ОЦЕНКА ШИРИНЫ ОСОБОЙ ОБЛАСТИ В ПРОСТРАНСТВЕННОМ РАСПРЕДЕЛЕНИИ НЕЙТРОНОВ ВНУТРИ ОДНОРОДНЫХ АКТИВНЫХ ШАРОВ

Н. Б. Бабичев, А. А. Севастьянов

ФГУП «РФЯЦ-ВНИИЭФ», 607188, г. Саров Нижегородской обл.

Исследовано поведение нейтронной плотности n(r) в особой области.

Ключевые слова: уравнение переноса нейтронов, оптическая толщина, особая область (ОО).

Введение

Особой областью (ОО) будем называть диапазон изменения физических параметров, в котором происходит перестройка нейтронной плотности из убывающей функции n(r) в возрастающую. Существование ОО было обнаружено в работе [1]. Цель данной статьи заключается в определении границ ОО. При поиске нейтронной плотности ниже используется метод последовательных приближений.

1. Приближенное решение задачи на главные собственные функции

Предположим, что нейтронная плотность и векторный поток нейтронов подчиняются экспоненциальному закону

$$n(t,r) = n(r)\exp(\lambda t), \qquad (1)$$

$$\vec{j}(t,r) = \vec{j}(r)\exp(\lambda t)$$
(2)

с постоянной величиной λ.

В таком случае односкоростное интегральное уравнение переноса нейтронов в однородных шарах из делящихся материалов имеет следующий вид:

$$n(r,t) = \frac{\beta}{4\pi} \int \frac{d\vec{r}' n(r')}{\left|\vec{r}' - \vec{r}\right|^2} \exp\left[-\xi \alpha \left|\vec{r}' - \vec{r}\right|\right].$$
 (3)

Здесь $\alpha = n_{\rm g} \left(\sigma_s + \sigma_f + \sigma_c \right)$ – обратный полный пробег нейтрона в среде с плотностью ядер $n_{\rm g}$, которая в случае рассматриваемых ниже однород-

ных систем постоянна; $\beta = h\alpha$, $h = \frac{\nu\sigma_f + \sigma_s}{\sigma_s + \sigma_f + \sigma_c}$ – активность среды; σ_s , σ_f , σ_c – элементарные (микроскопические) сечения рассеяния, деления и поглощения нейтронов; ν – среднее число вторичных нейтронов, испускаемых в одном акте деления ядра; $\xi = \left(1 + \frac{\lambda}{\alpha V}\right)$; V – скорость нейтронов. Введя функцию

$$f(x) = xn(x), \quad x = \frac{r}{R}, \tag{4}$$

уравнение (3) упростим, как это сделано в книге [2], следующим образом:

$$f(x) = \frac{\beta R}{2} \int_{0}^{1} dz f(z) K(z, x).$$
 (5)

Ядро интегрального уравнения (4) представляет собой суперпозицию интегральных экспонент

$$K(z,x) = Ei\left[-\gamma(z+x)\right] - Ei\left[-\gamma|z-x|\right], \quad (6)$$

где
$$\gamma = \left(1 + \frac{\lambda}{\alpha V}\right) \alpha R.$$

Задачу будем решать методом последовательных приближений по формуле

$$f^{[i]}(x) = \frac{\beta R}{2} \int_{0}^{1} dz f^{[i-1]}(z) K(z,x); \ i = 1, 2, 3...,$$
(7)

взяв в качестве нулевого приближения постоянную величину $n^{[0]} = \text{const}$ и оборвав итерационный процесс на первом приближении. Опустим выкладки и приведем искомый ответ.

$$n(x) = n^{[1]}(x) = \frac{A}{2\gamma} \left\{ P_+(x) + P_-(x) + \frac{T_+(x) - T_-(x)}{2\gamma x} \right\}, (8)$$

A – нормировочная постоянная, $x = \frac{r}{R} \le 1$.

$$P_{\pm}(x) = P[\gamma(1\pm x)]; \ T_{\pm}(x) = T[\gamma(1\pm x)], \ (9)$$

$$P(z) = 1 - e^{-z} - zE(-z),$$
(10)

$$T(z) = (1+z)e^{-z} + z^{2}E(-z).$$
(11)

Функция E(-z) в зависимости от знака аргумента равна одной из двух модификаций интегральной экспоненты:

$$E(-z) = Ei(-z)$$
 при $z > 0$
и $E(-z) = Ei^*(|z|)$ при $z < 0.$ (12)

Из решения (8) получаются следующие значения собственных функций в центре и на внешней поверхности шара:

$$n(r=0) = \frac{A}{\gamma} (1 - e^{-\gamma});$$

$$n(R) = \frac{A}{4\gamma^2} [2\gamma + e^{-2\gamma} - 1];$$

$$\frac{n(R)}{n(0)} = \frac{2\gamma + e^{-2\gamma} - 1}{4\gamma (1 - e^{-\gamma})}.$$
(13)

2. Уравнение баланса полного числа нейтронов в системе

Балансное уравнение записывается так:

$$\frac{\lambda}{V} - (\beta - \alpha - W) = 0; \quad W = \frac{\frac{1}{V} \int \vec{j} \, d\vec{S}}{\int d\vec{r} \, n(\vec{r})} = \frac{J}{VN}. \quad (14)$$

В числителе выражения (14) интегрирование ведется по внешней поверхности объекта, а в знаменателе – по его объему. N и J – соответственно полное количество нейтронов в системе и интегральный поток нейтронов (число пересечений) во внешнее пустое пространство. Величина W, связанная с вероятностью вылета нейтронов из системы в единицу времени, часто именуется эффективным макроскопическим сечением поглощения нейтронов, вызванного их утечкой наружу.

Рабочие формулы приведем без вывода.

$$\lambda = \lambda_{\infty} - WV = \left[\alpha \left(h - 1\right) - W\right]V, \qquad (15)$$

$$W(\gamma) = \frac{J(\gamma)}{N(\gamma)},$$
 (16)

$$J(\gamma) = \frac{A\pi R^2}{2\gamma^2} F_0(\gamma), \qquad (17)$$

$$F_0(\gamma) = (1+2\gamma)\exp(-2\gamma) - 1 + 2\gamma^2, \qquad (18)$$

$$N(\gamma) = \frac{A\pi R^3}{2\gamma^4} \left[\frac{8}{3}\gamma^3 - F_0(\gamma)\right], \qquad (19)$$

$$W(\gamma) = \frac{3\gamma}{R} \frac{F_0(\gamma)}{8\gamma^3 - 3F_0(\gamma)}.$$
 (20)

После подстановки (20) в (15) уравнение баланса принимает следующий вид:

$$\frac{8}{3}\gamma^4 + h\alpha R \left[F_0(\gamma) - \frac{8}{3}\gamma^3 \right] = 0.$$
 (21)

Найдя корень γ_0 данного трансцендентного уравнения, величину λ можно определить по формуле

$$\lambda = \lambda(\gamma_0) = (\gamma_0 - \alpha R) \frac{V}{R}.$$
 (22)

3. Некоторые результаты аналитических вычислений и численных решений односкоростного кинетического уравнения

Здесь и далее аналитические вычисления λ и численные расчеты по одной из математических программ [3] проводились для шара с радиусом R = 6,359 см и активностью h = 1,68 при значении скорости нейтронов $V = 10^9$ 1/с (табл. 1).

Таблица 1

Сравнение результатов вычислений по формуле (22) и расчетов, выполненных при вариации оптической толщины шара с постоянным радиусом R = 6,359 см

α, 1/см	0,07	0,06	0,04	0,02	0,01	0,001
αR	0,4451	0,3815	0,2544	0,1272	0,0636	0,0064
γο	-0,937	-1,15	-1,66	-2,40	-3,04	-4,83
λ , 10 ⁷ 1/c	-21,73	-24,07	-30,04	-39,74	-48,8	-76,0
$\lambda_{pac4}, 10^7 1/c$	-21,3	-23,8	-30,00	-39,70	-48,5	-74,6
$\delta = \left \frac{\lambda - \lambda_{\text{pacy}}}{\lambda} \right $	0,0198	0,0112	0,0013	0,0010	0,0061	0,0184

4. Ширина особой области (ОО)

Для нахождения ширины ОО функцию (8) разложим в ряд Тейлора вблизи нуля ($r \rightarrow 0$):

$$n(r) \approx A \left[\frac{1 - e^{\gamma}}{\gamma} - \frac{\gamma + 2}{6} e^{-\gamma} \left(\frac{r}{R} \right)^2 \right], \qquad (23)$$

затем возьмем производные от соотношения (23) и подставим в них параметр γ_0 .

$$\frac{dn}{dr} = -A(\gamma_0 + 2)e^{-\gamma_0}\frac{r}{3R},\qquad(24)$$

$$\frac{d^2n}{dr^2} = -\frac{A}{3R} (\gamma_0 + 2) e^{-\gamma_0}.$$
 (25)

Первая производная показывает, что точка r = 0, $n(0) = A \frac{1 - e^{\gamma_0}}{\gamma_0}$ является экстремальной.

Из равенства (25) видно, что при $\gamma_0 + 2 > 0$ и $\gamma_0 + 2 < 0$ в центре шара наблюдаются соответственно максимум и минимум функции n(r).

В работе [1] использовалась общая зависимость λ от βR и h

$$\lambda = \beta V \left[\Lambda(\beta R) - \frac{1}{h} \right], \tag{26}$$

полученная в статьях [4, 5] из односкоростного кинетического уравнения с постоянными параметрами α и β.

Формула (26) содержит в себе универсальную функцию $\Lambda(\beta R)$, явный вид которой в диапазоне $0,2 \le \beta R \le 3,5$ найден в [1] для однородного активного шара.

Приравняв величины λ , взятые из выражений (22) и (26), получаем следующее простое соотношение:

$$\gamma_0 = \beta R \Lambda(\beta R). \tag{27}$$

Из (27) следует, что корень γ_0 трансцендентного уравнения (21) зависит только от произведения βR , т. е. $\gamma_0(\beta R)$ это новая универсальная функция, которая в отличие от $\Lambda(\beta R)$ является приближенной.

Подстановка (27) в (22) приводит к формуле для λ

$$\lambda = \alpha V \left[\frac{\gamma_0(\beta R)}{\alpha R} - 1 \right], \tag{28}$$

которая дает возможность, зная оптическую толщину αR и произведение βR , аналитически определить верхнюю с точки зрения оптической толщины границу ОО, когда, как показано выше, $\gamma_0 = -2$ и максимум функции n(r) расположен в центре шара. Для границы ОО с максимальной оптической толщиной $\alpha_{max}R = 0,1908$ имеем следующие характеристики: $\alpha_{max} = 0,03$ 1/см, $\beta_{max} = 0,0504$ 1/см и согласно формуле (28) $\lambda = -34,1 \cdot 10^7$ 1/с.

Нижняя граница ОО найдена с помощью вычислений и расчетов, результаты которых представлены в табл. 2.

				Таб	лица	a 2
Результаты,	полученные	при	вариаци	и пар	аметр	юв
	αR	и β <i>R</i>)			

αR	βR	Резуль-таты	x = 0	<i>x</i> = 0,5	<i>x</i> = 0,7	x = 0,85	x = 0,945	<i>x</i> = 1
0,1908	0,3211	Расчета	1	0,962	0,941	0,915	0,971	0,871
		Вычисле- ния	1	0,998	0,995	0,988	0,975	0,960
0,1844 0,31		Расчета	0,998	0,9996	1	0,9970	0,989	0,9753
	0,3104	Вычисле- ния	0,998	0,9994	1	0,9977	0,988	0,9762
0,1780 0,29		Расчета	0,986	0,992	0,998	1	0,994	0,985
	0,2997	Вычисле- ния	0,988	0,993	0,998	1	0,994	0,985
0,1590 0,26		Расчета	0,931	0,952	0,972	0,991	1	0,997
	0,2675	Вычисле- ния	0,940	0,957	0,976	0,990	1	0,997
0,1463 0,2		Расчета	0,887	0,918	0,950	0,980	0,995	1
	0,2461	Вычисле- ния	0,900	0,926	0,953	0,979	0,991	1

Видно, что нижняя граница ОО характеризуется следующими величинами: $\alpha_{\min}R = 0,1463$, $\alpha_{\min} = 0,023$ 1/см, $\beta_{\min} = 0,0387$ 1/см, $\lambda = -37,8 \cdot 10^7$ 1/с.

Заключение

В статье получено приближенное аналитическое решение уравнения переноса нейтронов, позволившее определить границы ОО $\alpha_{\min}R$ и $\alpha_{\max}R$ в шкале оптических толщин активного шара αR .

В случаях $\alpha_{\min}R < \alpha R < \alpha_{\max}R$ у функции n(r) при 0 < r < R появляется точка максимума и величина λ заключена в интервале

$$\lambda \in (-37, 8, -34, 1) \cdot 10^7 \, 1/c,$$
 (29)

внутри которого, что следует из табл. 1, погрешность в значениях λ , вычисленных по формуле (22), мала:

$$0,10 \% \le \delta = \left| \frac{\lambda - \lambda_{\text{pacy}}}{\lambda} \right| \le 0,13 \%.$$
 (30)

Графики функции n(r) показаны на следующем рисунке.

Поведение нейтронной плотности n(x = r/R) в особой области изменения оптической толщины шара 0,1463

Сплошной и пунктирной линиями на рисунке обозначены предельные зависимости n(r) на двух границах особой области, а штрих-пунктирная кривая относится к случаю функции n(r) с двумя экстремальными точками. При увеличении оптической толщины максимум сдвигается в сторону центра шара (см. табл. 2).

В [1] показано, что в случае вырожденного ядра интегрального уравнения переноса нейтронов

$$\lambda = -\alpha_0 V = -11,922 \cdot 10^7 \ 1/$$
 миг, $\alpha_0 = 0,11922 \ 1/$ см,

$$\alpha_0 R = 0,7581, \tag{31}$$

т. е., $\alpha_0 R > \alpha_{\max} R = 0,1908.$

Кроме (22), для λ имеется также и формула

$$\lambda = \frac{V}{R} (\beta R)^{0.83} \left[1,57 - \frac{2}{\beta R} - \frac{1}{h} (\beta R)^{0.17} \right], \quad (32)$$

полученная в работе [6].

Вопрос об областях применимости формул (22) и (32) исследован в приложении.

Список литературы

1. Бабичев Н. Б., Севастьянов А. А. Нейтронные поля внутри и за пределами однородных глубокоподкритичных шаров // См. настоящий выпуск. С. 6–19.

2. Ахиезер А., Померанчук И. Некоторые вопросы теории ядра. Л.: Оборонгиз, 1950.

3. Шагалиев Р. М., Гребенников А. Н., Артемьев А. Ю., Будников В. И. Развитие основных методик и программ ИТМФ // Журнал Атом. 2011, № 50–51. 4. Бабичев Н. Б., Беженцев Б. В., Бондарев П. В., Забусов П. В. Собственные значения односкоростного уравнения переноса нейтронов в однородных системах // ВАНТ. Сер. Теоретическая и прикладная физика. 2009. Вып. 3. С. 68–70.

5. Бабичев Н. Б., Лутиков И. В. Решение односкоростной задачи по нейтронной кинетике на собственные значения и собственные функции, справедливое в классе однородных односвязных объектов с невогнутыми внешними поверхностями // ВАНТ. Сер. Теоретическая и прикладная физика. 2011. Вып. 1–2. С. 61–69.

6. Бабичев Н. Б., Лутиков И. В., Незнамов В. П. Некоторые решения вырожденного и близкого к вырожденному уравнений переноса нейтронов // ВАНТ. Сер. Теоретическая и прикладная физика. 2009. Вып. 1. С. 3–10.

Приложение

Сравнение результатов аналитических вычислений и расчетов λ в широком диапазоне изменения оптической толщины шара

Рассмотрим в качестве примера однородный шар с массой M = 4,3 кг и активностью h = 1,68.

Зависимости λ от оптической толщины шара αR , определенные по формулам (22) и (32), а также результаты соответствующих численных расчетов представлены на следующих рисунках.

Рис. П.1. Зависимости λ(α*R*), полученные в аналитических вычислениях и в численных расчетах (обзорный рисунок)

Абсцисса точек минимума функции $\lambda(\alpha R)$ составляет (αR)_{min} $\approx 0,29$.

Рис. П.2. Зависимости λ(α*R*) в области малых оптических толщин

Из рис. П.1 и П.2 можно сделать следующие выводы:

– для глубокоподкритичных шаров с оптическими толщинами $\alpha R \leq 0,48$ формула (32) по точности уступает формуле (22), которая становится неприменимой в случаях слабоподкритичных и, тем более, надкритичных объектов; при изменении оптической толщины в диапазоне $0,6 \leq \alpha R \leq 1,8$ результаты расчетов и вычислений по формуле (32) почти не отличаются друг от друга, т. е. этой формулой можно пользоваться в случаях подкритичных, критических и надкритических шаров. Приведем также график входящей в соотношение (26) универсальной функции $\Lambda(\beta R)$ (рис. П.3), которая в диапазоне изменения $0,2 \le \beta R \le 3,5$ исследована в работе [1].

Рис. П.3. Полученная с помощью вычислений по формуле (22) и расчетов зависимость Λ(β*R*) при сравнительно малых величинах β*R*

Статья поступила в редакцию 03.02.2015