ВОЗДЕЙСТВИЕ ГИПЕРЗВУКОВЫХ ПОТОКОВ НА ШАРЫ ИЗ РАЗЛИЧНЫХ МАТЕРИАЛОВ В СВОБОДНОМ ПОЛЕТЕ

С. И. Герасимов^{1,3}, В. А. Кикеев², В. Е. Лысенков¹, С. И. Осеева К. В.¹, Тотышев¹, А. П. Фомкин¹

¹ФГУП «РФЯЦ-ВНИИЭФ»; ²НГТУ им Р. Е. Алексеева; ³СарФТИ НИЯУ МИФИ

Представлены результаты визуализации поведения различных конструкционных материалов (сплавов, композитных материалов) при воздействии гиперзвукового потока в условиях наземного аэробаллистического эксперимента. Указанные материалы свидетельствуют о широких возможностях аэробаллистического метода /1/ в исследованиях аэрофизических процессов разрушения материалов в условиях свободного полета (полет в невозмущенной атмосфере без влияния поддерживающих устройств и т.п.) с гиперзвуковой скоростью, в частности, исследования метеорных явлений применительно к проблеме метеорной опасности.

Ключевые слова: аэробаллистический эксперимент, коэффициент сопротивления.

Объектами испытаний являлись шары, изготовленные из:

– высокопрочного сплава ВР, диаметром 10,4 мм и массой 11,5 г (опыты 1–3, 6);

– псевдосплава ВНЖ, диаметром 10,4 мм и массой 10,5 г (опыт 4);

– тугоплавкого материала с добавлением никеля, диаметром 10,4 мм и массой 11,3 г (опыт 5);

– тугоплавкого материала W, диаметром 9,5 мм и массой 8,6 г (опыты 7–9).

Фотографии объектов представлены на рис. 1.

Испытания проводились путем отстрела метаемого объекта в свободный полет с начальной скоростью 3,77 $\leq V_0 \leq 6,34$ км/с из легкогазовой

установки ЛГУ-16, внешний вид которой представлен на рис. 2. На начальном участке полета происходило разделение модели с поддоном и отсечение поддона и дульного выхлопа, далее методом рентгенографии на расстоянии $X_{PA1} \approx 6$ м от среза ствола ЛГУ осуществлялся контроль целостности метаемого объекта и регистрация текущих обводов объекта испытаний (ОИ). Три дополнительных рентгеновских аппарата для регистрации текущих обводов ОИ размещались на измерительном участке аэробаллистического тира (АБТ) [1] на расстоянии *X*_{РА2} ≈90 м, Х_{РАЗ} ≈126 м, Х_{РА4} ≈144 м (рис. 3).

Рис. 1. Два шара в поддонах перед опытами: из высокопрочного сплава ВР диаметром 10,4 мм – слева, из тугоплавкого материала W диаметром 9,5 мм – справа (фотографии с разных ракурсов)

Рис. 2. Внешний вид легкогазовой установки ЛГУ-16: а – в направлении АБТ; б – со стороны АБТ

Рис. 3. Внутренний вид измерительного участка АБТ

Регистрация оптических эффектов, сопровождающих полет ОИ, осуществлялась камерой АФА-41/100, установленной в начале измерительного участка АБТ в угон, и комбинированного фотопоста (КФП) на базе электронно-оптического комплекса для скоростной регистрации серии изображений быстропротекающего процесса "NANOGATE - Frame 4". Одна из камер комбинированного фотопоста вела съемку в отраженном свете, что одновременно обеспечивало получение изображения объекта и теневого спектра его обтекания, а вторая – в теневом режиме (получение теневого спектра обтекания ОИ). В некоторых опытах обе камеры вели съемку в отраженном свете.

Данные рентгеновской регистрации текущих обводов ОИ и оптической регистрации эффектов, сопровождающих полет ОИ при гиперзвуковых скоростях, полученные с помощью камер КФП и камеры АФА, установленной в угон, представлены на рис. 4–12 (на рентгеновских изображениях движение слева направо, на фотоизображениях – справа налево).

РА1 – $X \approx 6$ м, $V \approx 3,76$ км/с

РА2 – $X \approx 90$ м, $V \approx 2,68$ км/с

а) рентгенограммы

б) снимок с фотокамеры КФП, работающей в отраженном свете ($X \approx 45$ м)

в) фотография с камеры АФА, установленной в угон ($X \approx 45$ м) Рис. 4. Опыт 1. $V_0 \approx 3,86$ км/с

 $PA1 - X \approx 6$ м, $V \approx 4,96$ км/с

РАЗ – Х≈ 126 м, V≈ 3,05 км/с

 $PA2 - X \approx 90$ м, $V \approx 3,54$ км/с

РА4 – $X \approx 144$ м, $V \approx 2,84$ км/с

а) рентгенограммы

снимок с фотокамеры, работающей в отраженном свете

снимок с фотокамеры, работающей в теневом режиме

б) снимки с камер КФП ($X \approx 45$ м)

в) фотографии с камеры АФА, установленной в угон

Рис. 5. Опыт №2. $V_0 \approx 5,07$ км/с (а, б); $V_0 \approx 4,94$ км/с (в)

РА1 – $X \approx 6$ м, $V \approx 4,58$ км/с

а) рентгенограмма

б) снимки с фотокамер К
ФП (обе камеры КФП работали в отраженном свете), $X\!\approx\!45$ м

в) фотографии с камеры АФА, установленной в угон

Рис. 6. Опыт 3. V₀ ≈ 4,70 км/с

РА1 – $X \approx 6$ м, $V \approx 5,15$ км/с

РА2 – X \approx 90 м, V \approx 3,50 км/с РА3 – X \approx 126 м, V \approx 2,92 км/с РА4 – X \approx 144 м, V \approx 2,66 км/с

а) рентгенограммы

б) фотография с камеры АФА в угон

снимок с фотокамеры, работающей в теневом режиме

снимок с фотокамеры, работающей в отраженном свете

в) снимки с фотокамер КФП ($X \approx 45$ м)

снимок с фотокамеры АФА ФП10 (низ) $X \approx 90-96$ м

снимок с фотокамеры АФА ФП12 (верх) $X \approx 108 - 114$ м

г) снимки с фотокамер АФА штатных фотопостов АБТ

Рис. 7. Опыт 6. $V_0 \approx 15,96$ км/с (а, б); $V_0 \approx 15,97$ км/с (в, г)

РА1 – $X \approx 6$ м, $V \approx 5,76$ км/с

 $PA2 - X \approx 90$ м

а) рентгенограммы

б) фотография контактного датчика КД4 после опыта ($X \approx 40$ м)

в) фотография с камеры АФА, установленной в угон ($X \approx 45$ м)

Рис. 8. Опыт 4. $V_0 \approx 5,86$ км/с

снимок с фотокамеры, работающей в теневом режиме

в) снимки с фотокамер КФП ($X \approx 45$ м)

г) снимок с фотокамера АФА, установленной в угон ($X \approx 45$ м) Рис. 9. Опыт 5. $V_0 \approx 5,11$ км/с (a, б); $V_0 \approx 5,11$ км/с (в)

РАЗ – $X \approx 126$ м, $V \approx 2,60$ км/с

РА2 – $X \approx 90$ м, $V \approx 3,10$ км/с

РА4 – *X*≈ 144 м, *V*≈ 2,39 км/с

а) рентгенограммы

б) фотография с камеры АФА, установленной в угон ($X \approx 45$ м)

снимок с фотокамеры, работающей в отраженном свете

снимок с фотокамеры, работающей в теневом режиме

в) снимки с фотокамер КФП (X \approx 45 м)

Рис. 10. Опыт 7. $V_0 \approx 4,73$ км/с

Дефект

РА1 – $X \approx 6$ м, $V \approx 6,34$ км/с

а) рентгенограмма

б) фотография с камеры АФА, установленной в угон

Рис. 11. Опыт 8. $V_0 \approx 6,45$ км/с

 $PA1 - X \approx 6$ м, $V \approx 5,69$ км/с

а) рентгенограмма

б) фотография с камеры АФА, установленной в угон

в) снимки с фотокамер КФП (обе камеры работали в теневом режиме) Рис. 12. Опыт 9. $V_0\approx 5{,}84~{\rm кm/c}$

Шарики из высокопрочного сплава ВР (вольфрам – 73 %, рений – 27 %): – в диапазоне начальных скоростей полета ОИ до 5,07 км/с стойки к аэротермомеханическому разрушению; – при скоростях 5,27 км/с полета зафиксирован унос материала с лобовой поверхности ОИ, сопровождающийся изменением геометрии и массы объекта.

Шарики из псевдосплава ВНЖ (Ni-Fe – 2,5 %):

– при начальной скорости полета ОИ 5,86 км/с зафиксировано интенсивное разрушение материала с вылетом частиц вперед по потоку, аналогичная картина наблюдалась в экспериментах, проведенных ранее с шариками такого же диаметра, изготовленными из ВНЖ-90, при начальных скоростях полета более 4,2 км/с.

Шарики из тугоплавкого материала с добавлением никеля: – при начальной скорости полета около 5,11 км/с зафиксировано разрушение материала с выбросом материала частиц вперед по потоку.

Шарики из тугоплавкого материала:

 при начальной скорости полета 4,73 км/с разрушения материала не зафиксировано;

 при начальной скорости полета 5,84 км/с и выше зафиксирован процесс аэротермомеханического разрушения материала с вылетом его частиц вперед по потоку.

Получение внешнетраекторных измерений и их последующая обработка осуществлялись в соответствии с принятыми методиками. Зависимости коэффициента силы лобового сопротивления $C_x(M)$ от числа Маха для шаров, изготовленных из разных конструкционных материалов, представлены на рис. 13, 14.

Рис. 13. Зависимость коэффициента силы лобового сопротивления от числа Маха для шарика из сплава ВР

Рис. 14. Зависимость коэффициента силы лобового сопротивления от числа Маха для шарика из тугоплавкого материала

Зависимость коэффициента силы лобового сопротивления $C_x(M)$ для сферы при отсутствии уноса материала ОИ соответствуют "классическим" представлениям, например [2], и практически постоянна в пределах погрешности эксперимента во всем реализованном скоростном диапазоне. В опытах 5 и 6 зависимости $C_x(M)$ имеют больший градиент, что является косвенным доказательством наличия аэротермомеханического разрушения конструкционных материалов ОИ, сопровождающегося существенными изменениями геометрии и массы (~ 10–15 %) – см. также рентгенограммы этих экспериментов.

Список литературы

1. Герасимов С. И., Файков Ю. И., Холин С. А. Кумулятивные источники света. Саров: РФЯЦ-ВНИИЭФ, 2011.

2. Бейли Б., Хайт Ф. Коэффициент сопротивления сферы в широком диапазоне чисел Маха и Рейнольдса. 1972. № 11. С. 56–62.

Статья поступила в редакцию 08.06.2012.