ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ВЗАИМОДЕЙСТВИЯ ГЕЛИЯ И ТРИТИЯ С БЕРИЛЛИЕМ В УСЛОВИЯХ РЕАКТОРНОГО ОБЛУЧЕНИЯ

И. Е. Кенжина¹, А. О. Муканова¹, Т. В. Кульсартов¹, Е. В. Чихрай, В. П. Шестаков, И. Л. Тажибаева², Ю. Н. Гордиенко²

¹Научно-исследовательский Институт Экспериментальной и Теоретической физики, Алматы, Казахстан ²Институт Атомной Энергии Национальный Ядерный Центр Республики Казахстан, Курчатов, Казахстан kenzhina@physics.kz

В работе приводятся исследования параметров взаимодействия трития и гелия с облученным бериллием различных марок. Работа включает в себя ряд этапов таких, как: расчет содержания накопленного количества трития и гелия; проведение термодесорбционных (ТДС) исследований образцов облученного бериллия трех исследуемых марок; обработка и анализ экспериментальных результатов; определение основных параметров взаимодействия трития с облученным бериллием, необходимых для оценки возможности использования процедуры высокотемпературной дегазации в качестве метода детритизации, а также для расчета распределения трития в бериллиевых материалах термоядерного реактора (ТЯР).

Введение

Одной из проблем термоядерного синтеза является выбор конструкционных материалов, способных выдержать в процессе работы ТЯР высокие термические и нейтронные нагрузки в стационарных режимах, а так же при срывах плазмы. В настоящее время активно начаты работы по реализации проекта ИТЭР, в котором плазмообращённым материалом, а так же материалом для размножения нейтронов в некоторых испытательных модулях бланкета будет бериллий. В процессе работы ИТЭР бериллий будет подвержен значительным радиационным повреждениям под воздействием нейтронного излучения. Облучение бериллия быстрыми нейтронами приводит к образованию и накоплению в нём радиационных дефектов, а также ядер гелия и трития, которые образуются в нём в результате протекания ядерных реакций на атомах бериллия.

До сих пор полная картина процессов взаимодействия трития с бериллием не ясна, существует значительное расхождение по определённым параметрам взаимодействия изотопов водорода с бериллием для данных, полученных различными авторами [1–7].

Целью проводимых исследований являлось изучение поведения трития и определение эффективных коэффициентов диффузии и энергии активации

диффузии трития в облучённом бериллии различных марок. Эти данные позволят определить распределение трития в конструкции ТЯР, что необходимо для оптимизации процессов извлечения, утилизации и дальнейшего использования трития (например, выбора режимов прогрева узлов установки с целью их детритизации).

Объекты исследования

В качестве объектов исследования выбраны образцы трех марок бериллия: S-65H, I-220H и S-200F, первые два из которых изготовлены методом горячего изостатического прессования (ГИП), а третий (S-200F) – методом вакуумного горячего прессования (ВГП). Все три марки бериллия были изготовлены фирмой Materion Brush Beryllium & Composites, USA и предоставлены для исследований Агенством по Атомной энергии Японии (JAEA). Химический состав всех исследуемых марок бериллия приведен в табл. 1.

Таблица 1

	Массовая доля примесей, %								
Марка								Другие	
	Be	BeO	C	Fe	Al	Si	Mg	металлы	
								элементы	
S-65H	99,44	0,7	<0,01	0,08	0,04	0,02	<0,01	<0,04	
S-200F	99,00	1,0	0,06	0,12	0,05	0,03	<0,01	<0,04	
I-220H	98,6	1,9	0,03	0,06	0,01	0,02	<0,01	<0,04	

Химический состав образцов бериллия

Рис. 1. Плотность нейтронного потока от энергетического спектра нейтронов реактора ВВР-К

Марки бериллия S-200F и I-220H выбраны для сравнения с предлагаемым для использования в реакторе ИТЭР сортом S-65, наиболее чистой модификацией которого является марка S-65H. В данной работе образцы облучались на исследовательском реакторе BBP-К в течение 200 часов при температуре 70 °C. Флюенсы по быстрым и тепловым нейтронам составили $5,5\cdot10^{19}$ н/см² и 9,5E + 19 н/см² соответственно. Спектр нейтронов реактора и плотности потока показаны на рис. 1. Размеры образцов и значения мощностей полученных доз приведены в табл. 2.

Таблица 1

Марка бериллия	<i>Ø</i> , мм	Ширина, мм	Мощность дозы, мк3/ч
S-65H	$10 \pm 0,1$	$1,5 \pm 0,1$	458
S-200F	$9,98 \pm 0,1$	$1,5\ 1\pm 0,1$	571
I-220H	$10,51 \pm 0,1$	$1,51 \pm 0,1$	460

Мощности доз и размеры образцов

Опытные образцы для ТДС- экспериментов и исследований микроструктуры были подготовлены путем нарезки исходных бериллиевых дисков на 4 равных сектора.

Экспериментальная установка и методика проведения исследований

Эксперименты по термодесорбции образцов облучённого бериллия проводились в Институте атомной энергии Национального ядерного центра Республики Казахстан (ИАЭ НЯЦ РК), расположенного в г. Курчатов, на экспериментальной установке ВИКА, методом термодесорбционной спектроскопии (ТДС) в режиме линейного нагрева. Подробное описание установки и методики приведено в работе [8].

Результаты микроструктурных исследований

Микроструктурные исследования облучённых образцов до экспериментов по ТДС показали, что микроструктуры образцов бериллия марок S-65H и S-200F наиболее близки между собой и отличаются большей упорядоченностью и однородностью по сравнению с бериллием марки I-220H, границы зёрен декорированы выделениями окиси бериллия (рис. 2, *a*, *б*). Микроструктура образца бериллия марки I-220H характеризуется большой неоднородностью размеров зёрен и их распределения в материале, по границам зёрен присутствует более обширная и разветвленная сетка окислов бериллия (рис. 2, *в*). Эти результаты согласуются с другими литературными данными для исследуемых марок бериллия [9].

Рис. 2. Результаты микроструктурных исследований облученного бериллия: *a* – поверхность образца бериллия марки S-65H, средний диаметр зёрен 11 мкм; *б* – поверхность образца бериллия марки S-200F, средний диаметр зёрен 15 мкм; *в* – поверхность образца бериллия марки I-220H, средний диаметр зёрен 7,9 мкм

Расчет количества наработанных атомов трития и гелия

При реакторном облучении в бериллии примесные атомы трития и гелия образуются по следующим ядерным реакциям:

1) (*n*, 2*n*) при *E* ≥ 2,7 МэВ (580 мбарн)

$${}^{9}\text{Be} + n_f \to 2{}^{4}\text{He} + 2n; \qquad (1)$$

$${}^{9}\text{Be} + n_{f} \rightarrow {}^{4}\text{He} + {}^{6}\text{He}, \qquad {}^{6}\text{He}\frac{\beta^{-}}{T_{1/2}} \approx 0.85s \rightarrow {}^{6}\text{Li}.$$
 (2)

Литий из-за высокого значения сечения реакции (945 барн) в потоке тепловых нейтронов практически мгновенно выгорает по следующей реакции:

$${}^{6}\text{Li} + n_{th} \rightarrow {}^{4}\text{He} + {}^{3}\text{H} + 4,78 \text{ MeV}, \qquad {}^{3}\text{H} \frac{\beta^{-}}{T_{\frac{1}{2}} \approx 12,3y} \rightarrow {}^{3}\text{He}.$$
(3)

Остальные реакции из-за малости соответствующего поперечного сечения не вносят существенного вклада в количественную наработку трития и гелия [10].

Учитывая форму спектра нейтронов и дифференциальные поперечные сечения указанных реакций, можно подсчитать число образовавшихся атомов газа на конец облучения по следующим формулам, вытекающим из выражения для скорости нейтронной реакции [11]

$$N_{\rm Be} = N(\overline{\sigma}_1 + \overline{\sigma}_2)\Phi_{\sigma}\tau = 1,37E + 17 = 33,34 \text{ ppm},$$
 (4)

$$N_{\rm 4He} = 2N(\overline{\sigma}_1 + \overline{\sigma}_2)\Phi_{\sigma}\tau = 2,74\text{E} + 17 = 2.08 \text{ ppm},$$
 (5)

где N – количество атомов бериллия во всем объеме образца; $N_{4\text{He}}$ – количество образовавшихся атомов гелия; $N_{3\text{H}}$ – количество образовавшихся атомов трития; $\overline{\sigma}_1$ – среднее эффективное сечение реакции (1), см²; $\overline{\sigma}_2$ – среднее эффективное сечение реакции (2), см²; Φ_f = 5,46E + 19 н/см² – флюенс по быстрым нейтронам.

Для оценки количества газа, потерянного из приповерхностных слоев образца, были определены длины пробега трития и гелия в бериллии с помощью программы LISE v.9.8.18 [12], в основе расчетов которой лежит формула Бете-Блоха для ионизационных потерь тяжелых заряженных частиц с зарядом *Z* в среде с плотностью электронов *n*

$$\frac{dE}{dx} = \frac{4\pi nZ^2 e^4}{m_e v^2} \left(\ln \frac{2m_e v^2}{\overline{I}^2} - \ln \left(1 - \frac{v^2}{c^2} \right) - \frac{v^2}{c^2} \right)$$
(6)

где m_e – масса электрона, c – скорость света, v – скорость частицы, \overline{I} – средний ионизационный потенциал атомов вещества среды, через которую проходит частица, e – заряд электрона [13].

Вычисленные длины пробега трития и гелия в бериллии составили 48,2 и 6,9 мкм соответственно, при этом соответствующее количество потерянных атомов газа из исходных образцов не превысило 6 % для трития и 1 % для гелия.

Время от момента выгрузки образцов из реактора до начала ТДСэкспериментов составило около 4 месяцев, следовательно, в результате радиоактивного распада было дополнительно потеряно 1,8% содержания атомов трития, которое преобразовалось в ³Не.

В итоге перед началом ТДС-экспериментов содержание трития T_2 и изотопов гелия ⁴He и ³He в образцах было соответственно 1.93 ppm, 33.08 ppm и 0.04 ppm.

Результаты ТДС-экспериментов и их анализ

В ходе проведения ТДС-экспериментов с образцами облучённого бериллия были получены температурные зависимости изменения парциальных давлений исследуемых газов в камере установки. На рис. 3 приведен ТДС-спектр для образца марки S-200F. Красная пунктирная кривая показывает изменение температуры.

По полученным данным были оценены количества трития T_2 и гелия ⁴Не в образцах облученного бериллия, которые достаточно хорошо совпали между собой в пределах ошибки для всех марок бериллия, и составили 25 ± 3 ppm для ⁴He, и 1,3 ± 0,3 ppm для T_2 . Содержание изотопа ³He, как и предполагалось, оказалось незначительным, и составило менее 0,02 ppm.

Характер ТДС зависимостей позволил сделать выводы, качественно характеризующие процесс выделения гелия и трития из исследованных марок облучённого бериллия, которые заключаются в следующем:

Рис. 3. Временная зависимость выделения трития и гелия из образца бериллия S-200F (скорость нагрева 40 °С/мин): - М6; - М4

Гелий при равномерном нагреве в основном выделяется в процессе плавления бериллиевого образца, либо при температурах, близких к температуре плавления, при значительном времени выдержки (более часа при температуре выше 1150 °C). Данный факт связан с низким коэффициентом диффузии гелия в бериллии;

Тритий выделяется как во время плавления (для исследуемых образцов бериллия марок S-65H, I-220H при плавлении выделяется около 50 % накопленного трития, в то время как для образов S-200F при плавлении выделяется около 10 % накопленного трития), так и в низкотемпературной области, которую можно условно разбить на 2 интервала:

1) первые очень незначительные, но заметные пики выделения трития наблюдаются для всех исследованных марок бериллия при температурах около 300–320 °C и 500 °C, причём при температуре 500 °C также наблюдается незначительное выделение гелия. Первое выделение (при температуре около 300–320 °C) связано с процессом выхода трития из приповерхностных пор и полых образований на поверхности. Второе выделение (при температуре около 500 °C) определяется некоторым общим растрескиванием образца и выходом газа (как гелия, так и трития) по образующимся свободным путям из полостей и трещин в теле образца.

2) во втором интервале температур для бериллия марки S-65H (выше 700 °C) наблюдается диффузионное выделение трития, установленное посредством выявления характерных особенностей для диффузионных пиков.

Интересно отметить, что для бериллия сорта S-200F наблюдается гораздо более эффективное выделение трития при его диффузии (рис. 3), чем из остальных сортов исследованного бериллия.

Расчёт коэффициентов диффузии

Для анализа была использована модель, учитывающая возможность необратимого захвата диффундирующего трития некоей ловушкой (гелиевые пузырьки, кислородные ловушки и пр.). Предположение о необратимом захвате было сделано на основе характера выделения газов в ТДС-спектрах: выделение основного количества газа наблюдается при температурах, близких к плавлению, соответственно это отвечает предположению, что весь тритий и гелий связан в ловушках до плавления.

Уравнения для модели диффузии в присутствии ловушек с необратимым захватом:

$$\frac{\partial C}{\partial t} = D(t) \frac{\partial^2 C}{\partial x^2} - k_1 C.$$
(7)

Дополнительно определяются параметры, зависимые от времени и температуры:

$$D(t) = D_0 \exp\left(-\frac{E_D}{RT}\right), \quad k_1(t) = k_{10} \exp\left(-\frac{E_T}{RT}\right), \quad T = T_0 + \beta t, \quad (8)$$

где T – температура металла, К; β – скорость нагрева металла; E_D , E_T – энергии активации диффузии и захвата в ловушки соответственно, кДж/моль; R – универсальная газовая постоянная.

Из начальных условий известна концентрация диффузанта в металле $C_0(x, t = 0)$. В качестве приближения модели были применены граничные условия 1-го рода, удовлетворяющие условиям непрерывной откачки диффузанта C(x = 0, t) = 0 и C(x = l, t) = 0, где l – толщина образца.

На основе этой модели было проведено моделирование ТДСзависимостей и получены данные по параметрам диффузии трития, которые сведены в табл. 3 и представлены на рис. 4

Таблица 2

Параметры взаимодействия трития с образцами бериллия марок S-65H, I-220H, S-200F

Марка бериллия	Эффективный коэффициент диффузии, D_0 , м 2 /с	Энергия активации диффузии, <i>E</i> _D , кДж/ моль
S-65H	65	280
I-220H	60	285
S-200F	110	280

Рис. 4. График коэффициентов диффузии трития в бериллии. Литературные данные: ■ $-D = 10^{-4} \exp(-178,6/RT)$ [5]; □ $-D = 3 \cdot 10^{-11} \exp(-21/RT)$ [4]; • $-D = 4 \cdot 10^{-3} \exp(-130/RT)$ [6]; $\Delta - D = 6,7 \cdot 10^{-9} \exp(-31/RT)$, $\blacktriangle - D = 8 \cdot 10^{-9} \exp(-38/RT)$ [3]. Полученные данные: ▼ - I-220H, $D = 60 \exp(-285/RT)$; • - S-65H, $D = 65 \exp(-280/RT)$; ▼ - S-200F, $D = 110 \exp(-280/RT)$

Значения параметров взаимодействия трития с бериллием оказались завышены и, в большей степени, соответствуют данным по диффузии пузырьков газовых комплексов в бериллии, описанным в работе [5]. Из табл. З видно, что они удовлетворительно совпали между собой для образцов бериллия марок S-65H и I-220H. Эффективный коэффициент диффузии трития в образцах марки S-200F оказался примерно в два раза выше, чем для других марок бериллия. Погрешность определялась в ходе метода подгонки, как максимально допустимое отклонение экспериментальных кривых от расчётных (~20 %).

Обсуждение результатов исследования

Теоретически рассчитанные значения концентраций наработанных газов в бериллии при облучении несколько превышают экспериментально полученные значения. Возможно, это связано с тем фактом, что исходные образцы были подвержены механической резке с целью подготовки опытных образцов непосредственно для экспериментального использования. Предположительно, в ходе этой процедуры из бериллия также произошел существенный выход атомов газа по образованным радиационным дефектам. Кроме того, некоторое количество атомов гелия и трития остается связанным в бериллии даже после его плавления. С учетом всего вышесказанного, полученные экспериментальным путем значения концентраций трития и гелия в облученном бериллии вполне можно считать качественно достоверными.

Термодесорбционное исследование выделения трития из облученных образцов бериллия привело к заключению, что движение газовых пузырьков

с тритием в бериллии можно разбить на две стадии: диффузия по объему зерна до его границ и диффузия по границам зёрен. Причём диффузия по границам зёрен является очень быстрым процессом, и основное время выделения трития из образца тратится на выход пузырьков газа на границы зёрен, которые покрыты плёнкой в виде BeO, служащей диффузионным барьером.

При высоких температурах в бериллии начинается процесс рекристаллизации зёрен, который также затруднен наличием окисной плёнки бериллия. Выше температур 700 °С плёнка ВеО начинает разрушаться, коагулируясь в отдельные включения, что облегчает процесс рекристаллизации.

В ходе микроструктурных исследований было обнаружено, что в образцах бериллия марок S-65H и I-220H, изготовленных методом горячего изостатического прессования, размер зерна меньше, чем в образце бериллия марки S-200F, изготовленного методом горячего вакуумного прессования, окись BeO лежит плотной равномерной плёнкой по поверхности в отличие от образца бериллия марки S-200F, где окись BeO располагается в виде отдельных включений. На различие микроструктуры этих образцов, по всей видимости, влияет метод изготовления. Согласно данным Папирова [8], на поверхности зёрен мелкозернистых образцов при изготовлении методом ГИП остаётся множество дислокаций, для которых требуется дополнительные затраты энергии на аннигиляцию, и которые оказывают дополнительное сопротивление перемещению границ в процессе рекристаллизации. Образец S-200F изготавливался в условиях вакуума, что избавило его от лишних загрязнений. Вследствие чего в нём рекристаллизация протекает свободно и зёрна растут с большей скоростью.

При этом становится очевидным, что при росте зерна пузырьки трития в зёрнах образца S-200F начинают более активно перемещаться, быстро оказываются на границах зёрен, выходят на поверхность и выделяются, это объясняет эффективное выделение трития путём диффузии ниже температуры плавления.

Сравнивая полученные результаты с работами по ТДС-исследованиям облучённого бериллия [14, 15, 16] можно сделать вывод о том, что механизм выделения гелия и трития существенно зависит от дозы облучения бериллия. В указанных выше работах бериллий был облучён до существенно более высоких флюенсов (~ $3 \cdot 10^{21}$, $1 \cdot 10^{22}$ н/см²), чем в настоящей работе (~ 10^{20} н/см²). Предложенный механизм выделения трития и гелия при высоких флюенсах был следующий: наблюдался взрывной характер выхода трития и гелия из материала, который был вызван формированием открытой пористости в результате коалесценции пузырей и растрескиванием, обусловленным ростом напряжений при распухании бериллия. В экспериментах с бериллием, облучённых до флюенсов выше $3 \cdot 10^{21}$ н/см² наблюдались такие эффекты как:

– существенное снижение температуры выделения трития при увеличении скорости нагрева исследуемого образца (~700 °С при скорости нагрева 14 °С/с, ~400 °С при скорости нагрева 90 °С/с);

– заметная разница между пиками выделения трития и гелия.

Как следует из настоящей работы, для бериллия, облучённого до существенно меньших флюенсов, механизм выделения трития в меньшей степени связан с разрушением и растрескиванием, а в большей степени с растворением оксидной плёнки BeO на границах зёрен и с последующей диффузией трития по границам зёрен.

То, что не происходит заметного растрескивания при нагреве облучённых до флюенсов $\sim 10^{20}$ н/см² образцов бериллия, подтверждается ещё тем фактом, что выделение гелия происходит в основном при температуре плавления образца.

Заключение

В ходе выполненных работ по изучению газовыделения из образцов облучённого бериллия была проведена серия ТДС-экспериментов с тремя марками облучённого бериллия, получены временные и температурные зависимости выделения гелия и трития из образцов облучённого бериллия.

Для всех образцов облучённого бериллия оценены количества трития T_2 и гелия ⁴He, которые достаточно хорошо совпали между собой в пределах ошибки.

Анализ ТДС-спектров показал, что для марки бериллия S-200F основное выделение трития зафиксировано в диффузионном пике, тогда как в двух других марках бериллия основная часть трития выделяется при плавлении.

Проведены микроструктурные исследования поверхности бериллиевых образцов трёх марок до ТДС-экспериментов, определены данные по основным характеристикам структуры образцов.

Опираясь на литературные данные, данные микроструктурного анализа и результаты экспериментов по газовыделению, удалось описать механизм выделения трития, принимая во внимание то, что скорость рекристаллизации зёрен бериллия марки S-200F намного превышает скорость рекристаллизации других марок исследуемых марок бериллия. Ускоренная рекристаллизация зёрен приводит к быстрому выходу газовых пузырьков с тритием.

Проведена обработка спектров выделения трития с помощью модели диффузии с учётом необратимого захвата диффундирующего трития ловушками, были определены основные параметры модели и аррениусовские зависимости эффективных коэффициентов диффузии трития в облучённом бериллии.

Список литературы

1. D. L. Baldwin, M. C. Billone. Diffusion/Desorption of tritium from irradiated beryllium / J. Nucl. Mater. – 1991. –Vol. 948.– P. 212–215.

2. S. Cho, M. A. Abdou. Analysis of tritium kinetics of SIBELIUS beryllium/ Fusion Engineering and Design. – 2000. – Vol. 51. – P. 85–91.

3. E. Abramov, M. P. Riehm, D. A. Thomson. Deuterium Permeation and Diffusion in High Purity Beryllium / J. Nucl. Mater. – 1990. – Vol. 175. – P. 90–95.

4. P. Jones, R. Gibson. Hydrogen in beryllium / J. Nucl. Mater. - 1967. - Vol. 21. - P. 353-354.

5. E. Rabaglino. Helium and Tritium in Neutron-irradiated Beryllium: дис. канд. инж. наук: 0947-8620: защищена 20.01.04 : утв. 20.07.04 / Rabaglino Elisa. – Karlsruhe, German, 2004. – 137 с.

6. I. L. Tazhibayeva, E. A. Kenzhin, V. Shestakov, E. V. Chikhray, A. Klepikov, O. Romanenko. Hydrogen release from reactor irradiated beryllium / J. Nucl. Mater. – 1996. – Vol. 233–237. – P. 837–840.

7. C. Ronchi. On diffusion and precipitation of gas-in-solid / J. Nucl. Mater. – 1987. – Vol. 148. – P. 316.

8. T. V. Kulsartov. Tritium migration in the materials proposed for fusion reactors: Li2TiO3 and beryllium / T. V. Kulsartov, Yu. N. Gordienko, I. L. Tazhibayeva, E. A. Kenzhin, A. O. Sadvakassova, Zh. A. Zaurbekova // J. Nucl. Mater. – 2013. –Vol. 442, Is. 1–3, Suppl. 1. – P. S740–S745.

9. И. И. Папиров. Рекристаллизация бериллия / И. И. Папиров, И. В. Стоев // Вестник Харьковского университета/ННЦ «Харьковский физикотехнический институт». – 2008. – Вып. № 2/38/. № 808. – С. 11–24.

10. T. A. Tomberlin. Beryllium – A Unique Material In Nuclear Applications// INEEL/CON-04-01869 PREPRINT 36th International SAMPE Technical Conference. – 2004. – P. 12.

11. В. В. Федоров. Нейтронная физика: Учебное пособие. – Санкт-Петербург: ПИЯФ РАН, 2004. – Р. 334.

12. LISE ++:[официальный веб-сайт]. – [2014]. – Режим доступа: http://lise.nscl.msu.edu/, свободный. – Еп.

13. А. И. Абрамов, Ю. А. Казанский, Е. С. Матусевич. Основы экспериментальных методов ядерной физики: Учебное пособие для ВУЗов. – М.: Энергоатомиздат, 1985.

14. D. V. Andreev et al. Studies of tritium desorption from beryllium and characterisation of erosion products under plasma-beryllium interaction / Fusion Engineering and Design. –1998. – Vol. 39–40. – P. 465–475.

15. Д. В. Андреев, В. Н. Беспалов, А. Ю. Бирюков, Е. А. Красиков. Влияние стационарного и циклического отжигов на структуру и распухание облученного нейтронами бериллия. – ВАНТ. Сер. Термоядерный синтез. – 1998. – Вып. 1-2. – С. 13–21.

16. D. V. Andreev, V. N. Bespalov, A. Yu. Biryukov, B. A. Gurovich, P. A. Platonov. Post-irradiation studies of beryllium reflector of fission reactor. Examination of gas release, swelling and structure of beryllium under annealing / J. Nucl. Mater. – 1996. – Vol. 233-237. – P. 880–885.