ОПТИЧЕСКИЕ НЕОДНОРОДНОСТИ В ЛАЗЕРАХ С ЯДЕРНОЙ НАКАЧКОЙ

OPTICAL INHOMOGENEITIES IN NUCLEAR-PUMPED LASERS

А. Н. Сизов А. N. Sizov

ФГУП «РФЯЦ-ВНИИЭФ», Саров Нижегородской обл. Federal Nuclear Center of Russia – All-Russian Research Institute of Experimental Physics

Изложены основные этапы расчетных исследований оптических неоднородностей в лазерах с ядерной накачкой

This report contains major steps of calculated studies of optical inhomogenities in nuclear pumped lasers

Неоднородности удельного энерговклада в лазерах с накачкой осколками деления ядер и теплообмен возбуждаемого газа со стенками лазерной кюветы приводят к пространственному перераспределению плотности, т. е. к нарушению оптической однородности рабочей среды. В докладе [1] со ссылкой на отчет А. Н. Сизова и Ю. Н. Дерюгина за 1980 год указывается, что впервые расчетно-теоретические исследования динамики возникновения и развития оптических неоднородностей в таких лазерах были начаты во ВНИИЭФ. На первом этапе данные исследования касались лишь явлений, возникающих в герметичных лазерах, возбуждаемых импульсными потоками нейтронов.

Расчеты были проведены для цилиндрических лазеров с зависимостью только от одной радиальной координаты r [2, 3]. Они показали, что в ходе импульсного возбуждения объем газа разделяется на две характерные части, существенно отличающиеся друг от друга по своим оптическим свойствам. В центральной части под влиянием монотонно возрастающего от оси кюветы к ее стенкам профиля энерговыделения тормозящихся в газе осколков возникает область (названная активной областью) с отрицательными значениями градиентов плотности и показателя преломления $|\nabla n| \sim 10^{-6}$ см⁻¹. В периферийной части, прилегающей к стенкам кюветы, образуется зона (названная пассивной зоной) с большими положительными градиентами плотности и показателя преломления до $\nabla n \sim 10^{-4}$ см⁻¹.

Пассивная зона возникает в области, где сильную роль играет теплоотвод к твердой стенке, теплоемкость единицы объема которой значительно превосходит теплоемкость единицы объема газа. Световые лучи, имеющие в какой-либо точке этой зоны направление параллельное оси кюветы, отклоняются к ее стенкам и упираются в них (по крайней мере, за несколько проходов резонатора). Поэтому эта зона не должна входить в область, охваченную генерацией. В активной области, образующей положительную газовую линзу, световые лучи осциллируют около оптической оси с пространственным периодом порядка десятка метров. На начальном этапе возбуждения при временах порядка миллисекунд размер пассивной зоны возрастает пропорционально \sqrt{t} . Однако, начиная с t > 10 мс, зависимость этого размера от времени заметно отклоняется от указанной закономерности – пассивная зона развивается более стремительно. К моменту $t \sim 0,1$ с зона с положительным градиентом показателя преломления охватывает практически весь газовый объем. Вследствие этого в квазистационарных (с длительностью $\tau_n \ge 0,1$ с) и стационарных режимах возбуждения герметичных лазеров, в большей части газового объема создаются неблагоприятные для получения генерации условия. Необходимым условием получения непрерывной генерации в этих режимах является прокачка газа, при которой его полная смена в кювете осуществляется за временной интервал Δt ~0,01 с. Расчеты, выполненные для лазерных кювет с плоскопараллельным расположением урановых слоев, привели к тем же выводам.

Рис. 1. Временная зависимость плотности потока тепловых нейтронов: 1 – импульс с длительностью на половине высоты $\tau_n = 0.8$ мс ($\tau_a = 1$ мс); 2 – импульс с длительностью $\tau_n \approx 1$ с ($\tau_a = 0.3$ с);

Рис. 2. Распределение плотности газа по сечению лазерной кюветы (*a* – импульс с длительностью $\tau_n = 0,8$ мс: 1 - t = 1 мс, 2 - t = 1,4 мс, 3 - t = 1,8 мс, 4 - t = 2,2 мс; δ – импульс с длительностью $\tau_n \approx 1$ с: 1 - t = 0,03 с, 2 - t = 0,06 с, 3 - t = 0,1 с, 4 - t = 1 с).

Были проведены эксперименты [4], которые полностью подтвердили эти результаты. Как расчеты, так и эксперименты показали, что меньшие поперечные перепады плотности и, следовательно, показателя преломления возникают при сходных начальных условиях для газовых смесей с меньшим атомным весом. Величина этих перепадов уменьшается с понижением начального давления.

Примерно в те же годы аналогичные исследования проводились также и другими авторами (см., например, [5–9]). В задачу данного доклада не входило детальное перечисление физических упрощений, использованных в каждой конкретной работе. Упомянем только, что согласно [10] авторы [5, 6, 7] полностью пренебрегают теплообменом. В работе [7], кроме того, профиль удельного энерговклада, привязанный к эйлеровым координатам, полагается неизменным на протяжении всего импульса возбуждения. В работах [5, 6, 8] указанный профиль привязывается к лагранжевым координатам, что более корректно соответствует физике протекающих процессов. В работе [9] зависимость профиля удельного энерговклада от переменной плотности определяется точно, однако используются упрощенные газодинамические уравнения. Расчетным путем были исследованы способы противодействия развитию пассивной зоны. Первый способ – использование импульса накачки, период нарастания переднего фронта которого существенно меньше характерного времени выравнивания температурного поля в газовом объеме. Второй – синхронный с возрастанием температуры газа подогрев стенок лазерной кюветы за счет введения в материал стенок малых концентраций ядер ²³⁵U (или за счет существенного увеличения толщины активного уранового слоя, служащего поверхностным источником возбуждающих газ осколков деления). В результате указанных исследований был сделан вывод: для того, чтобы при первом способе в кювете с выбранными параметрами, по крайней мере, половина объема газовой смеси входила в состав активной области, период нарастания потока нейтронов должен быть не выше $\tau = 7,5$ мс. При этом время существования активной области такого объема не превосходит 0,1 с. При применении второго способа можно полностью избежать появления пассивной зоны. Однако даже при сравнительно умеренных флюенсах тепловых нейтронов $\phi \sim 10^{13}$ н/см² при оптимальной толщине уранового слоя $\delta_{\rm U} = 2,8 \cdot 10^{-4}$ см как сама стенка кюветы, так и газ нагреваются более, чем на $\Delta T = 1000$ K, за время $t \sim 0,1$ с, что также ограничивает возможности применения указанного способа.

Для достижения устойчивой генерации в стационарном режиме необходимость полной смены газа за короткий временной интервал $\Delta t \sim 0,01$ с требует введения непрерывной прокачки газа. Однако при реализации прокачного режима существует опасность турбулизации газового потока, что может привести к ощутимым флуктуациям показателя преломления. Возникают проблемы искажения волнового фронта и заметного ослабления когерентного светового пучка. В [10] проведен оценочный анализ допустимых значений скоростей течения газа, при которых турбулентные пульсации заведомо не оказывают прямого воздействия на оптическое качество среды.

$$\overline{U} < \frac{1}{3}u_{s} \left\{ \frac{\lambda^{2} \ln \left[r_{m} (1-R_{D}) \right]}{16\pi^{2} C_{n}^{2} \Lambda L_{A}} \right\}^{1/4},$$

где C_n – константа рассматриваемого сорта газа (из соотношения связи плотности ρ и показателя преломления $n=1+C_n\rho$); L_A – длина активного усиливающего участка газовой среды, заполняющей резонатор (можно принять равной размеру уранового слоя в направлении оптической оси); R_D – доля дифракционных и других потерь; r_m – коэффициент отражения выходного зеркала (коэффициент отражения второго зеркала принимается равным единице); \overline{U} – усредненная по поперечному сечению скорость газа в канале; u_s – скорость звука; Λ – характерный размер крупномасштабных вихрей; λ – длина световой волны. В результате таких оценок получено, что в лазере с параметрами $L_A = 1$ м; $\Lambda = 1$ см (т. е. порядка поперечного размера лазерного канала); $R_D = 0$; $r_m = 0.9$ для смесей на основе Не (при $P_0 = 50$ кПа) имеем U < 30 м/с, а на основе Ar (при $P_0 = 50$ кПа) – U < 10 м/с.

Турбулизация среды может привести к ощутимому увеличению размеров пассивной области по сравнению с режимом ламинарного течения, поскольку скорость выравнивания усредненных профилей температуры и плотности при турбулизации возрастает. В [10] показано, что эффективный коэффициент турбулентной температуропроводности a_T оценивается как $a_T \sim \Lambda \overline{U}$. Среднее время прохождения порцией газа участка лазерного канала длиной *x* составляет $t \sim x/\overline{U}$. Полагая, что зависимость роста размера *l* пассивной зоны от времени пребывания газа в канале определяется закономерностью $l \sim \sqrt{a_T t}$, для размера этой зоны на участке канала, охваченном турбулентностью имеем $l \sim \sqrt{\Lambda x}$. Таким образом, пассивная зона может охватить практически всю ширину канала *d* по прохождении газом турбулентного участка длиной $x \sim d^2/\Lambda$, что в предположении $\Lambda \sim d$ дает $x \sim d$, т. е. заведомо меньше продольной длины канала.

В связи с этим во ВНИИЭФ была предложена концепция системы с поперечной (по отношению к оптической оси) прокачкой газовой смеси [10]. Система представляет собой набор лазерных каналов прямоугольного сечения с плоскими урановыми слоями шириной ~d, нанесенными на внутреннюю поверхность боковых стенок каналов, параллельных направлению газового потока. Для охлаждения разогреваемой в канале смеси на его выходе размещается пластинчатый радиатор. За выходным радиатором может быть помещен следующий лазерный канал, для которого указанный радиатор будет входным и т. д. Таким образом может быть построена цепочка лазерных каналов, объединенных в единый газовый контур.

В работе [11] был предложен относительно простой метод прямого численного расчета двумерных пространственных неоднородностей в канале ЛЯН с поперечной прокачкой газа. Он основан на том, что при течении газа в плоскопараллельном канале (см. рис. 3), длина которого b сопоставима с его поперечным размером d, давление в поперечном сечении лазерного канала практически однородно [10]. Характерное время выравнивания температуры газа в канале составляет $\tau_T \sim d^2/a$, где a – коэффициент температуропроводности газа ($a \le 1 \text{ см}^2/\text{с}$). При $d \sim 1 \text{ см}$ время выравнивания температурного поля в канале $\tau_T \ge 1$ с. Время, за которое порция газа проходит канал, определяется соотношением $\tau \sim b/U$. При скоростях прокачки U > 1 м/с и b ~10 см среднее время присутствия порции газа в канале $\tau < 0.1$ с. Указанный метод двумерного расчета течения газа в канале применим для скоростей газового потока, при которых время нахождения порции газа в канале τ заметно меньше характерного времени теплообмена τ_{T} . В этом случае при приближенных расчетах процессами теплообмена в подавляющей части газового объема можно пренебрегать. Исключение составляют лишь тонкие пристеночные слои пассивных зон. В [10] показано, что в лазерах с прокачкой размер пассивной зоны зависит от числа Прандтля, т. е. определяется не только теплопроводностью, но и вязкостью, и приближенно может быть представлен зависимостью $l_a = A \sqrt{ax/U}$ (коэффициент A лежит в пределах 1,4 < A < 1,9).

Рис. 3. Поперечный разрез лазерного канала: 1 – металлическая подложка; 2 – слой урана; 3 – радиатор

В первом приближении описываемого метода линии тока и, соответственно, выделенные вдоль каждой линии струи газа полагались прямолинейными, а пространственное распределение энерговклада осколков рассчитывалось в предположении, что распределение плотности газа однородно по объему канала. Затем для каждой линии тока рассчитывалась зависимость температуры газа от направленной вдоль течения координаты x, а по ней с помощью уравнения состояния, исходя из условия, что давление газа практически однородно по всему каналу, рассчитывается пространственное распределение плотности газа. Далее, в соответствии с результатами работ [12, 13], согласно которым профиль продольной скорости газа $U_n(x)$ поперечно однороден (за исключе-

нием узкого пристеночного вязкого пограничного слоя), и исходя из требования постоянства массового расхода как во всем канале, так и в каждой из выделенных струй, рассчитывались скорость газа и изменение поперечных размеров струй в зависимости от координаты *x*. Это позволяло определять искривление линий тока, а по ним корректировать пространственное распределение плотности газа. На следующем этапе расчет распределения удельного энерговклада осколков производился по полученному на предыдущем этапе распределению плотности, а затем процедура отыскания распределения плотности повторялась. Таким образом, при расчетах течение газа в плоском канале представлялось в виде суперпозиции независимых струй, изгиб и толщина которых могут меняться с пройденным расстоянием *x*. Влиянием вязкости внутри струй и трения между соседними струями пренебрегалось; теплообменом между струями также пренебрегалось. Распределение температуры в пассивной зоне описывалось параболическим приближением

$$T_p(x, y) = \alpha_0(x) + \alpha_1(x)y + \alpha_2(x)y^2.$$

Коэффициенты α_i определялись из условий на границе пассивной зоны и на стенке канала. Так, например, при постоянной температуре стенки используются условия:

$$T_p(x, l_a) = T(x, l_a); \quad \partial T_p(x, l_a) / \partial y = 0; \quad T_p(x, 0) = T_0.$$

Поперечный размер пристеночной пассивной зоны на этом расстоянии определялся в первом приближении из соотношения

$$l_{v}(x) = R \left[v \int_{0}^{x} \frac{dx}{\overline{U}(x)} \right]^{1/2}$$

Для описания распределения скорости в вязком пограничном слое использовалось приближение [14]

$$u(x, y) = \overline{U}\left(\frac{3}{2}\frac{y}{l_{v}(x)} - \frac{1}{2}\left[\frac{y}{l_{v}(x)}\right]^{3}\right).$$

В этом случае согласно теореме импульсов R = 4,64.

Отличие результатов расчета распределения плотности по данной методике от аналогичных расчетов [12], выполненных по двумерной газодинамической программе, не превышает 2%. Было установлено, что вариации значения коэффициента A от 1,4 до 3 приводят к ощутимым изменениям плотности при расчетах одного и того же варианта задачи лишь в пассивной области; для активной области такие изменения не превышают ~1%.

Оптимизацию энерговклада в герметичных, непрокачиваемых ЛЯН, возбуждаемых сравнительно короткими нейтронными импульсами длительностью порядка миллисекунд, удобно проводить по параметру [15]

$$\omega_0 = D_1 \varepsilon_0 \frac{w_0}{\langle w \rangle},$$

где $D_{\rm l} = \delta_{\rm U}/R_{\rm l}$ – относительная толщина уранового слоя; ε_0 – идеальная эффективность энерговклада в канале с однородным распределением плотности (доля энергии, вложенной в газ от полной энергии деления, генерированной в урановых слоях лазерного канала) $R_{\rm l}$ – длина пробега среднего осколка деления в этих слочх; w_0 – удельная мощность энерговклада в центре лазерного канала; $\langle w \rangle$ – среднее по сечению канала значение удельной мощности энерговклада.

В лазерных каналах с прокачкой газа пристеночная пассивная зона при относительно невысоких скоростях прокачки может достигать на выходе из канала заметных размеров. Кроме того, в продольном направлении плотность газа монотонно спадает. В силу этих причин реальная эффективность энерговклада є может заметно отличаться от эффективности энерговклада невозмущенного канала ε_0 . Поэтому в [11] были предложены более строгие формулировки параметров оптимизации:

$$\omega_{1} = D_{1}\varepsilon \frac{\langle w(0) \rangle_{x}}{\langle w(x,y) \rangle}; \quad \omega_{2} = D_{1}\varepsilon \frac{w(h/2,0)}{\langle w(x,y) \rangle};$$
$$\langle w(0) \rangle_{x} = \frac{1}{h} \int_{0}^{h} w(x,0) dx; \quad \langle w(x,y) \rangle = \frac{1}{hd} \int_{0-d/2}^{h} \int_{0-d/2}^{d/2} w(x,y) dx dy$$

где w(b/2,0) – значение удельного энерговклада в точке, соответствующей геометрическому центру канала; w(x,y) – значение удельного энерговклада в точке с координатами *x* и *y*.

На рис. 4 показаны зависимости параметров оптимизации ω_1 и ω_2 от давления аргона в канале при скорости на входе $U_0 = 4,5$ м/с. Здесь же показана аналогичная зависимость для идеального параметра ω_0 (при $U_0 = 0$). В приведенных расчетах канал характеризуется размерами d = 2 см, b = 6 см и открытыми (без защитной пленки) слоями из металлического урана толщиной $\delta_U = 2,78$ мкм (относительная толщина $D_1 = 0,5$) и протяженностью b = 6 см. Полагалось, что интенсивность делений урана в активных слоях составляет $q = 2 \cdot 10^{16}$ дел/с·см³. На рис. 5 приведены расчетные зависимости оптимальных (по энерговкладу) давлений аргона и гелия от скорости прокачки. Отметим, что оптимальное давление аргона в канале с прокачкой газа в исследованном интервале скоростей U_0 может в 1,5 раза (до P = 0,9 атм) превышать оптимальное давление для герметичного непрокачного лазера, работающего в режиме генерации сравнительно коротких (≤ 10 мс) импульсов ($P \approx 0,6$ атм), в то время как оптимальное давления гелия в канале с прокачного непрокачного непрокачного непрокачного давления от оптимального давления плотности аргона при оптимальном давлении P = 0,9 атм, $T_0 = 293$ К и скорости $U_0 = 4,5$ м/с.

P, атм

Рис. 4. Зависимость параметров оптимизации для аргона от давления при $U_0 = 4,5$ м/с: $1 - \omega_0$; $2 - \omega_1$; $3 - \omega_2$.

U₀, м/с

Рис. 5. Зависимость оптимального давления газа от скорости прокачки: 1 - гелий; 2 - аргон

ρ, 10⁻⁴ г/см³

Рис. 6. Распределение плотности газа в лазерном канале в поперечном направлении при оптимальном давлении аргона ($U_0 = 4,5$ м/с): 1 - x = 1 см; 2 - x = 2 см; 3 - x = 3 см; 4 - x = 4 см; 5 - x = 5 см; 6 - x = 6 см.

Рис. 7. Распределение плотности газа в лазерном канале в продольном направлении при оптимальном давлении аргона ($U_0 = 4,5$ м/с): 1 - y = 0; 2 - y = 0,4 см; 3 - y = 0,8 см; 4 - y = 0,9 см.

Список литературы

1. Матьев В. Ю. Газодинамика околоцентральных областей в герметичных каналах ЛЯН // Тр. 2-й Международ. конф. «Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накачкой». Арзамас-16, 1995. Т. 1. С. 410–420.

2. Сизов А. Н., Дерюгин Ю. Н. Расчет пространственных неоднородностей в цилиндрических газовых лазерах с ядерной накачкой // Тез. докл. VI Всесоюз. конф. «Оптика лазеров». Ленинград, 1990. С. 132.

3. Сизов А. Н., Дерюгин Ю. Н. Расчеты пространственных неоднородностей в цилиндрических газовых лазерах с накачкой осколками деления // ЖТФ. 1992. Т. 62, № 9. С. 107–111.

4. Боровков В. В., Лажинцев Б. В., Мельников С. П., Мочкаев И. Н., Нор-Аревян В. А., Синянский А. А., Федоров Г. И. Исследование оптических неоднородностей в лазерах с ядерной накачкой // Изв. АН СССР. Сер. Физическая. 1990. Т. 54, № 10. С. 2009–2015.

5. Анучин М. Г., Гребенкин К. Ф., Кандиев Я. З., Черепанова Е. И. Расчетное исследование накачки газовой среды заряженными частицами – продуктами ядерных реакций // ЖТФ. 1991. Т. 61, № 1. С. 3–8.

6. Torczynski J. R. On the motion of a gas experiencing range-dependent volumetric heating // J. Fluid Mech. 1989. Vol. 201. P. 167–188.

7. Гулевич А. В., Дубовская В. А., Зродников А. В., Качанов Б. В. Расчетное исследование газодинамических и тепловых характеристик лазерно-активного элемента // Тр. отраслевой конф.

«Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накачкой». Обнинск, 1993. Т. 3. С. 77–82.

8. Матьев В. Ю., Боровков В. В., Мельников С. П. Оптические неоднородности в цилиндрических лазерах с ядерной накачкой // Квантовая электроника. 2000. Т. 30, № 3. С. 215–220.

9. Качанов Б. В., Гулевич А. В. О влиянии неравномерности нейтронного потока и плотности газа на энерговклад осколков деления в лазерно-активном элементе // Тр. 2-й Межд. конф. «Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накачкой». Арзамас-16, 1995. Т. 1. С. 358–363.

10. Мельников С. П., Сизов А. Н., Синянский А. А. Лазеры с ядерной накачкой. Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2008.

11. Сизов А. Н., Бабич Л. П., Куцык И. М., Приходько Е. В. Расчет пространственных неоднородностей в прокачных ЛЯН // Тр. 3-й Международ. конф. «Проблемы лазеров с ядерной накачкой и импульсные реакторы». Снежинск, 2003. С. 298–306.

12. Montierth L. M., Neuman W. A., Nigg D. W., Merrill B. J. Energy deposi-tion in direct nuclear pumped optical cavities // J. Appl. Phys. 1991. Vol. 69, No. 10. P. 6776–6788.

13. Матьев В. Ю. Двумерный профиль скорости течения газа в каналах ЛЯН // Тр. 2-й Международ. конф. «Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накач-кой». Арзамас-16, 1995. Т. 1. С. 430–442.

14. Шлихтинг Г. Теория пограничного слоя. М.: Иностр. лит-ра, 1956. С. 650.

15. Сизов А. Н. О связи пространственных неоднородностей накачки с мощностью генерации лазеров, возбуждаемых осколками деления урана // Письма в ЖТФ. 1994. Т. 20, № 9. С. 64–67.