РАЗРАБОТКА МЕТОДИКИ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ НЕЛИНЕЙНЫХ РЕЖИМОВ РАБОТЫ СИЛОЧУВСТВИТЕЛЬНЫХ ПЬЕЗОЭЛЕКТРИЧЕСКИХ РЕЗОНАТОРОВ

Д. В. Акимов, Е. А. Осоченко

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Создание надежных, высокоточных акселерометров требует от силочувствительных резонаторов, являющихся составной частью датчиков, стабильности метрологических характеристик при действии различных внешних дестабилизирующих факторов.

В процессе изготовления пьезоэлемента первичного преобразователя ускорения с силочувствительным пьезоэлектрическим кварцевым резонатором на стенках и в углах конструкции образуются клинья травления. При образовании дефектов изготовления в зонах роста клиньев травления могут возникать концентраторы напряжений, приводящие в условиях внешних дестабилизирующих факторов к нарушению целостности конструкции пьезоэлемента.

В рамках данной работы проведены исследования первичного преобразователя в нелинейных режимах работы силочувствительного резонатора, в условиях воздействия повышенного (в сравнении с штатным режимом работы) напряжения возбуждения, и предложен способ выявления скрытых дефектов силочувствительных пьезоэлектрических резонаторов.

Исследования проводились для двух вариантов конструкции первичного преобразователя.

В результате проведенных исследований определены:

 изменение эквивалентных параметров силочувствительных резонаторов (резонансной частоты, динамического сопротивления, добротности);

 уровень напряжения возбуждения, при котором происходит необратимое изменение указанных выше параметров;

 – зависимости временного дрейфа частоты резонаторов до и после воздействия повышенного напряжения возбуждения.

Результаты изменений характеристик резонаторов от величины напряжения возбуждения U_g с амплитудой от 2,3 В до 8,5 В приведены в табл. 1–2 и на рис. 1–4.

Габли	ца І
-------	------

№ образца	Вариант конструкции	U _g ,B	f_{pes} ,Гц	Q	<i>R</i> k, кОм
7	1	2,3	285579,1	5800	735
		2,8	285579,6	5850	
		5,3	285582,8	5600	
		8,5	285563,0	-	
		2,3	285562,0	6250	780
12	1	2,3	284133,3	5950	945
		2,8	284133,6	6050	
		5,3	284136,5	6100	
		8,5	284114,4	-	
		2,3	284112,6	-	
15	1	2,3	284093,6	5900	715
		2,8	284094,3	5530	
		5,3	284097,5	5900	
		8,5	284080,0		
		2,3	284069,5		800
16	1	2,3	284145,2	5550	600
		2,8	284145,8	5450	
		5,3	284150,5	5050	
		8,5	284132,0		
		2,3	284122,8	-	690

№ образца	Вариант конструкции	U _g ,B	<i>f</i> _{рез} ,Гц	Q	<i>R</i> k, кОм
11	2	2,3	282627,1	5550	1100
		2,8	282627,4	5550	
		5,3	282629,0	5400	
		8,5	282631,1	4850	
		10	282632,6	4600	
		2,3	282625,3	5000	1150
14	2	2,3	283360,9	5830	885
		2,8	283361,3	5950	
		5,3	283364,0	6000	
		8,5	283349,3	-	
		2,3	283344,8	4410	950
17	2	2,3	287519,4	5450	835
		2,8	287519,7	5500	
		5,3	287520,8	5650	
		8,5	287496,4	-	
		2,3	287491,2	-	890
18	2	2,3	286643,1	5500	870
		2,8	286643,5	-	
		5,3	286644,4	4350	
		8,5	286627,0	-	
		2,3	286624,1	-	935

Таблица 2

№ образца				$f_{pes},$ Гц			
U _{возб.} , В	2,3	2,8	5,3	8,5	2,3	∆f _{рез1} , Гц	Δf _{pe32} , Гц
7	285579,1	285579,6	285582,8	285563,0	285562,0	-16,1	-17,1
12	284133,3	284133,6	284136,5	284114,4	284112,6	-18,9	-20,7
15	284093,6	284094,3	284097,5	284080,0	284069,5	-13,6	-24,1
16	284145,2	284145,8	284150,5	284132,0	284122,8	-13,2	-22,4
11	282627,1	282627,4	282629,0	282631,1	282625,3	4,0	-1,8
14	283360,9	283361,3	283364,0	283349,3	283345,2	-11,6	-16,1
17	287519,4	287519,7	287520,8	287496,4	287491,2	-23	-28,2
18	286643,1	286643,5	286644,4	286627,0	286624,1	-16,1	-19

 Δf_{pes1} – изменение резонансной частоты от исходного значения при напряжении возбуждения с внешнего

генератора $U_g = 8,5$ В амплитудного значения. Δf_{pes2} – изменение резонансной частоты от исходного значения при напряжении возбуждения с внешнего генератора $U_g = 2,3$ В амплитудного значения после воздействия напряжения возбуждений $U_g = 8,5$ В.

Рис. 1. График измерений АЧХ конструкция № 1. Образец № 16 до воздействия напряжения возбуждения $U_g = 8,5$ В

Рис. 2. График измерений АЧХ конструкция № 1. Образец № 16 после воздействия напряжения возбуждения $U_g = 8,5$ В

Рис. 3. График АЧХ конструкция № 2. Образец № 17 до воздействия U_g = 8,5 В

Рис. 4. График АЧХ конструкция № 2. Образец № 17 после воздействия U_g = 8,5 В

Результаты изменения дрейфа частоты представлены в табл. 3 и на рис. 5-8.

			,
N₂	Вариант		
образца	конструкции	$\Delta f_{1,}$ Гц	$\Delta f_{2,}$ Гц
7	1	0,01	0,07
12	1	0,01	0,025
15	1	0,025	0,2
16	1	0,01	0,16
11	2	0,01	0,015
14	2	0,007	0,1
18	2	0,035	0,115

 Δf_1 – значение дрейфа частоты до воздействия напряжением возбуждения амплитуды U_g = 8,5 В.

 Δf_2 – значение дрейфа частоты после воздействия напряжением возбуждения амплитуды $U_g = 8,5$ В.

Результаты измерений частоты автогенерации после воздействия напряжения возбуждения U_g = 8,5 В приведены в табл. 4.

Таблица 4

Таблица 3

№ об- разца	Вариант конструк- ции	$f_{1,}$ Гц	<i>f</i> _{2,} Гц	<i>f</i> ₁ – <i>f</i> ₂ , Гц
7	1	285581,0	285563,6	17,356
12	1	284134,7	284108,9	25,770
15	1	284095,6	284070,6	25,065

Оконч. табл. 4

№ об- разца	Вариант конструк- ции	f1, Гц	f2, Гц	f1–f2 , Гц
16	1	284147,6	284118,9	28,636
11	2	282629,3	282628,6	0,691
14	2	283362,8	283348,3	14,502
18	2	286645,6	286625,9	19,670

 f_1 – значение частоты автогенерации до воздействия напряжением возбуждения амплитуды $U_g = 8,5$ В.

 f_2 – значение частоты автогенерации после воздействия напряжением возбуждения амплитуды $U_g = 8,5$ В.

Рис. 5. График дрейфа частоты образца № 7, конструкция № 1 до воздействия напряжением возбуждения Ug= 8,5 В

Рис. 6. График дрейфа частоты образца № 7, конструкция № 1 после воздействия напряжением возбуждения U_g= 8,5 В

Рис. 7. График дрейфа частоты образца № 14, конструкция № 2 до воздействия напряжением возбуждения $U_g = 8,5$ В

Рис. 8. График дрейфа частоты образца № 14, конструкция № 2 после воздействия напряжением возбуждения $U_g = 8,5 \text{ B}$

В результате проведенных исследований получены следующие результаты:

1. При воздействии на систему напряжением возбуждения с амплитудой $U_g = 2,3$ В (рис. 1, 3) изменения АЧХ обратимы, при увеличении амплитуды возбуждения до $U_g = 8,5$ В АЧХ становится нелинейной (рис. 2, 4) и необратимой, растет величина неизохронности (зависимость периода вынужденных колебаний от амплитуды возбуждения).

2. Дрейф частоты после воздействия напряжения возбуждения с амплитудой $U_g = 8,5$ В увеличивается, а частота автогенерации уменьшается.

3. По результатам проведенных исследований рекомендуется производить отбраковку резонаторов при их изготовлении по критерию изменения частоты автогенерации более $\pm 1\Gamma$ ц после воздействия на них напряжением возбуждения с амплитудой $U_g = 4,5$ В на резонансной частоте.

4. В процессе изготовления пьезоэлемента на стенках и в углах конструкции образуются клинья травления. При образовании дефектов изготовления в зонах роста клиньев травления могут возникать

концентраторы напряжений, приводящие к нарушению целостности конструкции пьезоэлемента.

С целью улучшения метрологических характеристик акселерометра, необходимо изготавливать резонаторы без клиньев травления в области перехода в акустические пробки с применением плазмохимического или комбинированного (жидкостного и плазмохимического) способа травления, с последующим проведением исследований резонаторов по описанной методике.

Литература

1. Новицкий П. В., Кнорринг В. Г., Гутников В. С. Цифровые приборы с частотными датчиками. Л.: «Энергия», 1970.

2. Ленк А. Электромеханические системы. М.: «Мир», 1978.

3. Малов В. В. Пьезорезонансные датчики. М.: «Энергоатомиздат», 1989.