	15,6±0,1±1,0
Λ(1670)	1660÷1680	25÷50	1672,9±0,8±1,0	56,6±1,6±3,0
Λ(1820)	1815÷1825	70÷90	1809,1±1,4±1,0	71,6±3,6±1,4
Σ(2100)	≈2100	70±30	2125±4	17±6
φ ⁰ (1020)	1019,460± ±0,019	4,26±0,05	1019,9±0,1±0,4	4,32±0,09± ±0,16
$f_2(1525)$	1525±5	76±10	1522±1±2	84±2±3

Определено отношение выходов гиперонных состояний $\Lambda(1670)$ и $\Lambda(1820)$ относительно $\Lambda(1520)$ в канале распада на рК⁻. Оно оказалось равным

$$\frac{\sigma_{1670} \Psi BR(L(1820) \otimes pK^{-})}{\sigma_{1520} \Psi BR(L(1820) \otimes pK^{-})} = (24,92 \pm 0,45 \pm 0,48) \%;$$

$$\frac{\sigma_{1820} \Psi BR(L(1820) \otimes pK^{-})}{\sigma_{1520} \Psi BR(L(1820) \otimes pK^{-})} = (16,13 \pm 0,38 \pm 0,45) \%,$$

где σ – эффективное сечение рождения; *BR* – вероятность распада по данному каналу.

Проведены исследования образования гиперонных состояний также и на протонном и пионном пучках. В спектре эффективных масс системы pK⁻ на протонном пучке отчетливо наблюдается сигнал $\Lambda(1520)$, сигналы с массами 1670 и 1820 МэВ/с² имеют меньшую амплитуду по сравнению с сигналами, полученными на гиперонном пучке, так как в этом случае мы имеем другой механизм образования гиперонных состояний (вероятность рождения гиперонных состояний меньше, чем на Σ^- -пучке). На пионном пучке виден лишь сигнал в области 1520 МэВ/с².

В реакции $\Sigma^- + C(Cu) \rightarrow K^+ + K^- + X$ исследованы резонансные состояния в спектрах эффективных масс системы K^+K^- . Как и в случае системы pK^- , для системы K^+K^- был проведен предварительный отбор событий.

На выборке данных системы K^+K^- (2,3 млн. триггерных событий из всего массива данных, порядка 1 млрд. событий) в реакции $\Sigma^- + C(Cu) \rightarrow K^+ + K^- + X$ на гипероном пучке с импульсом 600 ГэВ/с идентифицировались положительно и отрицательно заряженные каоны с импульсом от 40÷160 ГэВ/с. Отбор треков проходил в соответствии с сигналами в RICH-детекторе.

Отобрано 2255544 событий, содержащих один отрицательный и один положительный К-мезоны.

Спектр эффективных масс системы K^+K^- представлен на рис. 8 и 9. В системе K^+K^- отчетливо видны сигналы в области 1020 и 1525 МэВ/с², которые однозначно можно идентифицировать как $\varphi^0(1020)$ и $f'_2(1525)$ -мезоны, соответственно.

Фитирование проводилось аналогично описанному выше для системы рК⁻. Как и в случае системы рК- при фитировании спектра использовалось разрешение установки $\sigma(M)$, полученное моделированием методом Монте-Карло для фиксированных значений эффективных масс. Разрешение установки σ(М) для резонансного состояния с массой 1020 МэВ/с² составляет 1,6 МэВ/с², для сигнала с массой 1525 МэВ/с² – 4,5 МэВ/с². Значение χ^2 на степень свободы в области 1 Гэ B/c^2 составляет 80/43, в области 1,5 Гэ B/c^2 – 185/93. Сигнал от $\phi^0(1020)$ -мезона отличается высоким значением отношения сигнал/фон и малой шириной; число событий в пике равно 264973±3355. На рис. 8 и 9,6 виден сигнал небольшой амплитуды от f₂'(1525)-мезона, содержащий 28492±842 событий. Статистическая обеспеченность резонансов составляет 504 и 34 стандартных отклонения для $\phi^0(1020)$ -мезона и $f'_2(1525)$ -мезона соответственно.

Рис. 8. Спектр эффективных масс системы К⁺К⁻. Сплошной линией показан результат фита, пунктирной – фон и резонансы по отдельности

Рис. 9. Спектр эффективных масс системы К⁺К[−] в области 1020 МэВ/с² (а) и 1525 МэВ/с² (б) (сплошной линией показан результат фита, пунктирной – резонансы в отсутствии фона)

Полученные характеристики мезонов со скрытой странностью вместе с данными PDG приведены в таблице (указаны как статистические, так и систематические погрешности).

Определено отношение выхода мезона $f'_2(1525)$ относительно $\phi^0(1020)$ в канале распада на К⁺К⁻. Оно оказалось равным

$$\frac{\sigma_{1525} \Psi BR(f_2(1525) \otimes K^+ K^-)}{\sigma_{1020} \Psi BR(\phi^0(1020) \otimes K^+ K^-)} = (10,75\pm 0,25\pm 0,45) \%.$$

Нами проведен поиск состояний в системе $\overline{p}K^+$ на гиперонном, протонном и пионном пучках. Отчетливо виден сигнал $\overline{\Lambda}$ (1520). Сигналы в области 1670 и 1820 МэВ/с² сильно подавлены. Этот эффект может быть связан с периферическим (полюсным) механизмом образования адронов.

Выводы

Мы наблюдаем высоковозбужденные гиперонные состояния в реакциях $\Sigma^- + C(Cu) \rightarrow p + K^- + X в$ области 1,52 (M = 1518,7±0,1±1,0 МэВ/с², Г = 15,6± $\pm 0.1 \pm 1.0$ M $_{2}B/c^{2}$; 1.67 (M = 1672.9 $\pm 0.8 \pm 1.0$ M $_{2}B/c^{2}$, $\Gamma = 56,6\pm1,6\pm3,0$ МэВ/с²) и 1,82 (M = 1809,1±1,4± ±1,0 МэВ/с², Г = 71,6±3,6±1,4 МэВ/с²). Сигнал вблизи 1,52 Γ эB/c² соответствует известному резонансу Л(1520). Сигналы вблизи 1,67 и 1,82 ГэВ/с² согласуются с результатами экспериментов SPHINX 2004 г. и WA89 2007 года. Наблюдаемые нами сигналы в спектре рК- скорее всего соответствуют гиперонным состояниям с изотопическим спином 0. Впервые в спектре эффективных масс в системе рК- обнаружен сигнал в области 2,1 Γ эB/c² (M = 2125±4 MэB/c², Γ = 17±6 МэВ/с²), который виден лишь при значении фейнмановской переменной $0.6 < x_F < 0.7$.

Измеренные параметры гиперонных состояний имеют наибольшую статистическую обеспеченность среди аналогичных экспериментальных данных, представленных в PDG.

Нами исследована зависимость наблюдаемых сигналов в системе pK⁻ от фейнмановской переменной x_F . Показано, что при больших значениях x_F происходит относительное увеличение сигналов над фоном. При малых значениях фейнмановской переменной x_F ($x_F < 0,3$) сигнал вблизи 1520 МэВ/с² существенно уменьшается, а сигналы вблизи 1670 и 1810 МэВ/с² не наблюдаются. Данное наблюдение полностью подтверждает эффект механизма лидирования и полюсного механизма образования адронов в сильных взаимодействиях.

Проведен поиск состояний в системе pK^- на протонном и пионном пучках, а также поиск античастиц в системе $\bar{p}K^+$ на π^- , р, Σ^- -пучках. Амплитуда сигналов, наблюдаемых на гиперонном пучке, в данных условиях подавлена, что также наглядно под-

тверждает механизм полюсного образования адронов и механизм лидирования.

В системе К⁺К⁻ наблюдались сигналы в области 1020 и 1525 МэВ/с². Сигнал вблизи 1,02 ГэВ/с² (M = = 1019,9±0,1±0,4 МэВ/с², Г = 4,32±0,09±0,16 МэВ/с²), соответствует $\varphi_0(1020)$ -мезону, а в области 1,525 ГэВ/с² (M = 1522±1±2 МэВ/с², Г = 84±2±3 МэВ/с²), соответствует $f'_2(1525)$ -мезону.Число событий в сигнале f'_2 составляет около 29000 и это более чем на два порядка превышает существующие мировые данные по наблюдению в спектрах эффективных масс f'_2 -мезона на пучках, содержащих странные кварки. Более того, статистическая обеспеченность резонанса f'_2 превосходит абсолютно все другие экспериментальные данные представленные в PDG как минимум на порядок.

Литература

1. Nakamura K. et al. (Particle Data Group). J. Phys. G37, 075021, 2010.

2. WA89 Collaboration, Adamovich M. I., Alexandrov Yu. A., Baranov S. P. et al. // hep-ex/070244v1 27 Feb 2007.

3. SPHINX Collaboration, Antipov Yu. M., Artamonov A. V., Batarin V. A. et al. // Eur. Phys. J. A. 2004. Vol. 21. P. 455.

4. Engelfried J. et al. The RICH detector of the SELEX experiment. Nucl. Instrum. Meth. A 433. 149, 1999.