КРИТИЧЕСКИЕ ПАРАМЕТРЫ ОДНОРОДНЫХ ШАРОВ, СОСТОЯЩИХ ИЗ ПЛУТОНИЯ-238 И ПЛУТОНИЯ-239

Н. Б. Бабичев, А. А. Севастьянов

ФГУП «РФЯЦ-ВНИИЭФ», 607188, г. Саров Нижегородской обл.

Для изотопов плутония 238 Ри и 239 Ри изучены нейтронные характеристики критических систем.

Ключевые слова: уравнение переноса нейтронов, масса критического шара, асимптотическая диффузионная теория.

Введение

В работе [1] с помощью расчетов на спектральных нейтронных константах ENDF B-6 [2] определены критические массы M_* однородных шаров из ²³⁸ Ри и ²³⁹ Ри (при соответствующих этим изотопам значениях плотности $\rho_0 = 19,84$ г/см³ и $\rho_0 = 19,851$ г/см³ $M_* = 9,75$ кг и $M_* = 10,10$ кг).

Проведение аналогичных [1] исследований является основной целью данной работы.

Ядерно-физические свойства ²³⁹ Ри хорошо известны, и для него получены одногрупповые и многогрупповые нейтронные константы, чего нельзя было сказать про имевшиеся в РФЯЦ-ВНИИЭФ до настоящего времени константы ²³⁸ Ри. Сейчас этот пробел устранен (см. раздел 1). Поэтому открылась возможность исследования характеристик именно ²³⁸ Ри, что для нас представляло наибольший интерес.

Ниже представлены результаты расчетов, выполненных с использованием ENDF B-6 [2], а также ENDL-82 [3]. Расчеты характеристик критических шаров проводились при таких же, как в работе [1], значениях плотности плутония ($\rho_0 = 19,84$ и 19,851 г/см³ соответственно для ²³⁸ Ри и ²³⁹ Ри).

1. Нейтронные константы изотопов ²³⁸ Ри и ²³⁹ Ри

1.1. Спектральные константы веществ

Из рис. $1-4^*$ следует, что ²³⁸ Ри делится заметно лучше, нежели ²³⁹ Ри, а величины v(E) у ²³⁸ Ри и ²³⁹ Ри друг от друга отличаются слабо.

На рис. 5 и 6 для сравнения различных спектральных констант представлены зависимости от энергии нейронов E микроскопических (элементарных) сечений упругого рассеяния и поглощения нейтронов в (n, γ) реакциях на ядрах ²³⁸ Ри.

^{*}В рассматриваемых плутониевых системах нет замедляющих нейтроны примесей. Поэтому на рисунках представлена область быстрых нейтронов с $E \ge 0,1$ МэВ.

Рис. 1. Зависимости элементарных сечений деления ядер ²³⁸ Ри и ²³⁹ Ри от *E*, взятые из библиотеки ENDF B-6

Рис. 2. Зависимости элементарных сечений деления ядер ²³⁸ Ри и ²³⁹ Ри от *E*, взятые из библиотеки ENDL-82

Рис. 3. Зависимости числа нейтронов v, испускаемых в одном акте деления ядер 238 Ри и 239 Ри от *E*, взятые из библиотеки ENDF B-6

Рис. 4. Зависимости числа вторичных нейтронов v, испускаемых в одном акте деления ядер 238 Pu и 239 Pu от *E*, взятые из библиотеки ENDL-82

Рис. 5. Зависимости элементарных сечений упругого рассеяния нейтронов на ядрах $^{238}{\rm Pu}$ от E, взятые из библиотек ENDF B-6 и ENDL-82

Рис. 6. Зависимости элементарных сечений поглощения нейтронов на ядрах $^{238}\rm{Pu}\,$ от E, взятые из библиотеки ENDF B-6 и ENDL-82

1.2. Одногрупповые нейтронные константы

1.2.1. Односкоростное кинетическое уравнение для нейтронов. Одногрупповые задачи решаются в следующем приближении: считается, что ядра неподвижны, нейтроны имеют одинаковую по величине скорость V, индикатриса упругого рассеяния нейтронов изотропна. Этому в общем случае соответствует следующее нестационарное кинетическое уравнение относительно функции распределения $\Psi(t, \vec{r}, \vec{\Omega})$ в фазовом пространстве векторов \vec{r} и $\vec{\Omega}$.

$$\frac{1}{V} \frac{\partial \psi(t, \vec{r}, \vec{\Omega})}{\partial t} + \left(\vec{\Omega} \frac{\partial}{\partial \vec{r}}\right) \psi(t, \vec{r}, \vec{\Omega}) + \alpha \psi(t, \vec{r}, \vec{\Omega}) =$$
$$= \frac{\beta}{4\pi} \int d\vec{\omega} \psi(t, \vec{r}, \vec{\omega}), \qquad (1)$$

 $\vec{\Omega} = \frac{V}{V}$ – это единичный вектор, отложенный вдоль вектора \vec{V} скорости нейтрона.

В уравнение (1) входят два не зависящих от координаты \vec{r} параметра $\alpha = n_{g}(\sigma_{s} + \sigma_{f} + \sigma_{c}) -$ обратный полный пробег нейтронов и $\beta = h\alpha$,

 $h = \frac{v\sigma_f + \sigma_s}{\sigma_s + \sigma_f + \sigma_c} - \text{активность среды, } n_{\mathfrak{g}} - \text{плот-}$

ность ядер, σ_s , σ_f , σ_c – элементарные сечения рассеяния, деления и поглощения нейтронов.

Поскольку далее рассматриваются критические системы, то в разделе 2 при решении задач вместо нестационарного уравнения переноса нейтронов (1) используется стационарное уравнение, в котором отсутствует производная функции распределения $\Psi(t, \vec{r}, \vec{\Omega})$ по времени.

1.2.2. Одногрупповые нейтронные константы. Приведем данные по одногрупповым нейтронным константам (1-ENDF B-6 и 1-ENDL-82), которые получены из библиотек спектральных констант ENDF B-6 и ENDL-82 (табл. 1).

Таблица 1

Значения параметров $\alpha(\rho_0)$, $\beta(\rho_0)$, которые входят в уравнение переноса нейтронов (1), а также *h*, v и элементарные сечения взаимодействия нейтронов с веществом

Изотоп	²³⁸ Pu		239]	Pu
Константы	1-ENDF B-6	1-ENDL-82	1-ENDF B-6	1-ENDL-82
$\alpha(\rho_0), 1/см$	0.2691	0.3049	0.2779	0.2988
$\beta(\rho_0), 1/см$	0.4602	0.5006	0.4607	0.4795
h	1.7101	1.6418	1.6578	1.6048
ν	3.1868	3.1085	3.1309	3.1093
σ_f , барн	1.8256	1.9100	1.7438	1.7412
σ_s , барн	3.3488	4.0355	3.7504	4.1709
σ_c , барн	0.1868	0.1286	0.0611	0.0614

1.3. Многогрупповые нейтронные константы ²³⁸ Ри

Таблица 2

26-групповые нейтронные константы, полученные из спектральных констант ENDF B-6 и ENDL-82 изотопа ²³⁸Pu

	26-ENDF B-6				26-ENDL-82			
<i>Е</i> , МэВ	ν	σ_f	σ_s	σ_c	ν	σ_f	σ_s	σ_c
	v	барн		v	барн			
13.91-14.19	4.96917	2.66747	3.26747	0.0113752	4.88716	2.71578	3.05083	0.00871673
13.1-13.91	4.88914	2.6746	3.24641	0.0121465	4.80694	2.72603	3.02191	0.00910108
12.4-13.1	4.74049	2.68784	3.20727	0.0135803	4.66703	2.74147	2.9756	0.00968003
11.7-12.4	4.65426	2.69552	3.18458	0.0144115	4.57075	2.70023	2.96968	0.0102738

Окончание табл. 2

		26-EN	NDF B-6		26-ENDL-82			
<i>Е</i> , МэВ	V	σ_f	σ_s	σ_c	v	σ_f	σ_s	σ_c
	v		барн		v		барн	
10.5-11.7	4.51863	2.7076	3.1489	0.0157187	4.43362	2.41151	3.07179	0.0124869
9.3-10.5	4.34393	2.71499	3.18454	0.0174046	4.26725	2.37949	3.164	0.0154491
7.65-9.3	4.1247	2.68544	3.66417	0.0194074	4.05754	2.41678	3.72945	0.0193184
6.065-7.65	3.88733	2.50866	4.29999	0.01936	3.78816	2.33768	4.55302	0.0264014
4-6.065	3.60223	2.22149	4.95879	0.0217952	3.47066	2.1945	5.22405	0.0359111
2.85-4	3.3889	2.28579	5.45203	0.0360837	3.28299	2.24896	5.12024	0.0527769
2-2.85	3.24414	2.20945	5.27964	0.0702364	3.16035	2.28544	4.83406	0.0722348
1.353-2	3.13599	2.14307	4.75856	0.112359	3.06872	2.26344	4.62981	0.107663
0.8-1.353	3.04823	2.0452	4.40729	0.177099	2.9979	2.12487	4.81667	0.154645
0.4979-0.8	2.98751	1.69131	5.47829	0.229802	2.94781	1.75804	7.00491	0.171828
0.2788-0.4979	2.94927	1.14182	7.44874	0.312649	2.91726	1.33608	8.35152	0.160659
0.15-0.2788	2.92323	0.813688	9.56417	0.401311	2.89616	0.953203	9.0493	0.194452
0.0823-0.15	2.90826	0.674516	10.8781	0.525792	2.88404	0.863151	10.4143	0.209008
0.04086-0.0823	2.90009	0.604699	12.091	0.663251	2.87751	0.911947	12.0412	0.295613
0.02-0.04086	2.89544	0.69382	14.4658	0.868682	2.87375	0.964409	13.8513	0.442461
0.009119-0.02	2.89305	0.639533	15.8913	1.15539	2.87182	0.994127	15.5784	0.615075
0.003355-0.009119	2.89184	1.40001	17.7864	1.87515	2.87081	1.33067	17.8029	0.979659
0.0015-0.003355	2.8912	1.63125	22.4324	3.03187	2.87031	1.6469	22.4288	2.11808
0.001-0.0015	2.89101	2.01687	26.7563	3.68818	2.87015	2.03672	26.7521	3.70052
0.000215-0.001	2.89089	3.0221	36.418	9.78698	2.87005	3.04296	36.3245	9.81993
4E-5-0.000215	2.89085	6.40514	39.5912	23.9099	2.87002	6.83432	41.3213	25.2366
2E-6-4E-5	2.89082	0.662998	12.2133	13.4471	2.87	0.746195	11.7373	15.2775

2. Определение критических масс шаров

из ²³⁸ Ри и ²³⁹ Ри

Спектральные расчеты проводились по программе «Монте-Карло» [4], разработанной в РФЯЦ-ВНИИЭФ.

Многогрупповые и одногрупповые задачи решались с использованием соответствующих вариантов математических методик [5].

2.1. Результаты расчетов «Монте-Карло», выполненных со спектральными нейтронными константами ENDF B-6 и ENDL-82

2.1.1. Основные результаты. Приведенные в табл. 3 критические массы шара из ²³⁹ Ри совпадают с точностью не хуже, чем 1,4 %.

Иначе дело обстоит в случае 238 Pu. Расчеты привели (см. табл. 3) к тому, что M_* 238 Pu в случае констант ENDF B-6 заметно (в 1,15 раза) больше, чем при использовании констант ENDL-82.

Результат нашего расчета с константами ENDF B-6 слабо (на 0,6 %) отличается от полученного в работе [1].

Критические массы однородных шаров

Таблица 3

из ²³⁸Ри и ²³⁹Ри

	Критическая	Критическая	Результаты		
Изотоп	масса	масса	работы [1]		
	(константы	(константы	(константы		
	ENDF B-6)	ENDL-82)	ENDF B-6)		
	М _* , кг				
²³⁸ Pu	9.69	8.41	9.75		
²³⁹ Pu	10.04	9.96	10.10		

2.1.2. О точности результатов расчетов «Монте-Карло». В этом подразделе ²³⁹ Ри не рассматривается из-за хорошего согласия для него результатов, приведенных в табл. 3.

Для оценки точности и проверки правильности расчетов критических масс шара из ²³⁸ Ри приведем дополнительные результаты, полученные при решении задач «Монте-Карло» (табл. 4, 5). Таблица 4

Относительные количества различных реакций и вылет нейтронов через внешнюю поверхность

системы (J_+) для ²³⁸ Ри (сумма величин,

приведенных в каждом столбце таблицы, равна единице)

Параметр	ENDF B-6	ENDL-82
Число делений N_f	0.153898	0.155730
Число упругих рассеяний	0.442796	0.439702
Число реакций (<i>n</i> , <i>n</i> ' <i>ү</i>)	0.064428	0.073472
Полное количество реакций (<i>n</i> , 2 <i>n</i>) и (<i>n</i> , 3 <i>n</i>)	0.000363	0.000144
Число поглощенных нейтронов	0.016166	0.010569
Утечка нейтронов J_+	0.322350	0.320383

Таблица 5

Относительные количества образовавшихся вторичных делительных нейтронов N_n

и значения	K _{эф}
------------	-----------------

Параметр	ENDF B-6, M _* = 9,69кг	ENDL-82, M _* = 8,41кг
Число делительных нейтронов N_n	0.33813	0.33050
К _{эф}	0.999984	1.000041

Проверим соблюдение следующего уравнения баланса числа нейтронов в критических системах:

$$N_n + N_{(n,2n)} + 2N_{(n,3n)} - N_C - J_+ = 0.$$
⁽²⁾

Подстановка входящих в (2) величин из каждого столбца табл. 4 показало, что уравнение баланса соблюдается с точностью до 10^{-4} , а на основе результатов табл. 5 можно утверждать, что отличие $K_{3\phi}$ от единицы пренебрежимо мало.

2.2. Критические параметры шаров, полученные в 26-групповом приближении

Результаты расчетов представлены в следующей таблице.

Таблица 6

Критические массы однородных шаров из ²³⁸ Ри и ²³⁹ Ри

Изотоп	Критическая масса (26-ENDF B-6)	Критическая масса (26-ENDL-82)			
	$M_*,\ \kappa \Gamma$				
²³⁸ Pu	9.72	8.46			
²³⁹ Pu	10.10	10.02			

2.3. Критические параметры шаров, полученные в односкоростном приближении

2.3.1. Результаты расчетов, выполненных с использованием одногрупповых нейтронных констант.

Таблица 7

Критические массы шаров из $^{238}\mbox{Pu}\,$ и $^{239}\mbox{Pu}$

Изотоп	Критическая масса (1-ENDF B-6)	Критическая масса (1-ENDL-82)		
	М*, кг			
²³⁸ Pu	9.31	8.08		
²³⁹ Pu	10.07	9.82		

2.3.2. Вычисления по диффузионным соотношениям Ю. А. Романова. Для оценок нейтронных характеристик критических шаров из ²³⁸ Ри и ²³⁹ Ри ниже применяется асимптотическая диффузионная теория (АДТ) Ю. А. Романова [6], в рамках которой уравнение диффузии записывается следующим образом:

$$\nabla^2 n(\vec{r}) + \alpha^2 k^2 n(\vec{r}) = 0, \qquad (3)$$

где величина *k* – это корень трансцендентного уравнения

$$h \arctan k = k. \tag{4}$$

Решением уравнения (3) в сферически-симметричном случае является функция

$$n(r) = \frac{A}{r}\sin(\alpha kr), \qquad (5)$$

А – нормировочная константа.

Нейтронная плотность обращается в ноль на экстраполированной границе шара, т. е.

$$n\left(r = R_* + \frac{0,71}{\beta}\right) = 0.$$
 (6)

Радиус и масса критического шара определяются по следующим формулам:

$$R_* = \frac{1}{\alpha} \left(\frac{\pi}{\kappa} - \frac{0,71}{h} \right). \tag{7}$$

$$M_* = \frac{4}{3} \frac{\pi}{\alpha^3} \left(\frac{\pi}{\kappa} - \frac{0,71}{h} \right)^3 \rho_0.$$
 (8)

Результаты расчетов (см. табл. 7) и вычислений (табл. 8) критических масс слабо (в пределах 0,5–0,9%) отличаются друг от друга.

Таблица 8

Значения критических масс, вычисленных по формуле (8) с использованием численного решения трансцендентного уравнения (4)

Изотоп	Критическая масса (1-ENDF B-6)	Критическая масса (1-ENDL-82)			
	$M_st,$ кг				
²³⁸ Pu	9.376	8.120			
²³⁹ Pu	10.148	9.884			

Из анализа представленных в этом подразделе материалов вытекают следующие выводы.

В случае нейтронных констант 1-ENDL-82 значение активности как для 238 Pu, так и для 239 Pu меньше, чем в константах 1-ENDF B-6.

Несмотря на сказанное, при переходе 1-ENDL-82 \rightarrow 1-ENDF B-6 критическая масса шара из ²³⁸Pu увеличилась в 1,155 раза, а шара из ²³⁹Pu – в 1,027 раза.

Объяснение данного, казалось бы, противоречивого факта состоит в следующем.

В формулу (7) для критического радиуса шара входит произведение $\frac{1}{\alpha}$ и убывающей функции $f(h) = \frac{\pi}{k(h)} - \frac{0,71}{h}$. Первый множитель определяется в основном сечением упругого рассеяния нейтронов, так как $\sigma_s > \sigma_f$ и $\sigma_s >> \sigma_c$. В константах 1-ENDL-82 σ_s выше в 1,21 раза для ²³⁸ Ри и в 1,11 раза для ²³⁹ Ри, чем в константах 1-ENDF B-6. Поэтому замена 1-ENDL-82 на 1-ENDF B-6 приводит к увеличению M_{*} за счет ослабления эффекта «забалтывания» нейтронов внутри шара и соответственно возрастания вероятности их вылета из системы. Множитель $f(h) = \frac{\pi}{k(h)} - \frac{0,71}{h}$, наоборот, приводит к уменьшению M_{*} при замене

В шаре из ²³⁸ Ри при 1-ENDL-82 \rightarrow 1-ENDF В-6 параметр $\frac{1}{\alpha}$ возрастает на ≈13 %, а величина *f* уменьшается на ≈8 %. В итоге критический радиус увеличивается на ≈5%, а критическая масса – соответственно на ≈15 %.

1-ENDL-82 на 1-ENDF B-6.

В шаре из ²³⁹ Ри при 1-ENDL-82 \rightarrow 1-ENDF В-6 величины $\frac{1}{\alpha}$ и *f* в значительной мере компенсируют друг друга – первый параметр возрастает на 7,5 %, второй – уменьшается на 6,6 %. Это влечет за собой увеличение критического радиуса шара на 0,9 % и критической массы – на 2,7 %.

2.3.3. Об использовании явных диффузионных формул для упрощения оценок критических масс активных шаров. Выше трансцендентное уравнение (4) было решено численно. Чтобы наглядно представить зависимости $\kappa(h)$ и коэффициента диффузии нейтронов D от h, воспользуемся аналитическими соотношениями работы [7]. В ней для удобства трансцендентное уравнение (4) было переписано в следующей тождественной форме:

$$1 - \varphi \operatorname{ctg} \varphi = \frac{h - 1}{h}, \tag{9}$$

 $\varphi = \operatorname{arctg}(k), \ k = \operatorname{tg}(\varphi).$

Если ограничиться первыми двумя членами разложения (9) в ряд Тейлора по φ , то получаются приближенные формулы:

$$\phi_0 = \frac{1}{h} \sqrt{\frac{3}{5}(h-1)(4h+1)}, \quad \kappa_0 = \sqrt{\frac{3}{5}(h-1)(4h+1)},$$
$$D = \frac{5V}{3\alpha(4h+1)}$$
(10)

и уравнение диффузии приводится к виду

$$\nabla^2 n + \frac{3}{5}(h-1)(4h+1)\alpha^2 n = 0.$$
 (11)

В работе [7] найдено следующее уточненное решение нового трансцендентного уравнения (9):

$$\varphi_{1} = \varphi_{0} + \frac{h\varphi_{0} - tg(\varphi_{0})}{1 - h + (h\varphi_{0})^{2}}.$$
 (12)

Результаты вычислений критических масс однородных активных шаров, состоящих из изотопов плутония, по формулам для ϕ_0 и ϕ_1 представлены в табл. 9.

Из данных табл. 8 и 9 видно, что при использовании нулевого приближения погрешность в M_{*0} составила 0,7–0,9%, а величины M_{*1} первого приближения определились с высочайшей точностью $\approx 0,001$ %.

Таблина 9

11	1-ENDF B-6				1-ENDL-82			
ИЗОТОП	φ ₀	φ ₁	M _{*0} , кг	$M_{st 1},$ кг	φ ₀	ϕ_1	M _{*0} , кг	$M_{*1}, \ \kappa \Gamma$
²³⁸ Pu	1.0686	1.0709	9.456	9.376	1.0398	1.0417	8.180	8.120
²³⁹ Pu	1.0469	1.0489	10.226	10.148	1.0224	1.0242	9.952	9.884

Значения критических масс, найденные по формулам [7]

Заключение

В данной работе показано, что полученные несколькими способами при использовании различных нейтронных констант материалов критические массы однородных шаров из ²³⁹ Ри слабо отличаются друг от друга. Этого нельзя сказать про системы с ²³⁸ Ри, основные характеристики которых представлены в следующей сводной таблице.

Таблица 10

Массы М_{*} критических шаров, выполненных

Нейтронные	Данные работы [1] (константы	ENDF B-6 ENDL-82		
константы	238 Pu ENDF B-6),	$M_*,$	КГ	
веществ	<i>М</i> _* [1], кг	M_{*}/M_{*} [1]		
Сножтраници	0.75	9.69	8.41	
Спектральные	9.75	0.994	0.863	
26 5000000000000000000000000000000000000		9.72	8.46	
20-групповые	—	0.997	0.868	
Одногрупповые		9.31	8.08	
	_	0.955	0.829	

из ²³⁸Pu

Из табл. 10 следует, что обоснованные в разделе 2 величины критических масс ²³⁸ Pu несколько меньше полученных в работе [1].

Одногрупповые нейтронные константы изотопов ²³⁹ Pu, ²³⁸ Pu на основе библиотек спектральных констант ENDF B-6 и ENDL-82, и многогрупповые константы на основе ENDF B-6 получены А. В. Алексеевым, которому авторы статьи выражают свою благодарность.

Авторы признательны Б. А. Надыкто и М. В. Шабурову за ряд критических замечаний, которые они сделали в процессе подготовки данной статьи в печать.

Список литературы

1. Wright R. Q., Jordan W. C., Westfall R. M. (Oak Ridge National Laboratory). Critical Masses of Bare Metal Spheres Using SCALE/XSDRN // Proceeding of Annual Meeting of the American Nuclear Society, San Diego, June 4–8, 2000, p. 167.

2. Herman M., Trkov A. ENDF-6 Format Manual, Data Formats and Procedures for the Evaluated Nuclear Data Files ENDF/B-VI and ENDF/B-VII. BNL-90365. National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973-5000, July 2010.

3. Howerton R. J., Dye R. E., Perkins S. T. Evaluated nuclear data library (ENDL). Report UCRL-50400, vol. 4, rev. 1, appendix C. 1982.

4. Донской Е. Н., Ельцов В. А., Житник А. К. и другие. Метод Монте-Карло во ВНИИЭФ // ВАНТ. Математическое моделирование физических процессов. 1993. Вып. 2. С. 61–64.

5. Шагалиев Р. М., Гребенников А. Н., Артемьев А. Ю., Будников В. И. Развитие основных методик и программ ИТМФ // Журнал «Атом». 2011, № 50-51.

6. Романов Ю. А.. Критические параметры реакторных систем. Точные решения односкоростного кинетического уравнения и их использование для решения диффузионных задач (усовершенствованный диффузионный метод). М.: Госатомиздат, 1960. С. 3–26.

7. Бабичев Н. Б., Беженцев Б. В., Бондарев П. С. Новые формулы для вычисления коэффициентов диффузии нейтронов // ВАНТ. Сер. Теоретическая и прикладная физика. 2008. Вып. 3. С. 44–48.

Статья поступила в редакцию 10.09.2014