ПРИНЦИПИАЛЬНАЯ КОНСТРУКЦИЯ И НЕЙТРОННЫЕ ПАРАМЕТРЫ РЕАКТОРНОЙ УСТАНОВКИ «БИГР + УФН-П»

PRINCIPLE DESIGN AND NEUTRON PARAMETERS OF REACTOR INSTALLATION «BIGR + UFN-P»

В. Ф. Колесов, В. Х. Хоружий, С. В. Воронцов, А. А. Девяткин, М. И. Кувшинов, В. В. Сажнов V. F. Kolesov, V. Kh. Khoruzhy, S. V. Vorontsov, A. A. Devyatkin, M. I. Kuvshinov, V. V. Sazhnov

ФГУП «РФЯЦ-ВНИИЭФ», Саров Нижегородской обл. Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics

Предлагается создание на базе реактора БИГР облучательной установки с петлевым контуром для испытаний топлива АЭС в условиях реактивностной аварии и аварии с потерей теплоносителя. Для этого реактор БИГР следует оснастить транспортабельной подкритической ядерной сборкой - УФН-П. Разработана принципиальная конструкция и выполнена серия расчетов статических и динамических нейтронных параметров двухсекционной импульсной установки «БИГР + УФН-П». Показано, что установка обеспечит облучение объектов импульсом с флюенсом нейтронов до 1,3·10¹⁶ см⁻²и длительностью ≥ 90 мс в полости диаметром 15 см и высотой 100 см, с показателем радиальной неравномерности флюенса, не превышающим 10 %.

It's proposed to design on the basis of BIGR reactor irradiation facility with loop channel for RIA-type and LOCA-type NPP fuel testing. For this purpose BIGR would be supplied with transportable subcritical assembly – UFN-P. For tow-section pulse «BIGR+UFN-P» facility engineering design was developed and static and dynamic neutron parameters calculation was fulfilled. It was presented that this facility will provide samples irradiation with neutron fluence up to $1,3\cdot10^{16}$ cm⁻² and pulse duration ≥ 90 ms in cavity with diameter 15 cm and height 100 cm, and with radial fluence irregularity not exceeding 10%.

Современное состояние и перспективы развития ядерной энергетики страны требуют технического перевооружения и модернизации экспериментальной базы отрасли в соответствии с задачами обоснования и повышения безопасности отечественных АЭС и их конкурентоспособности на мировом рынке. Предполагается, что в России на базе реактора БИГР может быть создана облучательная установка с многофункциональным петлевым контуром для испытаний топлива АЭС с различными теплоносителями в нештатных условиях. В результате создания такой установки появился бы уникальный комплекс, на котором реализуются возможности для обоснования лицензионных критериев для аварийных ситуаций типа RIA и частично для аварий с потерей теплоносителя типа LOCA[1].

Установка «БИГР + УФН-П» («Реактор БИГР + Усилитель флюенса нейтронов подкритический») является двухсекционным реактором, способным работать в импульсном и квазиимпульсном режимах. Реактор БИГР (основной компонент рассматриваемого комплекса) относится к классу апериодических импульсных реакторов (АИР). Он был введен в эксплуатацию в 1977 г. и до сих пор успешно используется как мощный источник *n*-, γ-излучений для испытания радиационной стойкости различных материалов и изделий и при проведении разнообразных физических экспериментов [2,3].

При ширине импульса на половине высоты ~2 · 10⁻³ с реактор БИГР обладает рекордными для быстрых АИР значениями флюенса нейтронов в доступных для облучений объемах:

 $\sim 1 \cdot 10^{16}$ см⁻² в центральном канале диаметром ~ 10 см, высотой ~ 55 см;

 $\sim 1 \cdot 10^{15}$ см⁻² на внешней поверхности активной зоны (АЗ) диаметром ~ 70 см.

Получение высоких флюенсов быстрых нейтронов в реакторе БИГР обеспечено благодаря использованию дисперсного топлива, состоящего из смеси графита с двуокисью высокообогащенного урана (90 % по 235 U), и оригинальной конструкции АЗ. Диаметр и высота АЗ в реакторе БИГР равны 76 и 67 см соответственно. В процессе работы при импульсном ядерном нагреве температура АЗ повышается до ~900 °C.

Несмотря на указанные высокие параметры импульсов, имеется ряд задач, которые на реакторе БИГР не могут быть решены: облучения сравнительно крупных (до ~20 см) блоков и узлов в полях излучений с флюенсами нейтронов до ~5 · 10¹⁵ см⁻², дозами до 100 Гр и пространственной неравномерностью облучения ≤ 20 %. Облучение снаружи АЗ заведомо не удовлетворяет этому условию: уже на расстоянии 20 см от АЗ флюенс падает приблизительно в 2 раза.

С целью расширения возможностей реактора БИГР для испытания топлива АЭС предлагается оснастить реактор транспортабельной подкритической сборкой (ПС), обеспечивающей облучение образцов в полости диаметром от 15 до 30 см, высотой 100 см флюенсом до $1 \cdot 10^{16}$ см⁻² с показателем неравномерности ≤ 10 %. Именно эту функцию и выполняет ПС УФН-П.

Сначала предполагалось, что диаметр полости в УФН-П будет равен 30 см, толщина графитового отражателя – 50 см. Но более рациональным оказался вариант с полостью диаметром 15 или 20 см и графитовым отражателем толщиной 50 или 30 см. Это позволяет уменьшить габариты и массу УФН-П, снизить его стоимость и повысить управляемость всей установкой [1].

1. Принципиальная конструкция установки «БИГР + УФН-П»

Установка «БИГР + УФН-П» является двухсекционным реактором, составленным из двух геометрически и материально выделенных, нейтронно-связанных, способных работать в импульсном и квазиимпульсном режимах активных зон. УФН-П представляет собой оснащенную органами регулирования ПС, установленную на подвижной дистанционно управляемой платформе. Общий вид установки с первоначальными размерами полости и отражателя показан на рис. 1. Вид УФН-П в горизонтальном разрезе показан на рис. 2, в вертикальном – на рис. 3.

Рис. 1. Схема установки БИГР+УФН-П: 1 – БИГР; 2 – АЗ БИГР; 3 – борный экран УФН-П; 4 – экспериментальный канал (ЭК) УФН-П; 5 – АЗ УФН-П; 6 – отражатель графитовый; 7 – нейтронный источник (ИН); 8 – механизм ИН; 9 – привод РБ; 10 – платформа УФН-П

Рис. 2. Горизонтальный разрез АЗ УФН-П: 1 – БИГР; 2 – борный экран УФН-П; 3 – АЗ УФН-П; 4, 9 – отражатель графитовый; 5 – платформа УФН-П; 6, 11 – привод РБ; 7 – РБ-1; 8 – ИН; 10 – РБ-2; 12 – рельсы

В первоначальном варианте предполагалось, что АЗ УФН-П имеет форму полого цилиндра с наружным диаметром 86 см, внутренним 32 см и высотой 100 см. Предполагалось также, что АЗ будет собрана из шестигранных блоков топливного материала размерами 60–70 мм под «ключ» и высотой 70–100 мм. В качестве топлива намечалось использование гомогенной смеси диоксида урана с обогащением 90 % по изотопу ²³⁵U с графитом. Отношение числа ядер С к числу ядер U в смеси (C/U) принималось равным 2200 или 4000. Выбор топливной композиции на основе графитовой матрицы был обусловлен ее хорошей термостойкостью, приемлемыми теплофизическими, ядерными и прочностными свойствами. Топливная композиция на основе диоксида урана и графита обеспечивает работоспособность АЗ при температурах до ~1000 °С. Как уже говорилось, более поздние варианты УФН-П имеют другие размеры полости и могут иметь отражатель с меньшей толщиной. Отношение числа ядер С к числу ядер U в топливной смеси этих вариантов принималось равным 2000.

Для защиты топлива от окисления, сохранения конфигурации и защиты от механических воздействий, предотвращения выхода продуктов деления блоки АЗ УФН-П заключались в защитный чехол из нержавеющей стали (поз. 2 на рис. 3). Нежелательный локальный всплеск делений в периферийной, обращенной к УФН-П области АЗ БИГР отчасти предотвращался штатным кадмиевым экраном, размещенным на кожухе реактора, а более радикально – экраном из карбида обогащенного бора, закрепленным на скошенной боковой поверхности УФН-П

Рис. 3. Вертикальный разрез АЗ УФН-П: 1 – АЗ УФН-П; 2 – чехол АЗ УФН-П; 3 – отражатель; 4 – чехол отражателя; 5 – ЭК УФН-П; 6 – траверса; 7 – электромагнит; 8 – якорь электромагнита; 9 – ползун;10 – РБ11; 11 – демпфер гидравлический; 12 – привод РБ; 13 – платформа; 14 – выключатель путевой; 15 – опора РБ; 16 – поддон ЭК

В целях регулирования уровня подкритичности и надежного заглушения при нахождении в отстойнике в УФН-П были предусмотрены два регулирующих блока (РБ-1 и РБ-2), перемещаемые порознь или синхронно на базе 50 см со скоростью 1 мм/с. РБ-1, РБ-2 представляют собой призматические фрагменты отражателя, размещаемые в удаленной от БИГР области.

2. Расчеты статических и кинетических нейтронных параметров установки БИГР+УФН-П

2.1. Конфигурация УФН-П: диаметр полости – 30 см, толщина отражателя – 50 см

Расчеты статических нейтронных характеристик первоначальной конфигурации установки «БИГР + УФН-П» проводились с помощью программы С-95 метода Монте-Карло [4]. Кинетические нейтронные характеристики установки определялись с помощью оперативной программы ИЯРФ «Кинрид». В результате расчетов по программе С-95 были получены для каждой секции системы коэффициенты размножения и времена жизни нейтронов k_i и τ_i , коэффициенты нейтронной связи секций k_{12} , k_{21} , коэффициент гашения реактивности в УФН-П в зависимости от температуры, распределение флюенса нейтронов в осевом канале УФН-П и веса реактивности блоков РБ-1, РБ-2. Было также оценено влияние УФН-П на распределение плотности делений в АЗ БИГР. Основная часть расчетов была выполнена с нейтронными константами БАС [5], а температурные зависимости нейтронных параметров – с константами ENDF/B-VI.

В качестве материала АЗ УФН-П рассматривались уран-графитовые смеси с показателем (отношение числа ядер C/U), равным 1100, 2200 и 4000. Локальный всплеск делений в периферийной, обращенной к УФН-П области АЗ БИГР понижался с помощью штатного кадмиевого экрана, а более радикально – с помощью экрана из карбида бора, закрепленного на скошенной боковой поверхности УФН-П. Использованные в расчетах теплофизические свойства материала АЗ принимались такими же, как у графита [6]. В результате расчетов было показано, что в рассмотренной конфигурации комплекса «БИГР + УФН-П»:

– флюенс нейтронов в осевом канале УФН-П в зависимости от варианта УФН-П равен $(6-8) \cdot 10^{-4}$ см⁻² на одно деление в его АЗ;

 – рассматриваемый как отражатель нейтронов реактор БИГР практически не влияет на реактивность УФН-П, а УФН-П увеличивает реактивность БИГР на ~2 %;

– приближение УФН-П к реактору БИГР сильно возмущает пространственное распределение плотности делений в АЗ: при штатном кадмиевом экране температура периферийной области АЗ БИГР, обращенной к УФН-П, повышается в 3,7 раза, а при замене кадмиевого экрана борным (B₄C) экраном толщиной 0,69 г/см² – в 2 раза;

– изменение реактивности УФН-П при опускании на 50 см каждого из блоков РБ-1, РБ-2 (см. рис. 2) равно примерно 6 %.

В варианте УФН-П с АЗ из уран-графитовой смеси с параметром $\gamma = 4000$, графитовым отражателем толщиной 50 см и штатным кадмиевым экраном: внешний радиус АЗ ≅ 46 см; $k_{12} = 0,049$; $k_{21} = 0,059$; $\tau_2 = 8,6 \cdot 10^{-4}$; коэффициент гашения реактивности 1,299 $\cdot 10^{-4}$ МДж⁻¹ в интервале температур от 16,9 до 307 °C; 0,871 $\cdot 10^{-4}$ МДж⁻¹ в интервале температур от 307 до 597 °C и 0,507 $\cdot 10^{-4}$ МДж⁻¹ в интервале температур от 597 до 887 °C.

В варианте УФН-П с АЗ из U-С смеси с показателем $\gamma = 2200$, графитовым отражателем толщиной 50 см и штатным кадмиевым экраном: внешний радиус АЗ = 42 см; $k_{12} = 0,038$; $k_{21} = 0,048$; $\tau_2 = 6,3 \cdot 10^{-4}$; коэффициент гашения реактивности в указанных выше интервалах температур соответственно 1,473 $\cdot 10^{-4}$; 0,691 $\cdot 10^{-4}$ и 0,345 $\cdot 10^{-4}$ МДж⁻¹.

Получено, что спектр флюенса нейтронов в полости этого варианта УФН-П содержит ~8 % тепловых нейтронов, ~9 % – с энергией выше 1 МэВ и 29 % – с энергией выше 0,1 МэВ. Пространственная неоднородность флюенса нейтронов в экваториальной плоскости ≤10 %.

В расчетах переходных процессов комплекса коэффициент гашения реактивности, время жизни мгновенных нейтронов и энерговыделение за импульс в реакторе БИГР принимались равными соответственно $0,695 \cdot 10^{-5}$ МДж⁻¹; $3,6 \cdot 10^{-7}$ с и 280 МДж. Эффективная доля запаздывающих нейтронов β_{ab} как в БИГР, так и в УФН-П предполагалась равной $0,78 \cdot 10^{-2}$.

В табл. 1 представлены параметры импульсов делений в установке «БИГР + УФН-П» с показателем γ разбавления топлива в УФН-П, равным 2200, и с двумя типами экрана при флюенсах нейтронов за импульс в осевой полости УФН-П 4 · 10¹⁵, 6 · 10¹⁵ и 8 · 10¹⁵ см⁻². Приведены энерговыделения Y_2 за импульс и средние температуры АЗ УФН-П, требуемые для производства указанных импульсов начальные и стартовые реактивности секций Δk_1 , Δk_2 и комплекса в целом Δk , значения тех же реактивностей в конце импульсов, реактивность δk_1 , которую должен вносить импульсный блок (ИБ) БИГР при генерировании импульсов в предположении стартового периода разгона комплекса 30 или 10 с (предполагалось, что генерирование импульса производится с помощью органов регулирования реактивности БИГР). Значения реактивности указаны с учетом запаздывающих нейтронов.

Борный экран, в сравнении с кадмиевым, значительно эффективней защищает АЗ БИГР от перекосов в пространственном распределении температуры. Вместе с тем замена кадмиевого экрана борным влечет за собой неблагоприятное уменьшение коэффициентов связи k_{12} , k_{21} . В случае борного экрана и $\gamma = 2200$ эти коэффициенты получены равными: $k_{12} = 0,0289$, $k_{21} = 0,0395$ (в случае штатного экрана $k_{12} = 0,038$; $k_{21} = 0,0480$).

Из табл. 1 следует, что производство импульсов с флюенсом $8 \cdot 10^{15}$ см⁻² во всех случаях можно производить лишь при относительно небольших подкритичностях и значительном запасе реактивности у ИБ БИГР. Наличие борного экрана во всех случаях приводит к заметному ухудшению параметров установки, выражающемуся в снижении уровней подкритичности УФН-П. Отме-

тим сильную зависимость подкритичности УФН-П и требуемого запаса реактивности ИБ от уровня флюенса. Так при снижении флюенса до 6 \cdot 10¹⁵ см⁻² (на 25 %,), подкритичности УФН-П увеличивается в 2–3 раза, а требуемый «вес» ИБ уменьшается в ~2,5 раза.

Таблица 1

Парамотр		Фл	Флюенс нейтронов в осевой полости УФН-П, см ⁻²						
Параметр	$4 \cdot 10^{15}$	$6 \cdot 10^{15}$	$8 \cdot 10^{15}$	$4 \cdot 10^{15}$	$6 \cdot 10^{15}$	$8 \cdot 10^{15}$			
Экран		I	Штатный С	d		B ₄ C			
<i>Y</i> ₂ ,МДж		143,5	215,25	287	145	217,5	290		
Средняя температура АЗ УФН-П,	°C	168	244	289	155	223	292		
	Δk_1	-1,25	-2,22	-3,20	-0,80	-1,55	-2,30		
Начальные реактивности ×100	Δk_2	-7,71	-4,06	-1,97	-5,96	-2,88	-1,08		
<u>^</u>	Δk	0,875	1,23	1,73	0,872	1,23	1,75		
	Δk_1	-2,14	-4,14	-8,35	-1,69	-3,56	-8,96		
Стартовые реактивности ×100	Δk_2	-7,71	-4,06	-1,97	-5,96	-2,88	-1,08		
(стартовый период разгона 30 с)	Δk	0,172	0,172	0,172	0,172	0,172	0,172		
	δk_1	0,89	1,92	5,2	0,89	2,01	6,7		
	Δk_1	-1,96	-3,86	-7,68	-1,51	-3,26	-7,90		
Стартовые реактивности ×100	Δk_2	-7,71	-4,06	-1,97	-5,96	-2,88	-1,08		
(стартовый период разгона 10 с)	Δk	0,312	0,312	0,312	0,312	0,312	0,312		
	δk_1	0,71	1,64	4,48	0,71	1,71	5,6		
	Δk_1	-1,44	-2,42	-3,39	-0,99	-1,74	-2,49		
Реактивности в конце импульса ×100	Δk_2	-9,82	-7,23	-6,20	-8,10	-6,09	-5,35		
	Δk	0,348	0,079	-0,299	0,357	0,102	-0,251		
Полуширина импульса в УФН-П,	мс	580	195	128	587	193	128		

Параметры импульсов в комплексе «БИГР + УФН-П» при $\gamma = 2200 (Y_1 = 280 \text{ MДж})$

Ввод необходимой избыточной реактивности при генерировании импульса делений в комплексе «БИГР + УФН-П» может быть реализован с помощью модернизированного ИБ, перемещаемого в осевом канале АЗ БИГР. Существующая штатная система ИБ включает варианты с вводом реактивности от 0,8 до 1,7β_{эф}. Возможно также использование ИБ с «весом» 2,8β_{эф}.

При модернизации БИГР можно простыми средствами реализовать быстрый пневматический ввод (вывод) ИБ с изменением реактивности до $10\beta_{3\phi}$. Эта оценка выполнена на основании экспериментальных данных, полученных при физическом пуске реактора и при его эксплуатации. В случае, если бы не удалось обеспечить требуемый ресурс реактивности ИБ БИГР, генерирование импульса можно было бы осуществлять с помощью одного из РБ УФН-П.

2.2. Конфигурация УФН-П: диаметр полости – 15 или 20 см, толщина отражателя – 30 см

В первой измененной конфигурации установки «БИГР + УФН-П» принято, что диаметр полости в УФН-П равен 15 или 20 см, высота АЗ и толщина графитового отражателя равны 100 и 30 см соответственно, отношение числа ядерС/U $\gamma = 2000$. Предполагалось, что между активными зонами БИГР и УФН-П устанавливается экран из насыпного карбида природного бора толщиной 0,5 см (поверхностная плотность ¹⁰В ~0,03 г/см²) или такой же толщины экран из металлического бора с обогащением по ¹⁰В 85 % (поверхностная плотность ¹⁰В ~0,85 г/см²).

Расчеты статических нейтронных характеристик трехмерной конфигурации установки «БИГР + УФН-П» проводились с помощью программы С-007 метода Монте-Карло [7] в двухзонном приближении [8]. Гашение реактивности в реакторе БИГР и УФН-П рассчитывалось с учетом зависимости теплофизических параметров АЗ от температуры[1]. Основная часть расчетов была выполнена с нейтронными константами ENDF/B-VI.

Спектр флюенса нейтронов, рассчитанный для центра полости УФН-П, представлен в табл. 2. Спектр содержит ~8 % тепловых нейтронов и ~30 % – с энергией выше 0,1 МэВ. Внешний радиус АЗ УФН-П в вариантах с полостями 15 и 20 см получен равным 38,5 см и 41 см соответственно. Таблица 2

$E_{i-1}-E_i$	0–0,215 эВ	0,215– 4,65 эВ	4,65–100 эВ	0,1–1 кэВ	1–10 кэВ	10–100 кэВ	0,1–0,4 МэВ	0,4–1,4 МэВ	1,4–4 МэВ	4–14 МэЕ
ΔF	0,087	0,105	0,126	0,114	0,128	0,143	0,103	0,116	0,068	0,010

Спектр флюенса нейтронов в центре УФН-П

Значения коэффициентов нейтронной связи активных зон k_{12} , k_{21} в случае полостей ПС диаметром 15 или 20 см и экранов из насыпного природного В₄Сили металлического обогащенного бора приведены в табл. 3. Параметры установки «БИГР + УФН-П» и импульсов представлены в табл. 4, 5. В этих таблицах приведены энерговыделения Y_1 , Y_2 за импульс и значения коэффициента размножения нейтронов k_{11} , k_{22} в БИГР и УФН-П соответственно, полный для установки коэффициент размножения нейтронов $k_{3\phi}$, полуширина импульса $\theta_{1/2}$ в УФН-П и максимальные значения флюенса в полости за импульс F_2 и температуры в АЗ T_2 .

Таблица 3

Коэффициенты нейтронной связи активных зон в установке «БИГР + УФН-П»

Коэффициенты	${}^{10}\text{B} \sim 0,$	03 г/см ²	¹⁰ В ~ 0,85 г/см ²		
связи	Полость Ø15 см	Полость Ø20 см	Полость Ø15 см	Полость Ø20 см	
k_{12}	0,0282	0,0258	0,0170	0,0155	
k ₂₁	0,0315	0,0325	0,0238	0,0244	

Картины изменения мощности в импульсах делений в компонентах установки «БИГР + УФН-П» показаны на рис. 4–7.

Экран из металлического обогащенного бора, в сравнении с экраном из насыпного карбида природного бора, значительно эффективней защищает АЗ БИГР от нежелательных перекосов в пространственном распределении температуры. Вместе с тем замена экрана второго типа экраном первого типа, если таковая потребуется, повлечет за собой неблагоприятное уменьшение коэффициентов связи k_{12} , k_{21} . В случае экрана из насыпного карбида природного бора эти коэффициенты получены равными: $k_{12} = 0,0258$, $k_{21} = 0,0325$, а в случае экрана из металлического обогащенного бора – $k_{12} = 0,0155$, $k_{21} = 0,0244$.

Рис. 4. Зависимость от времени мощности компонентов «БИГР + УФН-П» с полостью Ø15 см, сильным экраном (${}^{10}\text{B} - 0.85$ г/см²) и $k_{22} = 0.97$: P_1 – мощность БИГР; P_2 – мощность УФН-П

Рис. 5. Плотность потока нейтронов Φ в центре полости УФН-П в установке «БИГР + УФН-П» с полостью Ø15 см, сильным экраном ($^{10}\text{B} - 0.85 \text{ г/сm}^2$) и $k_{22} = 0.97$

Рис. 6. Зависимость от времени мощности компонентов в установке «БИГР + УФН-П» с полостью Ø20 см, сильным экраном ($^{10}\text{B} - 0.85 \text{г/см}^2$) и $k_{22} = 0.99$: P_1 – мощность БИГР; P_2 – мощность УФН-П

Рис. 7. Плотность потока нейтронов Φ в центре полости УФН-П в установке «БИГР + УФН-П» с полостью Ø20 см, сильным экраном (10 B – 0,85 г/см²) и k_{22} = 0,99

Таблица 4

Параметры «БИГР+УФН-П» и импульсов в ПС в случае слабого экрана (¹⁰В ~ 0,03 г/см²)

<i>Y</i> ₁ , МДж	<i>Y</i> ₂ , МДж	k_{ibb}	k_{11}	k_{22}	θ _{1/2} , мс	F_2 , 10^{16} cm ⁻²	T_2 , °C	
		БИГ	Р+ПС(полост	ь диаметром 1	5см)			
280	78	1,00859	1,00041	0,90	90,7	0,33	142	
281	85	1,00869	0,99969	0,91	97,5	0,36	152	
280	94	1,00882	0,99882	0,92	105	0,40	163	
280	104	1,00901	0,99777	0,93	111	0,44	176	
280	117	1,00929	0,99647	0,94	115	0,50	192	
<i>Y</i> ₁ , МДж	<i>Y</i> ₂ , МДж	$k_{ii\phi}$	k_{11}	k ₂₂	θ _{1/2} , мс	F_2 , 10^{16} cm ⁻²	T_2 , °C	
279	132	1,00971	0,99483	0,95	117	0,56	211	
279	153	1,01036	0,99272	0,96	115	0,65	236	
280	181	1,01140	0,98994	0,97	110	0,77	268	
281	220	1,01304	0,98615	0,98	102	0,94	310	
280	272	1,01555	0,98078	0,99	92,1	1,16	365	
279	348	1,01924	0,97307	1,00	80,0	1,48	442	
		БИГ	Р+ПС (полост	ъ диаметром 2	20см)			
281	81	1,00855	1,00083	0,90	90,4	0,29	135	
280	88	1,00863	1,00013	0,91	98,9	0,32	143	
280	97	1,00875	0,99930	0,92	106	0,35	154	
280	108	1,00892	0,99830	0,93	114	0,39	166	
281	121	1,00918	0,99706	0,94	118	0,44	182	
279	138	1,00956	0,99548	0,95	121	0,50	200	
280	160	1,01017	0,99346	0,96	120	0,58	224	
281	190	1,01114	0,99076	0,97	116	0,69	254	
280	230	1,01270	0,98706	0,98	107	0,84	294	
280	287	1,01514	0,98179	0,99	96,4	1,04	349	
281	371	1 01879	0 97417	1.00	83.3	1 35	426	

Таблица 5

Параметры «БИГР+УФН-П» и импульсов в ПС в случае сильного экрана (¹⁰В ~0,85 г/см²)

<i>Y</i> ₁ , МДж	<i>Y</i> ₂ , МДж	$k_{ii\phi}$	k_{11}	k ₂₂	θ _{1/2} , мс	F_2 , 10^{16} cm ⁻²	T_2 , °C	
Полость диаметром 15 см								
281	60	1,00840	1,00467	0,90	56,2	0,26	117	
281	65	1,00844	1,00433	0,91	63,9	0,28	125	
281	72	1,00849	1,00392	0,92	72,7	0,31	134	
281	80	1,00857	1,00342	0,93	82,3	0,34	145	
281	90	1,00869	1,00280	0,94	92,1	0,38	158	
280	103	1,00888	1,00201	0,95	101	0,44	175	
280	120	1,00920	1,00098	0,96	108	0,51	195	
280	142	1,00977	0,99960	0,97	111	0,60	223	
280	174	1,01080	0,99766	0,98	109	0,74	259	
279	219	1,01269	0,99486	0,99	101	0,93	310	
281	290	1,01600	0,99071	1,00	88,6	1,24	383	
]	Полость диаме	тром 20 см				
279	61	1,00838	1,00489	0,90	54,9	0,22	110	
279	66	1,00841	1,00457	0,91	62,9	0,24	117	
280	74	1,00846	1,00419	0,92	71,7	0,27	126	
280	82	1,00853	1,00371	0,93	81,6	0,30	136	
279	92	1,00863	1,00312	0,94	93,0	0,33	148	
281	106	1,00881	1,00238	0,95	102	0,38	165	
281	124	1,00910	1,00140	0,96	111	0,45	185	
279	147	1,00961	1,00006	0,97	115	0,53	210	
281	182	1,01058	0,99821	0,98	113	0,66	246	
279	230	1,01237	0,99546	0,99	106	0,84	294	
281	306	1,01560	0,99136	1,00	92,5	1,11	367	

В табл. 6 приведены параметры импульсов делений на запаздывающих нейтронах, реализующиеся в установке «БИГР + УФН-П» с сильным экраном (10 В ~0,85 г/см²) и с полостью в УФН-П Ø20 см.

Таблица б

Параметры квазиимпульсов в УФН-П с полостью 20 см и экраном (¹⁰В ~0,85 г/см²)

<i>Y</i> ₁ , МДж	<i>Y</i> ₂ , МДж	k_{11}	k ₂₂	$\theta_{1/2}, c$	$F_2, 10^{16} \text{cm}^{-2}$	T_2 , °C		
	Начальный период разгона = 30 с, k _{эф} =1,00148							
280	141	0,99380	0,96	101	0,51	203		
250	156	0,99108	0,97	104	0,57	221		
	Начальный период разгона = 10 с, k_{ab} = 1,00266							
280	103	0,99533	0,94	220	0,37	161		
248	108	0,99413	0,95	224	0,39	166		
178	95	0,99236	0,96	226	0,34	152		
104	73	0,98947	0,97	226	0,26	126		

Данные табл. 4, 5 показывают, что при начальной подкритичности ПС с полостью \emptyset 20 см на уровне 1–2 % в установке с экраном из насыпного карбида бора могут генерироваться импульсы с флюенсом нейтронов 1,04 · 10¹⁶ см⁻² и 0,84 · 10¹⁶ см⁻², а в установке с экраном из металлического обогащенного бора – 0,84 · 10¹⁶ см⁻² и 0,66 · 10¹⁶ см⁻². Как видим, присутствие более сильного борного экрана приводит к заметному ухудшению параметров установки, выражающемуся в снижении уровня флюенса нейтронов при заданной подкритичности УФН-П. Ширина на половине высоты указанных импульсов составляет, соответственно, (96,4–113) мс.

В установке «БИГР + УФН-П» с полостью \emptyset 15 см при тех же подкритичностях УФН-П на уровне 1–2 % и экранах полуширина импульсов уменьшится примерно на 5 %, а флюенс нейтронов в полости повысится примерно на 12 % (в сравнении с ПС с полостью \emptyset 20 см).

Максимальная температура топлива в сборке УФН-П в указанных импульсах будет равняться 246–365 °C, а энерговыделение за импульс 174–287 МДж. Загрузка обогащенного урана в АЗ УФН-П при диаметре полости 15 и 20 см составит 8,28 и 9,18 кг соответственно.

2.3. Конфигурация УФН-П: диаметр полости – 15 или 20 см, толщина отражателя – 50 см. Была рассчитана также установка, конфигурация которой отличалась от первоначальной лишь уменьшенным, равным 15 или 20 см, диаметром полости. Получено, что в конфигурации с полостью Ø15 см внешний радиус АЗ УФН-П равен 34 см, масса урана в АЗ – 6,38 кг, максимальное повышение температуры топлива и максимальный флюенс нейтронов в полости связаны с энерговыделением в импульсе как 1,43 °C · МДж⁻¹ и 4,7 · 10¹³ см⁻² · МДж⁻¹ соответственно. Для конфигурации с полостью Ø20 см значения аналогичных характеристик равны 36 см, 6,94 кг, 1,32 °C · МДж⁻¹ и 4,1 · 10¹³ см⁻² · МДж⁻¹ и 4,1 · 10¹⁴ см⁻² · МДж⁻¹ и 4,1 · 10¹⁵ см⁻² · 10

Таблица 7

Эі	кран с плотностью ¹⁰ В 0,0	Экран с плотностью ¹⁰ В 0,85 г/см ²						
$\Delta k_2 = -0.01$ $\Delta k_2 = -0.02$			$\Delta k_2 = -0,01$	$\Delta k_2 = -0,02$				
Диаметр полости 15 см								
	$k_{12} = 0,0326; \ k_{21} = 0,0326$	$k_{12} = 0,0252; \ k_{21} = 0,0252$						
<i>Y</i> ₂ , МДж	281,1	226,8	232,8	184,2				
$T_2, {}^{\mathrm{o}}\mathrm{C}$	402	324,3	332,9	263,4				
F_2, cm^{-2}	$1,321 \cdot 10^{16}$	$1,066 \cdot 10^{16}$	$1,094 \cdot 10^{16}$	$0,866\cdot 10^{16}$				
	Диаметр полости 20 см							
	$k_{12} = 0,0333; \ k_{21} = 0,0333;$	$k_{12} = 0,0258$	8; $k_{21} = 0,0258$					
<i>Y</i> ₂ , МДж	293,7	235,8	244,2	191,8				
T_2 , °C	388	311	322	253				
F_{2}, cm^{-2}	$1.204 \cdot 10^{16}$	$1.108\cdot 10^{16}$	$1.148\cdot 10^{16}$	$0.901 \cdot 10^{16}$				

Параметры импульсов в ПС с полостью Ø15 или Ø20 см и отражателем толщиной 50 см

Если сравнить параметры установки «БИГР + УФН-П», приведенные в настоящем разделе и в разделе 2.1, то можно увидеть, что предложенное уменьшение диаметра полости в УФН-П от 30 см до (15–20) см имеет следствием:

– значительное повышение доминирующей роли реактора БИГР в комплексе, что выражается, в частности, в увеличении флюенса нейтронов за импульс в полости УФН-П при заданном уровне подкритичности сборки;

- уменьшение объема и массы АЗ УФН-П, а также объема и массы всей сборки;

– уменьшение массы обогащенного урана в АЗ УФН-П.

Очень важно также, что достигаемое путем уменьшения диаметра полости повышение доминирующей роли реактора БИГР приведет к упрощению задачи управления комплексом, а именно – к снижению жестких требований к запасу реактивности органов управления как самого реактора БИГР, так и сборки УФН-П.

Оптимальной в отношении достижимого за импульс уровня флюенса нейтронов является конфигурация УФН-П с полостью диаметром 15 см и отражателем толщиной 50 см. Максимальное значение флюенса нейтронов в этой конфигурации равняется $1,32 \cdot 10^{16}$ см⁻², что примерно на 35 % выше максимального флюенса нейтронов в первоначальной конфигурации УФН-П с полостью диаметром 30 см и отражателем толщиной 50 см. Конфигурация УФН-П с полостью диаметром 15 см и с отражателем толщиной 30 см имеет примерно на 15 % меньшее значение максимального флюенса.

Заключение

В результате расчетов получено, что среди рассмотренных вариантов УФН-П оптимальной в отношении достижимого в полости флюенса нейтронов, габаритов сборки и массы топлива, стоимости и управляемости всей установкой является сборка с АЗ из уран-графитового материала с равным 2000 отношением чисел ядер С и ²³⁵U, высотой 100 см, полостью диаметром 15 см и графитовым отражателем толщиной 50 см. Максимальное значение флюенса нейтронов в оптимальной конфигурации УФН-П равняется 1,32 · 10¹⁶см⁻².

Таким образом, обоснована возможности создать облучательную установку с флюенсом нейтронов до $1,3 \cdot 10^{16}$ см⁻² в импульсе с длительностью ≥ 90 мс в полости диаметром 15 см и высотой 100 см, с показателем радиальной неравномерности флюенса, не превышающим 10 %.

Список литературы

1 Колесов В. Ф., Хоружий В. Х., Воронцов С. В. и др. Принципиальная конструкция и нейтронные параметры реакторной установки «БИГР + УФН-П» // Атомная энергия. 2013. Т. 115, вып. 6. С. 303–308.

2. Кувшинов М. И., Колесов В. Ф., Смирнов И. Г. Апериодический импульсный реактор БИГР // ВАНТ. Сер. Импульсные реакторы и простые критические сборки. 1988. Вып. 1. С. 3–12.

3. Колесов В. Ф. Апериодические импульсные реакторы, т. 1, 2. Саров: РФЯЦ-ВНИИЭФ. 2007.

4. Донской Е. Н., Ельцов В. А., Житник А. К. и др. Метод Монте-Карло во ВНИИЭФ // ВАНТ. Сер. Математическое моделирование физических процессов. 1993. Вып. 2. С. 61–64.

5. Васильев А. П., Кандиев Я. З., Читайкин В. И. Расчеты некоторых опытов на системах из ²³⁵U и ²³⁸U со спектральными нейтронными константами БАС // Нейтронная физика. М.: ЦНИИатоминформ, 1984. Т. 2. С. 119–123.

6. Вяткин С. Е., Деев А. Н., Нагорный В. Г. и др. Ядерный графит. М.: Атомиздат. 1967.

7. Житник А. К., Донской Е. Н., Огнев С. П. и др. Методика С-007 решения методом Монте-Карло связанных линейных уравнений переноса нейтронов, гамма-квантов, электронов и позитронов // ВАНТ. Сер. Математическое моделирование физических процессов. 2011. Вып. 1. С. 17–24.

8. Хоружий В. Х. К расчету пространственно-временной кинетики ИЯР и бустера // ВАНТ. Сер. Физика ядерных реакторов. 1989. Вып. 1. С. 3–7.