УДК 352.517.4

ТУРБУЛЕНТНОЕ ПЕРЕМЕШИВАНИЕ НА ГРАНИЦЕ ГАЗ-ЖИДКОСТЬ ПОД ВОЗДЕЙСТВИЕМ СКОЛЬЗЯЩЕЙ ВОЗДУШНОЙ УДАРНОЙ ВОЛНЫ*

Н. В. Невмержицкий, А. Л. Михайлов, В. А. Раевский, Э. Ляпеби¹, А. Осмон¹, Е. Д. Сеньковский, Е. А. Сотсков, К. С. Вахмистров, Н. Б. Давыдов, О. Н. Апрелков, Е. В. Левкина, О. Л. Кривонос, А. С. Соколова

ФГУП «РФЯЦ-ВНИИЭФ», 607186, г. Саров Нижегородской обл., e-mail: postmaster@ifv.vniief.ru ¹CEA, Франция, e-mail: Antoine.osmont@cea.fr

Представлены экспериментальные и расчетные результаты эволюции турбулентного перемешивания на границе воздух-жидкость под воздействием скользящей воздушной УВ. Эксперименты проводились на горизонтальной ударной трубе. Жидкость (вода, трибутилфосфат) в виде лужицы заливалась в кювету, расположенную на нижней стенке трубы. УВ в воздухе с давлением ≈10 атм создавалась при помощи взрыва ацетиленкислородной смеси и распространялась касательно к поверхности жидкости. В результате на КГ воздух-жидкость развивалась неустойчивость Кельвина–Гельмгольца, приводящая со временем к турбулентному перемешиванию веществ. Регистрация течения проводилась скоростной видеосъемкой. Получен характер роста ширины зоны перемешивания. Проведено сравнение экспериментальных результатов с результатами двумерного численного моделирования.

Ключевые слова: неустойчивость Кельвина–Гельмгольца, ударная волна, контактная граница, зона турбулентного перемешивания.

Введение

Известно, что в сдвиговых течениях на контактной границе (КГ) веществ разной плотности (или в одной среде) развивается неустойчивость Кельвина–Гельмгольца [1].

Для случая идеальных несжимаемых жидкостей при неустойчивости Кельвина–Гельмгольца малые начальные возмущения на контактной границе с длиной волны λ растут со временем экспоненциально с инкрементом [2]:

$$\gamma = \frac{2\pi}{\lambda} U \frac{\sqrt{\delta}}{1+\delta},\tag{1}$$

где U – относительная скорость скольжения слоев; $\delta = \rho_T / \rho_{\pi}$ – отношение плотностей тяжелой и легкой жидкостей. Со временем рост возмущений приводит к образованию зоны турбулентного перемешивания. В автомодельном режиме ширину зоны турбулентного перемешивания для несжимаемых жидкостей можно оценить по формуле [3]:

$$L = 0.5\alpha_U f(\delta) |U_1 - U_2|t, \qquad (2)$$

где U_1 , U_2 – скорости веществ; t – время; α_U – константа роста ширины зоны перемешивания при сдвиговом течении.

По данным работы [4] для одинаковой плотности жидкостей ($\delta = 1$) скорость роста зоны перемешивания максимальна, при $\delta > 1$ функция $f(\delta)$ должна монотонно падать, однако это падение должно быть слабым. В этом случае константа α_U , определенная через константы $k - \varepsilon$ модели, составляет $\alpha_U = 0,1854$ (при $L = \alpha_U Ut$). Близкое

^{*}Работа выполнена по контракту № 4600223991 между ФГУП РФЯЦ-ВНИИЭФ (Россия) и СЕА Gramat (Франция).

значение (с учетом коэффициента 0,5 в формуле (2)) получено и в расчетно-теоретической работе [3], где утверждается, что в диапазоне чисел Атвуда $-0.75 \le A \le +0.75$ (при $\delta < 7$) влияние перепада плотностей на интенсивность роста зоны турбулентного перемешивания не проявляется, т. е. $f(\delta) = 1$, где $A = (\rho_{\rm T} - \rho_{\rm R})/(\rho_{\rm T} + \rho_{\rm R})$.

В экспериментальной работе по сдвиговому перемешиванию несжимаемых сред равных плотностей получен коэффициент $\alpha_U = 0.188 \div 0.172$ [5].

Данные по развитию турбулентного перемешивания при сдвиговых течениях, вызванных ударной волной на границе газ-жидкость (при $A \approx 1$), авторам не известны. Такие данные необходимы как для понимания физических процессов турбулентного перемешивания при высоком перепаде плотностей, так и для тестирования математических моделей.

В работе представлены результаты расчетноэкспериментальных исследований эволюции зоны турбулентного перемешивания при развитии неустойчивости Кельвина–Гельмгольца на границе газ-жидкость под действием скользящей воздушной ударной волны.

Техника экспериментов

Исследования проводились на горизонтальной воздушной ударной трубе [6], схема которой представлена на рис. 1.

Ударная труба состояла из камер высокого (драйвер) и низкого давлений. Камера высокого давления герметично отделялась от камеры низкого давления диафрагмой из полиэтилена или лавсана толщиной $\sigma \approx 0,1$ мм. Камера низкого давления состояла из входного и выходного каналов и измерительной секции с внутренним сечением 40×40 мм. Жидкость в виде лужицы заливалась в кювету, расположенную на нижней стенке трубы. В качестве жидкости использовались вода и трибутилфосфат (ТБФ), имеющие разные коэффициенты поверхностного натяжения ($\sigma_{воды} \approx 72$ эрг/см², $\sigma_{TБ\Phi} \approx 28$ эрг/см²) и вязкости ($\mu_{воды} \approx 1$ спз, $\mu_{TБ\Phi} \approx 3$ спз). Мениск жидкости преимущественно был вогнутым, его величина составляла 0,1–0,2 мм (см. таблицу). Начальные возмущения на контактной границе не задавались. Ими служили естественные возмущения, образовавшиеся преимущественно от звуковых волн. Их характерный размер оценивается $\leq 0,01$ мм.

Размеры кюветы – 100х10х1 и 100х10х10 мм; внутреннее сечение ударной трубы – (40х40) мм. Камера высокого давления, входной и выходной каналы изготавливались из стали. Измерительная секция была изготовлена из прозрачного оргстекла.

Во входном, выходном каналах ударной трубы и в измерительной секции находился воздух при атмосферных условиях. Для получения в воздухе ударной волны с избыточным давлением $\Delta P \approx 10$ атм драйвер ударной трубы заполнялся газовой взрывчатой смесью (ГВС) ацетилена и кислорода С₂H₂ + 2,5О₂ под избыточным давлением 1,5±0,05 атм. Смесь инициировалась электроискровым разрядом (напряжением 60 кВ) на левом торце драйвера. После подрыва смеси образовывалась детонационная волна с давлением ≈ 66 атм. При выходе ее на диафрагму последняя разрушалась, происходил распад разрыва, и во входном канале трубы изначально формировалась полусферическая ударная волна, которая со временем выравнивалась и становилась плоской.

В стенках ударной трубы устанавливались два пьезокерамических датчика давления PS 01 (D1 и D2). По их временным показаниям и расстоянию между ними определялась скорость и давление ударной волны.

Рис. 1. Схема ударной трубы: D1 и D2 – датчики давления; H – см. таблицу, с. 35

Регистрация процесса проводилась в проходящем свете и в режиме шлирен-метода видеокамерой FASTCAM SA5 с момента подачи высоковольтного импульса для инициирования ГВС. Шлирен-метод разрешает ударные волны в воздухе. При регистрации течения в проходящем свете волны не разрешаются.

Результаты экспериментов и их анализ

Параметры течения в воздухе за фронтом ударной волны определялись по общеизвестным газодинамическим уравнениям [7] при следующих начальных условиях: $\gamma = 1,4$, $\rho_0 = 0,001205$ г/см³, $P_0 = 1$ атм (10^5 Па), $C_0 = 342$ м/с, $T_0 = 293$ К – по-казатель адиабаты, плотность, давление, скорость звука и температура при нормальных условиях (состояние газа перед фронтом ударной волны).

В проведенных экспериментах при $\Delta P/P_0 \approx 10$ за фронтом ударной волны в воздухе:

•массовая скорость потока $U_g \approx 790$ м/с;

•плотность $\rho \approx 0,00475 \text{ г/см}^3$;

•температура $T_0 \approx 818$ К;

•скорость ударной волны $D \approx 1050$ м/с.

В таблице представлены некоторые условия проведения и результаты экспериментов.

Эксперименты с лужицей глубиной ≈ 1 мм. На рис. 2–3 представлены видеокадры развития турбулентного перемешивания на контактной границе воздуха и жидкости под воздействием скользящей ударной волны. Во всех экспериментах длительность действия постоянного давления за фронтом волны составляла $\approx 0,7$ мкс.

На рис. 4 приведены X(t)-диаграммы движения воздушной ударной волны в области лужицы, полученные при обработке кинограмм опытов с регистрацией шлирен-методом. На рис. 5 представлены Y(X)-диаграммы границ зоны перемешивания на определенные моменты времени для некоторых опытов, на рис. 6 – временные зависимости интегральной ширины зоны перемешивания Lвоздуха и жидкости (значения X отсчитываются от начала лужицы, Y – от ее верхней поверхности).

По видеокадрам процесса (см. рис. 2) при регистрации шлирен-методом хорошо разрешается проходящая ударная волна и веер отраженных волн. Ударная волна регистрируется прямой линией. Это говорит о том, что она плоская.

За фронтом ударной волны в процессе регистрации не наблюдается вторичных ударных волн, но разрешаются волны, отраженные от краев лужицы.

Номер	Жидкость	H	h	Режим	2 MM	t_1	t_2	t_{π}	D м/с	ЛР атм
опыта		MM		регистрации	λ, ΜΜ	мкс			2, 11/0	, um
2*	Вода	90	1	Проход. свет	+1,3	637	1001	1082	1107	11
49	Вода	90	1	Проход. свет	0	1508	1742	1831	1092	10,2
50	Вода	90	1	Проход. свет	0	1534	1769	1854	1064	10,1
51	ТБФ	90	1	Проход. свет	-0,1	1579	1815	1900	1059	10
52	ТБФ	90	1	Проход. свет	-0,1	1539	1774	1858	1060	10
53	Вода	110	10	Проход. свет	-0,2	1534	1768	1970	1068	10,2
54	ТБФ	110	10	Проход. свет	-0,2	1500	1737	1841	1054	9,8
63	ТБФ	90	1	Шлирен	-0,1	1578	1817	1903	1046	9,7
64	ТБФ	90	1	Шлирен	-0,1	1606	1844	1930	1050	9,8
65	ТБФ	90	1	Проход. свет	-0,1	1608	1846	1932	1050	9,8
66	ТБФ	90	1	Шлирен	-0,1	1621	186ë	1947	1042	9,7
67	ТБФ	90	10	Проход. свет	-0,1	1608	1848	1931	1042	9,7

Условия проведения и результаты экспериментов

В таблице обозначено: * – расстояние от мембраны до лужицы 1250 мм; расстояние между датчиками – 403 мм; t_1, t_2, t_{π} – время прихода ударной волны на датчики D1, D2 и лужицу соответственно; h – глубина лужицы жидкости; χ – высота мениска жидкости («-» – вогнутый, «+» – выпуклый); D – средняя скорость ударной волны в воздухе, определенная по t_1, t_2 и расстоянию между датчиками давления (погрешность определения скорости ударной волны оценивается в 5 %); ΔP – избыточное давление за фронтом ударной волны (определено по экспериментальной скорости D).

Рис. 2. Кинограмма эксперимента с лужицей ТБФ (*h* = 1 мм), опыт 64, шлирен-метод (время отсчитывается от прихода УВ на лужицу): УВ – ударная волна, ОВ – отраженная волна, ЗТП – зона турбулентного перемешивания

Рис. 3. Кинограмма эксперимента с лужицей воды (*h* = 1 мм), опыт 50, регистрация в проходящем свете (время отсчитывается от прихода УВ на лужицу): УВ – направление движения ударной волны, ЗТП – зона турбулентного перемешивания

Рис. 4. Х(t)-диаграмма движения воздушной ударной волны

Рис. 5. Y(X)-диаграммы верхней границы зоны перемешивания в опыте 50, вода, h = 1 мм

Рис. 6. Сравнительные зависимости роста ширины зоны перемешивания в экспериментах с глубиной лужицы *h* = 1 мм: диапазон измерений 30 мм ≤ *X* ≤ 70 мм

При выпуклом мениске воды турбулентное перемешивание начинается практически сразу после прохождения ударной волны. При этом ширина зоны перемешивания в начале процесса значительно выше, чем при отсутствии мениска (см. рис. 6). При вогнутом мениске задержка развития зоны перемешивания составляет ≈ 0,1 мс. Отметим, что после опыта кювета для лужицы была пустая.

Эксперименты с лужицей глубиной ≈10 мм. В этой серии экспериментов регистрация течения проводилась только в проходящем свете.

На рис. 7–8 представлены видеокадры взаимодействия скользящей ударной волны с лужицей воды и ТБФ. Как и в экспериментах с h = 1 мм, после прохождения ударной волны на контактной границе воздух-жидкость развивается неустойчивость Кельвина – Гельмгольца, приводящая к перемешиванию веществ. На видеокадрах экспериментов хорошо разрешается верхняя, нижняя границы зоны турбулентного перемешивания и вихревое течение.

На рис. 9 приведены Y(X)-диаграммы верхней Y_1 и нижней Y_2 границ зоны перемешивания, на рис. 10 – временные зависимости интегральной ширины зоны L воздуха и жидкости и неперемешавшейся части жидкости H; на рис. 11 – зависимости интегральной ширины зоны перемешивания L от произведения $U_g t$ (в опытах $A \approx 1$).

0,53 мс

0,96 мс

Рис. 7. Кинограмма эксперимента с лужицей ТБФ (*h* = 10 мм), опыт 54 (время отсчитывается от прихода УВ на лужицу): УВ – направление движения ударной волны; ЗТП – зона турбулентного перемешивания

0,5 мс

0,93 мс

Рис. 8. Кинограмма эксперимента с лужицей воды (*h* = 10 мм), опыт 53 (время отсчитывается от прихода УВ на лужицу): УВ – направление движения ударной волны; ЗТП – зона турбулентного перемешивания

Рис. 9. *Y*(*X*)-диаграммы границ зоны перемешивания в опыте 53 (вода, h = 10 мм): Y₁ – верхняя граница, Y₂ – нижняя граница

Рис. 10. Результаты обработки экспериментов с глубиной лужицы *h* = 10 мм (диапазон измерений 0 мм ≤ *X* ≤ 70 мм): а – рост ширины зоны турбулентного перемешивания *L* (см. также с. 40)

Рис. 10. Результаты обработки экспериментов с глубиной лужицы h = 10 мм (диапазон измерений 0 мм $\leq X \leq$ 70 мм): б – высота неперемешавшегося слоя жидкости H

Рис. 11. Сравнительные зависимости ширины зоны турбулентного перемешивания от произведения $U_g t$ (диапазон измерений 0 мм $\leq X \leq$ 70 мм)

Скорость роста ширины зоны перемешиваниия при 0 мс $\leq t \leq 0.3$ мс составляет примерно 200 м/с. При $t \approx 0.9$ мс турбулентным перемешиванием охвачено почти 40% массы жидкости, при этом не наблюдается существенного различия в развитии перемешивания воды и ТБФ (см. рис. 10,б).

Отметим, что в представленных экспериментах перепад плотностей на контактной границе в отличие от [3] значителен: $\delta \approx 200$, число Атвуда $A \approx 0,99$. Зависимости L от произведения $U_g t$ только при t < 0,3 мс близки к линейным (см. рис. 11). Аппроксимируем этот участок прямой линией. Тангенс угла наклона этой линии к оси абсцисс характеризует безразмерную скорость (темп) роста ширины зоны перемешивания для указанных δ и *А*. По графику средние значения $f(\delta)\alpha_U \approx 0,025$. Данное значение значительно ниже полученного в работе [3]. Такое различие можно, по-видимому, объяснить большим значением δ и/или трехмерным характером течения.

При t > 0,3 мс скорость роста ширины зоны перемешивания и выброс жидкости из лужицы значительно уменьшаются (см. рис. 10–11). Этот эффект может быть связан с ограниченностью размеров лужицы.

Численное моделирование экспериментов

Эксперименты с лужицей воды моделировались в двумерных расчетах по эйлеровой методике [8]. Геометрия расчетов – плоская. Такие процессы, как разогрев и испарение воды за счет теплопроводности, в этих расчетах не учитывались.

Расчеты проведены на неподвижной прямоугольной равномерной сетке с размером ячеек $\Delta x \cdot \Delta y$ 0,01.0,01 см. Граничные условия в расчетах – нижняя граница – «жесткая», верхняя и правая граница - свободное вытекание, на левой границе задавался втекающий воздушный поток (скорость 850 м/с, длительность 1000 мкс), который формировал ударную волну с давлением на фронте ~10 атм. Параметры потока во всех расчетах одинаковы. Уравнение состояния воздуха - идеальный газ с показателем адиабаты $\gamma = 1,4$ и плотностью $\rho_0 = 0,00121 \text{ г/см}^3$, что соответствует температуре 25 °С и давлению 750 мм рт. ст. Уравнение состояния воды – Ми-Грюнайзена с параметрами $c_v = 10^{-3}$, $\rho_0 = 1$ г/см³, $c_0 = 1.5$, n = 7.15, $\gamma_1 = 1,105$, где c_v – теплоемкость при постоянном объеме, c_0 – скорость звука, n, γ_1 – параметры уравнения. Уравнение состояния оргстекла – Ми-Грюнайзена с параметрами $c_v = 10^{-3}$, $\rho_0 = 1$ г/см³, $c_0 = 1.5$, n = 7.15, $\gamma_1 = 1.105$.

Длительность по времени расчета развития процесса составляла ≈1000 мкс, начиная с момента прихода ударной волны на границу лужицы. Далее в эксперименте на лужицу прилетают продукты взрыва, перемешанные с воздухом. Поэтому развитие процесса в расчетах на времена больше 1000 мкс не рассматривалось.

На рис. 12, 13 приведено сопоставление на одинаковые времена экспериментальных и расчетных картин выброса воды из лужицы глубиной 10 мм. Расчетные картины представлены в виде распределений плотностей р.

В расчетах, как и в экспериментах, наблюдается вихреобразование на контактной границе, т. е. развивается неустойчивость Кельвина–Гельмгольца. В расчетах получено, что на время t = 940 мкс в лужице глубиной 10 мм остается ≈ 80 % от начальной массы жидкости.

На рис. 14, 15 представлено распределение массовых скоростей в жидкости на глубине 5 мм от поверхности лужицы на времена 100 мкс и 500 мкс.

Рис. 13. Картина взаимодействия жидкости в лужице (*h* = 10 мм) с потоком воздуха (*t* = 940 мкс от момента нагружения лужицы)

Турбулентное перемешивание на границе газ-жидкость под воздействием скользящей воздушной УВ

Рис. 15. Распределения массовых скоростей в воде на глубине 5 мм (*t* = 500 мкс от момента нагружения лужицы)

По графикам видно, что скорости U_X , U_Y незначительны (1÷6 м/с) по сравнению с массовой скоростью потока воздуха (≈850 м/с). На рис. 16 представлены расчетные и экспериментальные временные зависимости уменьшения высоты слоя жидкости H для лужицы глубиной h = 10 мм.

Рис. 16. Уменьшение высоты слоя жидкости Н в расчетах и экспериментах

По графику видно, что высота неперемешавшейся части жидкости в эксперименте примерно на ~30 % меньше, чем в расчетах. Расхождение, скорее всего, вызвано относительно крупным размером расчетных ячеек. В результате в расчетах недостаточно точно учитывалось турбулентное перемешивание. Кроме того, процесс перемешивания в экспериментах трехмерный, а расчеты – двумерные. Для описания полученных экспериментальных данных требуется трехмерное моделирование.

Заключение

Получены экспериментальные данные по развитию зоны турбулентного перемешивания на контактной границе газ-жидкость под воздействием скользящей воздушной ударной волны с давлением во фронте ≈ 10 атм. Результаты указывают на то, что скорость роста зоны перемешивания при перепаде плотностей на контактной границе $\delta \approx 200$ почти на порядок ниже по сравнению со скоростью роста зоны при $\delta = 1$.

Глубина проникновения зоны перемешивания в жидкость, полученная при двумерном численном моделировании, примерно на 30 % ниже, чем в проведенных экспериментах. Необходимо трехмерное расчетное моделирование представленных экспериментов.

Список литературы

1. Helmholtz H. L. F. Uber discontinuirlich Flussigkeits-Bewegungen. Monatsberichte Konigl. Preu β . Akad. Wiss. Berlin. 1868. P. 215.

2. Ландау Л. Д. Механика сплошных сред / Л. Д. Ландау, Е. М. Лифшиц. М., Л.: Гостехтеориздат. 1953. С. 177–178.

3. Еськов Н. С., Козловских А. С., Неуважаев Д. В. Численное моделирование развитой сдвиговой турбулентности // ПМТФ. 2000. Т. 412, № 1. С. 77–83.

4. Авраменко М. И. О к-є модели турбулентности. Снежинск: РФЯЦ-ВНИИТФ. 2005. С. 76.

5. Brown G. L. On density effects and large structure in turbulent mixing layers / G. L. Brown, A. Roshko // J. of Fluid Mechanics. 1974. Vol. 64. P. 775–816.

6. Рахматулина Х. А., Семенова С. С. Ударные трубы. М.: Иностранная литература, 1962. С. 699.

7. Физика взрыва / Под ред. Орленко Л. П. Изд. 3. М.: Физматлит, 2004. С. 832.

8. Янилкин Ю. В., Шанин А. А., Ковалев Н. П. и др. Комплекс программ ЭГАК для расчетов двумерных течений многокомпонентной среды // ВАНТ. Сер. Математическое моделирование физических процессов.1993. Вып. 4. С. 69–75.

Статья поступила в редакцию 12.08.2014