О ПРИБЛИЖЕННЫХ АНАЛИТИЧЕСКИХ РЕШЕНИЯХ СПЕКТРАЛЬНОЙ ЗАДАЧИ НА ГЛАВНЫЕ СОБСТВЕННЫЕ ЗНАЧЕНИЯ

Н. Б. Бабичев, А. А. Севастьянов

ФГУП «РФЯЦ-ВНИИЭФ», 607188, г. Саров Нижегородской обл.

Отработан алгоритм приближенного решения спектрального кинетического уравнения.

Ключевые слова: кинетическое уравнение, главные собственные значения, нейтронные константы материалов.

Введение

В работе [1] обоснован метод решения упрощенного спектрального кинетического уравнения, в которое входят содержащие ядерно-физические свойства среды параметры, усредненные по некоторому типовому спектру $F(E_n)$, где E_n – энергия нейтронов.

Одна из целей данной статьи заключается в оценке погрешности двух известных приближенных решений задачи на главные собственные значения (ГСЗ) λ при использовании соответствующих тоже известных функций $F_1(E_n)$ и $F_2(E_n)$.

Ниже преследуются также и следующие другие цели: определение области применимости спектров $F_1(E_n)$ и $F_2(E_n)$; поиск приближенных спектров $f_i(E_n)$, зная которые можно проводить предварительные оценки характеристик некоторых систем с помощью аналитических вычислений и численных расчетов (дело в том, что кроме $F_1(E_n)$ и $F_2(E_n)$ другие спектры в настоящее время отсутствуют).

В упрощенное многогрупповое кинетическое уравнение [1] входят усредненные по типовым спектрам величины $\langle \overline{\alpha} \rangle$ и $\langle \overline{\beta} \rangle$. Усредненные по объему системы параметры обозначены через $\overline{\alpha}$ и $\overline{\beta}$. Скобками $\langle \rangle$ отмечены усреднения по нейтронным спектрам. В данной статье рассмотрен случай $\overline{\alpha} = \alpha$, $\overline{\beta} = \beta$.

Для выбора $f_i(E_n)$ имеются предпосылки.

Как отмечалось в работе [1], величины $\langle \alpha \rangle$ и $\langle \beta \rangle$ в случае рассматриваемых ниже активных профильных шаров слабо зависят от энергии нейтронов E_n , а средние скорости $\langle V \rangle$, наоборот, сильно. Данные обстоятельства заложены в основу алгоритма нахождения $f_i(E_n)$.

Ниже рассматриваются системы из делящихся материалов, для которых кроме ГСЗ λ определяются также величины λ_{∞} по формуле

$$\lambda_{\infty} = \left(\left< \beta \right> - \left< \alpha \right> \right) \left< V \right>. \tag{1}$$

1. Известные формулы для ГСЗ

В статье [1] получена общая формула

$$\lambda = \left\langle \overline{\beta} \right\rangle R \left[\Lambda \left(\left\langle \overline{\beta} \right\rangle R \right) - \frac{\left\langle \overline{\alpha} \right\rangle}{\left\langle \overline{\beta} \right\rangle} \right] \frac{\left\langle V \right\rangle}{R}, \quad (2)$$

в которую входит универсальная зависимость $\Lambda(\langle \overline{\beta} \rangle R)$. Явный вид этой функции можно определить, если известна конкретная геометрия системы.

Функция $\Lambda(\langle \overline{\beta} \rangle R)$ выражается через λ следующим образом:

$$\Lambda\left(\left\langle \overline{\beta} \right\rangle R\right) = \frac{\left\langle \overline{\alpha} \right\rangle}{\left\langle \overline{\beta} \right\rangle} \left(1 + \frac{\lambda}{\left\langle \overline{\alpha} \right\rangle \left\langle V \right\rangle}\right). \tag{3}$$

1.1. Приближенные модернизированные формулы В. П. Незнамова

$$\Lambda\left(\left\langle \overline{\beta} \right\rangle R\right) = \frac{1}{\left(\left\langle \overline{\beta} \right\rangle R\right)^{0,17}} \left(1,57 - \frac{2}{\left\langle \overline{\beta} \right\rangle R}\right), \quad (4)$$

$$\lambda = \left\langle \overline{\beta} \right\rangle R \left[\frac{1}{\left(\left\langle \overline{\beta} \right\rangle R \right)^{0,17}} \left(1,57 - \frac{2}{\left\langle \overline{\beta} \right\rangle R} \right) - \frac{\left\langle \overline{\alpha} \right\rangle}{\left\langle \overline{\beta} \right\rangle} \right] \frac{\left\langle V \right\rangle}{R}.$$
(5)

В статье [1] показана возможность использования формул (4), (5) не только в случаях надкритичных и критических активных шаров, но даже и для глубокоподкритичных, когда они находятся в вырожденном состоянии или близком к нему. При усреднении параметров формул (4), (5) по известному типовому спектру $F_1(E_n)$ существует ограничение области применимости данных формул.

1.2. Приближенные диффузионные формулы явного вида

В рамках асимптотической диффузионной теории Ю. А. Романова [2] в случае профильного шара справедливы следующие модернизированные в [1] явные формулы:

$$\Lambda(\langle \overline{\beta} \rangle R) = \frac{\varphi(\langle \overline{\beta} \rangle R)}{\operatorname{tg}\varphi(\langle \overline{\beta} \rangle R)},\tag{6}$$

$$\varphi\left(\left\langle \overline{\beta} \right\rangle R\right) = \frac{\pi}{\left\langle \overline{\beta} \right\rangle R + 0,71},\tag{7}$$

$$\lambda = \left\langle \overline{\beta} \right\rangle R \left[\frac{\varphi(\left\langle \overline{\beta} \right\rangle R)}{\operatorname{tg}\varphi(\left\langle \overline{\beta} \right\rangle R)} - \frac{\left\langle \overline{\alpha} \right\rangle}{\left\langle \overline{\beta} \right\rangle} \right] \frac{\langle V \rangle}{R}. \tag{8}$$

Формулы (6) – (8) имеют высокую точность, если значения $\langle \bar{\beta} \rangle R$ велики.

2. Результаты аналитических вычислений и численных расчетов, проведенных на многогрупповых нейтронных константах

Ниже рассматриваются однородные шары из ²³⁸Ри.

2.1. Усредненные параметры и нейтронные константы плутония-238

Приведем значения усредненных по типовым спектрам параметров, входящих в упрощенное уравнение переноса нейтронов.

Таблица 1

Значения усредненных величин, входящих в упрощенное кинетическое уравнение

Использованный типовой спектр нейтронов	$F_1(E_n)$	$F_2(E_n)$
$\langle V angle, \ 10^7,$ см/с	120,6	147,5
$\langle \alpha(\rho_0) \rangle, 1/cm$	0,2691	0,2444
$\langle \beta(\rho_0) \rangle, 1/c_M$	0,4602	0,4756

Кристаллическая плотность ρ_0^{238} Ри равна $\rho_0 = 19,84 \text{ г/см}^3$.

Двадцатишестигрупповые нейтронные константы, полученные А. В. Алексеевым с использованием спектров $F_1(E_n)$ и $F_2(E_n)$, представлены в следующей табл. 2.

E MaR		$F_1(E_n)$			$F_2(E_n)$			
E_n , WI3D	ν	<i>σf</i> , барн	σ_s , барн	<i>σс</i> , барн	ν	σ _f , барн	σ <i>s</i> , барн	σ _c , барн
13,91-14,19	4,96917	2,66747	3,26747	0,0113752	4,9647	2,66787	3,26629	0,011418
13,1-13,91	4,88914	2,6746	3,24641	0,0121465	4,90776	2,67294	3,25131	0,011967
12,4-13,1	4,74049	2,68784	3,20727	0,0135803	4,78193	2,68415	3,21819	0,01318
11,7-12,4	4,65426	2,69552	3,18458	0,0144115	4,67675	2,69352	3,1905	0,014195
10,5-11,7	4,51863	2,7076	3,1489	0,0157187	4,53452	2,70618	3,15308	0,015565
9,3-10,5	4,34393	2,71499	3,18454	0,0174046	4,35491	2,71549	3,17267	0,017299
7,65-9,3	4,1247	2,68544	3,66417	0,0194074	4,14262	2,68904	3,61534	0,019265
6,065-7,65	3,88733	2,50866	4,29999	0,01936	3,896	2,51882	4,27572	0,019389
4-6,065	3,60223	2,22149	4,95879	0,0217952	3,6071	2,22145	4,94952	0,021707
2,85-4	3,3889	2,28579	5,45203	0,0360837	3,39011	2,28642	5,45089	0,035903
2-2,85	3,24414	2,20945	5,27964	0,0702364	3,24261	2,20872	5,27033	0,070635
1,353-2	3,13599	2,14307	4,75856	0,112359	3,13741	2,14425	4,77085	0,11158
0,8-1,353	3,04823	2,0452	4,40729	0,177099	3,04843	2,04539	4,40721	0,176898
0,4979-0,8	2,98751	1,69131	5,47829	0,229802	2,98787	1,69554	5,46199	0,229103
0,2788-0,4979	2,94927	1,14182	7,44874	0,312649	2,95003	1,15295	7,40128	0,310606
0,15-0,2788	2,92323	0,813688	9,56417	0,401311	2,92337	0,815829	9,54874	0,400723
0,0823-0,15	2,90826	0,674516	10,8781	0,525792	2,90824	0,674514	10,8796	0,52597
0,04086-0,0823	2,90009	0,604699	12,091	0,663251	2,90014	0,604292	12,0729	0,661912
0,02-0,04086	2,89544	0,69382	14,4658	0,868682	2,89547	0,693041	14,4504	0,867142
0,009119-0,02	2,89305	0,639533	15,8913	1,15539	2,89307	0,63941	15,8779	1,15014
0,003355- 0,009119	2,89184	1,40001	17,7864	1,87515	2,89179	1,4061	17,9786	1,92516
0,0015-0,003355	2,8912	1,63125	22,4324	3,03187	2,8912	1,63771	22,5119	3,03833
0,001-0,0015	2,89101	2,01687	26,7563	3,68818	2,89101	2,03497	26,9184	3,75929
0,000215-0,001	2,89089	3,0221	36,418	9,78698	2,89091	2,73353	32,5288	6,88921
4E-5-0,000215	2,89085	6,40514	39,5912	23,9099	2,89084	4,14407	25,2341	25,2507
2E-6-4E-5	2,89082	0,662998	12,2133	13,4471	2,89082	0,503975	11,6741	10,7451

Двадцатишестигрупповые нейтронные константы ²³⁸Ри

2.2. Характеристики однородных шаров

Численные расчеты проводились по одной из математических методик [3].

2.2.1. Результаты многогрупповых расчетов и вычислений, основанных на формуле (5). В качестве примера рассмотрим шары со следующими усредненными по спектру $F_1(E_n)$ (см. выше) параметрами: $\langle \alpha \rangle = 0,6782$ 1/см, $\langle \beta \rangle = 1,1598$ 1/см, $\lambda_{\infty} = = (\langle \beta \rangle - \langle \alpha \rangle) \langle V \rangle = 58,0755 \cdot 10^7$ 1/с.

Результаты вычислений по формуле (5) и расчетов приведены в табл. 3.

Из таблицы видно, что при использовании формулы (5) интервалы, в которых погрешность мала, узкие.

В табл. 4 приведены результаты вычислений Λ по формуле (4) и $\Lambda_{\text{расч}}$ по формуле (3), в которой в качестве ГСЗ взята $\lambda_{\text{расч}}$ из табл. 3.

Таблица З

Таблица 2

Результаты вычислений λ по формуле (5) и 26-групповых численных расчетов

$\langle \beta \rangle R$	λ, 10 ⁷ , 1/c	λ _{pac4} , 10 ⁷ , 1/c	$\frac{\lambda}{\lambda_\infty}$	$\delta_{\lambda} = \frac{\lambda - \lambda_{pac^{\mathbf{q}}}}{\lambda}$
4	36,4439	48,5265	0,628	-33,2 %
3,4509	30,4352	38,9942	0,524	-28,1 %
3,25	27,4846	34,5678	0,473	-25,8 %
3	23,0314	28,1264	0,397	-22,1 %
2,5	10,3733	11,1052	0,179	-7,1 %
2,457	8,9649	9,3228	0,154	-4,0 %
2,42	7,7015	7,7439	0,133	-0,55 %
2,415	7,52699	7,52732	0,130	-0,0044 %
2,41	7,3515	7,3100	0,127	0,57 %
2,4	6,9979	6,8730	0,121	1,8 %
2,384	6,4241	6,1675	0,111	4,0 %
2,3	3,2443	2,3393	0,056	27,9 %
2,28	2,4431	1,3989	0,042	42,7 %
2,26	1,6244	0,4488	0,028	72,4 %

Таблица 4

Результаты вычислений Λ по формуле (4) и Λ_{расч} по формуле (3)

$\langle \beta \rangle R$	Λ	$\Lambda_{ m pac4}$	$\delta_{\Lambda} = \frac{\Lambda - \Lambda_{\text{расч}}}{\Lambda}$
4	0,8453	0,9317	-10,2 %
3,4509	0,8024	0,8636	-7,6 %
3,25	0,7813	0,8319	-6,5 %
3	0,7494	0,7859	-4,9 %
2,5	0,6589	0,6642	-0,80 %
2,457	0,6489	0,6514	-0,40 %
2,42	0,6398	0,6401	-0,048 %
2,415	0,6386	0,6386	-0,00061 %
2,41	0,6373	0,6370	0,046 %
2,4	0,6348	0,6339	0,14 %
2,384	0,6307	0,6289	0,29 %
2,3	0,6080	0,6015	1,1 %
2,28	0,6022	0,5948	1,2 %
2,26	0,5964	0,5880	1,4 %

2.2.2. Результаты многогрупповых расчетов и вычислений по формуле типа (7). Примем $\langle \alpha \rangle = = 0,6160 \ 1/cm, \ \langle \beta \rangle = 1,1985 \ 1/cm, \ \lambda_{\infty} = (\langle \beta \rangle - \langle \alpha \rangle) \langle V \rangle = \lambda_{\infty} = (\langle \beta \rangle - \langle \alpha \rangle) \langle V \rangle = 85,9421 \cdot 10^7 \ 1/c.$

В табл. 5 и 6 приведены результаты аналитических вычислений и 26-групповых расчетов с использованием типового спектра $F_2(E_n)$.

Таблица 5

Результаты вычислений λ по формуле (8) и 26-групповых численных расчетов

$\langle \beta \rangle R$	λ, 10 ⁷ , 1/c	λ _{pac4} , 10 ⁷ , 1/c	$\frac{\lambda}{\lambda_{\infty}}$	$\delta_{\lambda} = \frac{\lambda - \lambda_{pac4}}{\lambda}$
20	84,5837	83,6594	0,984	1,1 %
15	83,5787	82,0139	0,973	1,9 %
10	80,8410	77,6722	0,941	3,9 %
7	76,0454	70,4272	0,885	7,4 %
6	72,8283	65,7632	0,847	9,7 %
5	67,7283	58,6272	0,788	13,4 %
4	58,9057	46,8938	0,685	20,4 %
3,4509	50,9894	36,9190	0,593	27,6 %
3,25	47,1879	32,2962	0,549	31,6 %
3	4,1507	2,5581	0,483	38,4 %

Из таблицы следует, что при $\langle \beta \rangle R \ge 7$ формула (8) достаточно точна.

Результаты вычислений Λ по формуле (6) и Λ_{расч} по формуле (3)

	1		. /
$\langle \beta \rangle R$	Λ	Λ_{pacy}	$\delta_{\Lambda} = \frac{\Lambda - \Lambda_{\text{расч}}}{\Lambda}$
20	0,9923	0,9871	0,53 %
15	0,9866	0,9778	0,90 %
10	0,9712	0,9532	1,9 %
7	0,9440	0,9123	3,4 %
6	0,9258	0,8859	4,3 %
5	0,8970	0,8455	5,7 %
4	0,8471	0,7792	8,0 %
3,4509	0,8023	0,7228	9,9 %
3,25	0,7808	0,6966	10,8 %
3	0,7487	0,6587	12,0 %

2.3. Анализ полученных результатов

Приведем формулы для вычисления отношения $\frac{\lambda}{\lambda_{\infty}}$, полученные на основе общей формулы (2), модернизированной формулы В. П. Незнамова (5) и диффузионной формулы (8):

$$\frac{\lambda}{\lambda_{\infty}} = \frac{\Lambda(\langle \beta \rangle R) - \frac{\langle \alpha \rangle}{\langle \beta \rangle}}{1 - \frac{\langle \alpha \rangle}{\langle \beta \rangle}},$$
(9)

$$\frac{\lambda}{\lambda_{\infty}} = \frac{\frac{1}{\left(\langle \beta \rangle R\right)^{0,17}} \left(1,57 - \frac{2}{\langle \beta \rangle R}\right) - \frac{\langle \alpha \rangle}{\langle \beta \rangle}}{1 - \frac{\langle \alpha \rangle}{\langle \beta \rangle}}, \quad (10)$$

$$\frac{\lambda}{\lambda_{\infty}} = \frac{\frac{\varphi(\langle \beta \rangle R)}{\operatorname{tg}\varphi(\langle \beta \rangle R)} - \frac{\langle \alpha \rangle}{\langle \beta \rangle}}{1 - \frac{\langle \alpha \rangle}{\langle \beta \rangle}}.$$
 (11)

На рис. 1 представлены графики $\frac{\lambda}{\lambda_{\infty}}$ вычислений по формулам (10), (11) и $\frac{\lambda_{\text{расч}}}{\lambda_{\infty}}$, построенные по данным табл. 3, 5.

Рис. 1. Зависимости $\frac{\lambda}{\lambda_{\infty}}$ и $\frac{\lambda_{\text{расч}}}{\lambda_{\infty}}$ от параметра $\langle \beta \rangle R$

Заинтерполируем результаты численных расчетов.

В работе [4] получено общее соотношение со сшивкой формулы В. П. Незнамова с диффузионной формулой в точке $\beta R = 3,4509$. В нашем случае принимается $\langle \beta \rangle R = 3,4509$. Поэтому результаты численных расчетов, выполненных на спектрах $F_1(E_n)$ и $F_2(E_n)$, будем интерполировать соответственно при значениях $\langle \beta \rangle R \le 3,4509$ и $\langle \beta \rangle R > 3,4509$.

Результаты расчетов с применением типового спектра $F_1(E_n)$ интерполируются квадратичным трехчленом вида

$$\left(\frac{\lambda}{\lambda_{\infty}}\right)_{\text{интерполяц}} = -0,20413 \left(\langle\beta\rangle R\right)^2 + (12)$$

-1,71861 $\langle\beta\rangle R - 2,83129$ при $\langle\beta\rangle R \le 3,4509,$

а в случае спектра $F_2(E_n)$ интерполяционная формула выглядит так:

+

$$\left(\frac{\lambda}{\lambda_{\infty}}\right)_{\text{интерполяц}} = \frac{\frac{\phi(\langle\beta\rangle R)}{\text{tg}\phi(\langle\beta\rangle R)} - 1,255\frac{\langle\alpha\rangle}{\langle\beta\rangle}}{1 - 1,255\frac{\langle\alpha\rangle}{\langle\beta\rangle}}$$
(13)
при $\langle\beta\rangle R > 3,4509.$
Результаты вычислений $\left(\frac{\lambda}{\lambda_{\infty}}\right)_{\text{интерполяц}}$ по

формулам (12), (13) и $\frac{\lambda_{\text{расч}}}{\lambda_{\infty}}$ приведены на рис. 2.

Из рисунка видно, что результаты вычислений по формуле (12) и численных расчетов, вообще говоря, слабо отличаются друг от друга.

Наибольшая погрешность интерполяции (13) составляет 4,3 %.

Определим зависимость средней скорости нейтронов $\langle V \rangle$ от параметра $\langle \beta \rangle R$.

Средние скорости $\langle V \rangle$ сильно зависят от используемого спектра $f_i(E_n)$, а сечения взаимодействия нейтронов с веществом, наоборот, слабо (см. введение). Чтобы учесть эту зависимость, ниже выбраны следующие величины $\langle \alpha \rangle$ и $\langle \beta \rangle$:

$$\langle \alpha \rangle = \frac{\langle \alpha_1 \rangle + \langle \alpha_2 \rangle}{2},$$
 (14)

$$\langle \beta \rangle = \frac{\langle \beta_1 \rangle + \langle \beta_2 \rangle}{2}.$$
 (15)

Параметры, отмеченные разными индексами, соответствуют спектрам $F_1(E_n)$ и $F_2(E_n)$.

Отметим, что при одинаковых плотностях среды $\langle \alpha_1 \rangle$ отличается от $\langle \alpha_2 \rangle$ на 10 %, а $\langle \beta_1 \rangle$ от $\langle \beta_2 \rangle$ – на 3 %.

Зависимость $\langle V \rangle$ от $\langle \beta \rangle R$, полученная по формуле (6), представлена на рис. 3.

Рис. 3. Зависимость $\langle V \rangle$ от $\langle \beta \rangle R$

Заключение

Для решения предложенного в [1] упрощенного спектрального кинетического уравнения требуется иметь в арсенале несколько типовых спектров $f_i(E_n)$.

В настоящее время существуют только два таких спектра $F_1(E_n)$ и $F_2(E_n)$.

Тем не менее, показано, что с помощью полученных в данной статье интерполяционных формул можно проводить приближенные оценки характеристик спектральных систем.

Список литературы

1. Бабичев Н. Б. Усовершенствование теории подобия процессов нейтронной кинетики и результаты новых аналитических исследований // ВАНТ. Сер. Теоретическая и прикладная физика. 2015. Вып. 2. С. 46–56.

2. Романов Ю. А. Критические параметры реакторных систем. Точные решения односкоростного кинетического уравнения и их использование для решения диффузионных задач (усовершенствованный диффузионный метод). М.: Госатомиздат, 1960. С. 3–26.

3. Шагалиев Р. М., Гребенников А. Н., Артемьев А. Ю, Будников В. И. Развитие основных методик и программ ИТМФ // Журнал Атом. 2011, № 50–51.

4. Бабичев Н. Б., Забусов П. В., Лутиков И. В., Незнамов В. П. Приближенное аналитическое решение задачи на главные собственные значения односкоростного кинетического уравнения переноса нейтронов в случае однородного шара из произвольного вещества при любых его оптических толщинах // ВАНТ. Сер. Теоретическая и прикладная физика. 2009. Вып. 3. С. 14–17.

Статья поступила в редакцию 06.05.2015