ВКЛАД ДЕЛЬБРЮКОВСКОГО РАССЕЯНИЯ В КОЭФФИЦИЕНТ ПРЕЛОМЛЕНИЯ ВЕЩЕСТВА ПРИ МЕГАЭЛЕКТРОНВОЛЬТНЫХ ЭНЕРГИЯХ КВАНТОВ

С. Ф. Гаранин, Е. М. Кравец

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров, Нижегородская область, пр. Мира, 37, 607188, Россия

В работе [1] утверждается, что для γ квантов МэВ-ного диапазона энергии вклад дельбрюковского рассеяния в коэффициент преломления вещества δ_D становится доминирующим по сравнению с обычным поляризационным вкладом, обусловленным свободными электронами. Мы рассмотрели этот вклад, используя, аналогично [1], дисперсионное соотношение, связывающее δ_D с сечением рождения пар в кулоновском поле ядра σ_p . Были рассмотрены также поправки, связанные с припороговым поведением σ_p и оценен вклад поправок более высокого порядка по дельбрюковскому рассеянию. Наши результаты показывают, что δ_D в МэВ-ном диапазоне энергии квантов мало.

Введение

Обычно считается, что для высоких частот ω (в том числе и для квантов с энергией $\hbar \omega \sim 1$ МэВ) диэлектрическая проницаемость веществ имеет вид [2]

$$\varepsilon = 1 - \frac{4\pi N e^2}{m\omega^2}$$

где N – число электронов во всех атомах единицы объема, e, m – заряд и масса электрона. Таким образом, для высоких энергий квантов $E_{\gamma} = \hbar \omega$ действительная часть показателя преломления $n = \sqrt{\varepsilon} \equiv 1 + \delta$ должна оставаться меньше 1, а величина

$$\delta \cong -\frac{2\pi e^2 N}{m\omega^2} = -\frac{2\pi e^2 \hbar^2 N}{mE_{\gamma}^2},\tag{1}$$

определяющаяся поляризацией электронов вещества (которые при высоких энергиях можно считать свободными), должна быть отрицательной и стремящейся к нулю при увеличении энергии кванта.

Однако в работе [1] авторы провели измерения δ в кремнии при МэВ-ных энергиях квантов и получили относительно большую (~10⁻⁹) положительную величину δ , по модулю заметно превышающую (1). Авторы объяснили полученную величину δ вкладом дельбрюковского рассеяния излучения в кулоновском поле ядра.

Используя дисперсионное соотношение Крамерса – Кронига [2], можно, так же как сделали авторы [1], связать вклад в действительную часть показателя преломления б с сечением фотопоглощения

$$\delta(E_{\gamma}) = \frac{\hbar c N_c}{\pi} P \int_0^{\infty} dE \frac{\sigma(E)}{E^2 - E_{\gamma}^2}, \qquad (2)$$

где N_c – число атомов в единице объема, σ – сечение фотопоглощения, а P обозначает интеграл в смысле главного значения.

Если для оценок вклада дельбрюковского рассеяния подставить в (2) сечение рождения пар, которое в МэВ-ной области энергий составляет [3]

$$\sigma_p \sim Z^2 \alpha r_e^2$$
, ($\alpha \equiv \frac{e^2}{\hbar c} \cong 1/137$ – постоянная тонкой структуры, $r_e = e^2/mc^2$ – классический радиус

электрона), получим вклад дельбрюковского рассеяния в МэВ-ной области энергий квантов

$$\delta_D \sim Z^2 r_e^3 N_c \,. \tag{3}$$

Вклад же от поляризации электронов (1) составляет

$$\delta \sim r_e \frac{\hbar^2}{m^2 c^2} N$$

и, таким образом, с учетом $N = ZN_c$ отношение вклада дельбрюковского рассеяния (3) к вкладу от поляризации электронов в МэВ-ной области энергий должно быть порядка $Z\alpha^2$, т.е. составлять для кремния величину порядка 10^{-3} . Таким образом, объяснение измеренной большой положительной δ вкладом дельбрюковского рассеяния представляется удивительным. Однако, если полученные в [1] результаты правильны, они могут открыть новую область γ оптики с широкими приложениями. Поэтому мы рассмотрели вклад дельбрюковского рассеяния в коэффициент преломления вещества уже не по порядку величины, а используя дисперсионное соотношение (2), связывающее δ с сечением рождения пар в кулоновском поле ядра. Поскольку авторы [1] указывали на значительную роль припорогового поведения этого сечения, мы рассмотрели поправки к сечению, связанные с этим поведением. Был оценен также вклад поправок более высокого порядка по дельбрюковскому рассеянию, о котором говорилось в [1].

1. Вклад дельбрюковского рассеяния в δ для малых Z

Для малых Z сечение рождения пар σ_p , которое следует подставить в (2) для получения вклада дельбрюковского рассеяния в δ_D , описывается формулой Бете – Гайтлера [3]. Полученная при этом зависимость δ_D/N_c (для кремния, Z = 14) от энергии фотона представлена на рис. 1, для сравнения на этом же рис. нанесена величина $|\delta|/N_c$ из (1), обусловленная поляризацией электронов. Качественное поведение $\delta_D(E_{\gamma})$ такое же, как представленное в работе [1], однако, полученные нами величины δ_D примерно на четыре порядка меньше величин, представленных в [1].

Рис. 1. Величины $\delta_D / N_c - (1)$ и $|\delta| / N_c - (2)$ для кремния

Рис. 1 показывает, что для кремния в широком диапазоне энергий квантов (вплоть до сотен МэВ) вклад поляризации электронов в показатель преломления намного превышает вклад дельбрюковского рассеяния. При этом при $E_{\gamma} \sim 1$ МэВ вклад дельбрюковского рассеяния на четыре порядка меньше вклада поляризации электронов, что даже меньше оценки (3). Для более тяжелых элементов относительный вклад δ_D будет увеличиваться пропорционально *Z*, и все же будет оставаться достаточно малым; например, для золота при МэВ-ных энергиях он составит ~ 0.6×10^{-3} .

2. Поправки к дельбрюковскому рассеянию, связанные с припороговым поведением сечения рождения пар в кулоновском поле ядра

Авторы [1] указывали на значительное влияние припорогового поведения сечения рождения пар в кулоновском поле ядра на величину вклада в показатель преломления, связанного с дельбрюковским рассеянием. Поэтому мы рассмотрели поправки к сечению, связанные с этим поведением.

Согласно [4], [5] дифференциальное по энергии позитронов сечение рождения пар в нерелятивистской области с учетом припороговой поправки имеет вид

$$d\sigma = \frac{4\pi^{2}\xi_{-}\xi_{+}}{\left(1 - e^{-2\pi\xi_{-}}\right)\left(e^{2\pi\xi_{+}} - 1\right)} \times \left(1 + C\left(\alpha Z\right)^{2}\frac{mc^{2}}{E_{\gamma} - 2mc^{2}}\right)d\sigma_{BH},$$
(4)

где $\xi_{\pm} = \frac{Z\alpha}{v_{\pm}}$, v_{\pm} – скорости позитрона и электро-

на, $d\sigma_{BH}$ – сечение Бете – Гайтлера, C – безразмерная константа. Вдали от порога величины ξ_{\pm} становятся малыми. становится малой также поправка, пропорциональная С и сечение (4) стремится к сечению $d\sigma_{BH}$. Значение величины C, однако, разнится в [4] и [5] и не соответствует расчетам [6], проведенным для полностью релятивистского случая. Нами была замечена ошибка в рассуждениях [4], где авторы для вычисления матричного элемента использовали нерелятивистские волновые функции электрона и позитрона, тогда как первые релятивистские поправки дают вклад в матричный элемент того же порядка. Однако наши вычисления пока что также не соответствуют результатам [6], а результаты [6] можно считать достаточно надежными; помимо всего прочего они согласуются с экспериментом. Поэтому мы для наших расчетов положили константу C = 4.9, ориентируясь на результаты [6].

Интегрирование формулы (4) в нерелятивистской области $(E_{\gamma}/mc^2 - 2) \ll 1$ дает универсальный поправочный множитель к полному сечению Бете-Гайтлера σ_{BH} , зависящий только от отношения превышения энергии кванта над порогом $(E_{\gamma} - 2mc^2)$ и удвоенной энергии связи электрона

в К оболочке иона 27.2 $Z^2 eV$:

$$\frac{\sigma}{\sigma_{BH}} = \phi(x) \equiv$$

$$\equiv 16\pi \frac{x+C}{x^3} \int_0^{\sqrt{2x}} \frac{ydy}{\left(e^{2\pi/y} - 1\right)\left(1 - e^{-2\pi/\sqrt{2x-y^2}}\right)},$$
(5)
$$rge \ x = \frac{E_{\gamma} - 2mc^2}{mc^2 \left(Z\alpha\right)^2}.$$

Поправочный множитель к сечению $\sigma_{BH}\phi(x)$ как функция безразмерной величины х приведен на рис. 2. Этот множитель учитывает, что при очень малых энергиях кванта сечение вблизи порога сильно уменьшается по сравнению σ_{BH} (изза того, что при малых энергиях позитроны отталкиваются от ядра и их волновая функция вблизи ядра, где происходит рождение пары, сильно уменьшается). Функция имеет максимум, равный 1.41, достигающийся при x = 4, 2 (согласно расчетам [6] при больших Z величина максимума увеличивается, а его положение на шкале энергии смещается к несколько меньшим значениям энергии, чем соответствующим x = 4, 2). При больших значениях энергии кванта сечение стремится к σ_{BH} , хотя и довольно медленно.

Рис. 2. Универсальный безразмерный множитель к сечению рождения пар σ_{BH} как функция безразмерного превышения энергии кванта над порогом

Учет поправки к сечению рождения пар, связанной с множителем $\phi(x)$, дает для кремния величину δ_D/N_c , представленную на рис. 3 (для сравнения на этом же рис. показана величина δ_D/N_c , полученная с использование формулы Бете – Гайтлера). Рис. 3 показывает, что влияние припорогового поведения сечения рождения пар для кремния весьма незначительно, не превосходит 1 % и не соответствует результатам работы [1], где эта поправка увеличивала δ_D вдвое.

Рис. 3. Величина δ_D / N_c для кремния, полученная с использование формулы Бете – Гайтлера – 1, и с учетом припорогового поведения – 2

3. Поправки более высокого порядка по дельбрюковскому рассеянию

Согласно оптической теореме [7] мнимая часть амплитуды рассеяния вперед Im $f(E, \vartheta = 0)$ связана с полным сечением поглощения $\sigma(E)$ соотношением

$$\operatorname{Im} f(E, \vartheta = 0) = \frac{E}{4\pi\hbar c} \sigma$$

Действительная же часть амплитуды рассеяния Re $f(E, \vartheta = 0)$ связана с действительной частью вклада в показатель преломления

$$\operatorname{Re} f\left(E, \vartheta = 0\right) = \frac{2\pi}{\lambda^2} \frac{\delta}{N_c},\tag{6}$$

где δ в свою очередь с помощью (2) можно выразить через $\sigma(E)$. Сечение дельбрюковского рассеяния вперед выражается через комплексную амплитуду как

Заключение

$$\frac{d\sigma_D}{d\Omega} = \left| f\left(E, 0 \right) \right|^2$$

Для малых энергий $E_{\gamma} \ll mc^2$ в кулоновском поле ядра будет формироваться дипольный момент, пропорциональный электрическому полю падающей волны, и, значит, угловое распределение рассеянного излучения будет пропорционально $\sin^2 \theta$ [8]¹, где θ угол между направлением рассеяния и направлением электрического поля падающей волны. Зная это, можно вычислить полное сечение рассеяния в низкоэнергетической области

$$\sigma_D(E_{\gamma}) = \frac{8\pi}{3} \Big[\operatorname{Re} f(E_{\gamma}, \vartheta = 0) \Big]^2,$$

где мы учли, что для малых энергий $\sigma_p(E) = 0$, а, следовательно, и Im $f(E, \vartheta = 0) = 0$. Используя (6) и (2), получим для полного сечения в низкоэнергетической области

$$\sigma_D(E_{\gamma}) = 8,41 \cdot 10^{-3} (Z\alpha)^4 r_e^2 \left(\frac{E_{\gamma}}{mc^2}\right)^4$$

При больших энергиях $E_{\gamma} >> mc^2$ сечение дельбрюковского рассеяния стремится к постоянному пределу [3]

$$\sigma_D \sim (Z\alpha)^4 r_e^2 \,. \tag{7}$$

Зная порядки величин для полного сечения дельбрюковского рассеяния и подставляя его в (2) можно оценить вклад в б соответствующий более высокому порядку по дельбрюковскому рассеянию. Подставляя (7) в (2) получим для МэВ-ной области энергий квантов

$$\delta_{DD} \sim Z^4 \alpha^3 r_e^3 N_c \,,$$

величину, меньшую δ_D в $Z^2 \alpha^3$ раз.

Проделанные нами оценки показывают, что:

1. вклад дельбрюковского рассеяния в δ для кремния при МэВ-ных энергиях квантов, по крайней мере, на четыре порядка меньше, чем представленный в работе [1],

2. припороговое поведение сечения рождения пар слабо сказывается на величине δ ,

3. поправки более высокого порядка по дельбрюковскому рассеянию для кремния дают вклад в δ еще на четыре порядка меньше, чем само дельбрюковское рассеяние.

Таким образом, теоретическое объяснение измеренных авторами [1] в кремнии относительно больших положительных δ представляется несостоятельным. По поводу работы [1] опубликована заметка [10], в которой сечение дельбрюковского рассеяния, использованное авторами, было подставлено в дисперсионное соотношение из их работы и в результате получено δ на 5–6 порядков меньше, чем в их работе. Ответа на комментарий [10] не последовало. Не было и новых экспериментальных и теоретических результатов (в частности, по золоту, что обещали авторы).

Что касается измерений δ при МэВ-ных энергиях, имеется несколько вопросов. Во-первых, если все же экспериментальные результаты авторов достоверны, чем их можно объяснить? Во-вторых, можно ли как-то проверить экспериментальные результаты авторов? Имеются, например, предложения [11, 12] по измерению показателя преломления МэВ-ных фотонов.

Список литературы

1. Habs D., Gunther M. M., Jentschel M., Urban W. Refractive index of silicon at γ ray energies // Phys. Rev. Lett. 2012. Vol. 108, N 18, P. 184802 (4).

2. Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. М.: Наука, 1982.

3. Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Квантовая электродинамика. М.: Наука, 1989.

4. Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. М.: Наука, 1969.

5. Nishina Y., Tomonaga S., Sakata S. On the photo-electric creation of positive and negative electrons // Sci. Pap. Inst. Phys. Chem. Res. Japan. 1934. Vol. 24, N 17, P. 1-5.

6. Overbo I., Mork K. J., Olsen H. A. Exact calculation of pair production // Phys. Rev. 1968. Vol. 175, N 5, P. 1978–1981.

¹ Следует заметить, что в формулах для дельбрюковского сечения рассеяния при малых энергиях, приведенных в [3] и взятых из [9], по нашему мнению имеется неточность: коэффициенты в формулах для сечения с сохранением спиральности $d\sigma_{++}$, $d\sigma_{--}$ и с изменением спиральности $d\sigma_{+-}$, $d\sigma_{-+}$ должны совпадать, в соответствии с тем, что угловое распределение должно быть пропорционально $\sin^2 \theta$. Согласно нашим расчетам коэффициент в формулах для $d\sigma_{++}$, $d\sigma_{--}$ правильный, а для $d\sigma_{+-}$, $d\sigma_{-+}$ – нет.

7. Ландау Л. Д., Лифшиц Е. М. Квантовая механика. М.: Наука, 1988.

8. Ландау Л. Д., Лифшиц Е. М. Теория поля. М.: Наука, 1967.

9. Costantini V., De Tollis B., Pistoni G. Nonlinear effects in quantum electrodynamics // Nuovo Cimento. 1971. Vol. 2A. P. 733.

10. Donohue J. T. Comment on "Refractive Index of Silicon at γ Ray Energies" // Phys. Rev. Lett. 2013. Vol. 110, N 12, P. 129501 (1).

11. Ispirian K. A. Gamma Cherenkov-transition of high energy electrons and methods for the measurement of the refractive index of MeV photons using total internal and external reflections // J. Phys: Conf. Series. 2014. Vol. 517, P. 012008 (7).

12. Aginian M. A., Ispirian K. A., Ispirian M. Methods for the measurement of the refractive index of MeV photons using total internal and external reflections // J. Phys: Conf. Series. 2014. Vol. 517, P. 012045 (5).