УДК 621.039.573

Принципиальная конструкция и нейтронные параметры реакторной установки БИГР + УФН-П

В. Ф. Колесов, В. Х. Хоружий, С. В. Воронцов, А. А. Девяткин, М. И. Кувшинов, В. В. Сажнов

Разработана принципиальная конструкция и выполнена серия расчетов статических и динамических нейтронных параметров двухсекционной импульсной установки БИГР + УФН-П, намечаемой в качестве основного узла облучательной системы с многофункциональным петлевым контуром, предназначаемой для испытаний топлива АЭС с различными теплоносителями в нештатных условиях.

Введение

Современное состояние и перспективы развития ядерной энергетики страны требуют технического перевооружения и модернизации экспериментальной базы отрасли в соответствии с задачами обоснования и повышения безопасности отечественных АЭС и их конкурентоспособности на мировом рынке.

Предполагается, что в России на базе реактора БИГР может быть создана облучательная установка с многофункциональным петлевым контуром, предназначаемая для испытаний топлива АЭС с различными теплоносителями в нештатных условиях. В результате создания такой установки появился бы уникальный комплекс, на котором реализуются возможности обоснования лицензионных критериев для аварийных ситуаций типа RIA и частично для аварий с потерей теплоносителя типа LOCA.

Установка БИГР + УФН-П (реактор БИГР + усилитель флюенса нейтронов подкритический) — двухсекционный реактор, способный работать в импульсном и квазиимпульсном режимах. Реактор БИГР (основной компонент рассматриваемого комплекса) относится к классу апериодических импульсных реакторов (АИР). Он был введен в эксплуатацию в 1977 г. и до сих пор успешно используется как мощный источник n-, γ -излучений для испытания радиационной стойкости различных материалов и изделий и при проведении разнообразных физических экспериментов [1, 2].

При ширине импульса на половине высоты $\sim 2\cdot 10^{-3}$ с реактор БИГР обладает рекордными для быстрых АИР значениями флюенса нейтронов в доступных для облучений объемах: $\sim 1\cdot 10^{16}$ см⁻² в центральном канале диаметром ~ 10 см, высотой ~ 55 см; $\sim 1\cdot 10^{15}$ см⁻² на внешней поверхности активной зоны (АЗ) диаметром ~ 70 см.

Получение высоких флюенсов быстрых нейтронов в реакторе БИГР обеспечено благодаря использованию дисперсного топлива, состоящего из смеси графита с двуокисью высокообогащенного урана (90 % по ²³⁵U) и оригинальной конструкции АЗ. Активная зона реактора БИГР набрана из секций в виде дисков, а секции разбиты на коаксиальные кольца. В секциях каждое уранграфитовое кольцо служит опорой для соседнего внутреннего кольца. Внешние кольца секций расположены на кольцевых опорах из нержавеющей стали. Плоскость опоры каждого кольца выполнена на середине его высоты; этим исключается поступательное перемещение колец в осевом направлении при нагревании топлива (и подскок колец на опорах, если бы разогрев АЗ сопровождался динамическими эффектами).

В применении к реактору из уран-графитового топлива кольцевая структура АЗ со свободной подвеской каждого элемента представляется наиболее естественной и даже безальтернативной. В реакторе с АЗ из хрупкого дисперсного материала было бы трудно реализовать силовое крепление АЗ. Кроме того, встретились бы большие трудности при изготовлении массивных топливных деталей с требуемыми свойствами.

Диаметр и высота A3 в реакторе БИГР равны 76 и 67 см соответственно. В процессе работы при импульсном ядерном нагреве температура A3 повышается до ~900 °C.

Несмотря на указанные высокие параметры импульсов излучений, имеется ряд задач, которые на реакторе БИГР не могут быть решены. К таким задачам относятся облучения сравнительно крупных (до \sim 20 см) блоков и узлов в полях излучений с флюенсами нейтронов до \sim 5· 10^{15} см $^{-2}$, дозами до 10^4 Гр и пространственной неравномерностью облучения, не превышающей 20 %. Облучение на внешнем потоке реактора БИГР заведомо не удовлетворяет этому условию: уже на расстоянии 20 см от поверхности АЗ реактора флюенс нейтронов снижается приблизительно в 2 раза.

С целью расширения возможностей реактора БИГР в части испытания большими флюенсами топлива АЭС предлагается оснастить реактор транспортабельной подкритической ядерной сборкой, способной обеспечивать облучение испытываемых образцов в полости диаметром от 15 до 30 см, высотой 100 см при флюенсе нейтронов до $1\cdot10^{16}$ см $^{-2}$ с показателем неравномерности, не превышающим 10 %. Именно эту функцию и выполняет подкритическая сборка УФН-П.

В первоначальном варианте установки предполагалось, что диаметр полости в УФН-П равен 30 см, толщина графитового отражателя 50 см. В настоящее время считается более рациональным вариант полости диаметром 15 или 20 см и графитовый отражатель толщиной 50 или 30 см. Уменьшение диаметра полости в УФН-П и возможное уменьшение толщины отражателя направлены на уменьшение габаритов и веса УФН-П, снижение его стоимости и повышение управляемости всей установкой.

В статье представлена принципиальная конструкция связанной реакторной установки БИГР + + УФН-П, а также результаты расчета ее статических и динамических нейтронных параметров как с первоначальными, так и пониженными размерами полости и отражателя.

1. Принципиальная конструкция установки БИГР + УФН-П

Испытательная установка БИГР + УФН- Π — двухсекционный реактор, составленный из двух геометрически и материально выделенных, нейтронно-связанных, способных работать в импульсном и квазиимпульсном режимах активных зон. УФН- Π представляет собой оснащенную органами регулирования подкритическую сборку (Π C).

Свойства двухсекционных реакторов исследовались во многих работах. Начиная с 1950-х гг. с этими устройствами связывали надежды повышения безопасности энергетических реакторов с расширенным воспроизводством топлива и увеличения глубины выгорания топлива. Рассматривались преимущественно реакторы, в которых деления в АЗ вызываются только быстрыми,

а в отражателе-бланкете, являющемся зоной воспроизводства, – и быстрыми, и тепловыми нейтронами.

Двухсекционные реакторы обсуждаются и уже нашли применение также в области апериодических импульсных реакторов (АИР). Было показано, что двухсекционные АИР, в частности их разновидности — связанные системы из АИР и подкритических сборок, — способны существенно расширить возможности импульсных экспериментов на реакторах. Оснащение АИР связанной с ним ПС позволяет в зависимости от преследуемых целей или получать более высокие флюенсы нейтронов в местах облучения образцов, или во много раз увеличивать объем полости.

Позднее ряд схем двухсекционных АИР был реализован в виде действующих установок или заложен в важные проекты, например, в проекты мощных лазеров с ядерной накачкой. Из действующих (или действовавших) установок прежде всего должны быть отмечены:

- запущенный в 1980-х гг. во ВНИИТФ (г. Снежинск) импульсный реактор с двумя АЗ БАРС-5 [3];
 - запущенный там же в 1994 г. импульсный реактор с тремя A3 БАРС-5 + РУН [3];
 - запущенный в 1995 г. в ФЭИ (г. Обнинск) импульсный реактор с двумя АЗ БАРС-6 [4];
 - введенный в действие там же в 1999 г. реакторный «Стенд Б» с тремя АЗ [4];
- связанная система из импульсного реактора ACRR и ПС FREC с большой полостью, действовавшая в лаборатории Sandia, США (система расположена в Айдахо). ПС FREC эксплуатировали последовательно в двух модификациях: первая версия ПС, названная FREC-I, имела полость диаметром 38 см; в 1988 г. ПС FREC-I была заменена на FREC-II с полостью диаметром 50 см [5].

Указанные двух- и трехсекционные импульсные реакторы предоставили новые возможности для облучения больших узлов различных устройств и отработки конструкций лазеров с ядерной накачкой.

Следует сказать, что вначале проектная реализация установки БИГР + УФН-П сталкивалась с трудностями. Расчеты показывали, что из-за больших размеров УФН-П (эти размеры определяются необходимостью обеспечения требуемых значений коэффициента размножения нейтронов $k_{\text{эф}}$) даже такой, как БИГР, мощный реактор не в состоянии гибко управлять ведомой им сборкой. Поэтому в варианте УФН-П с традиционно открытой боковой поверхностью получить в полости требуемый флюенс нейтронов не удавалось.

Эффективным техническим решением, позволившим обойти указанную трудность, явилось предложенное В. Ф. Колесовым оснащение УФН-П массивным, скошенным с обращенной к БИГР стороны графитовым отражателем. Введение в конструкцию УФН-П скошенного с одной стороны отражателя значительно увеличило коэффициенты нейтронной связи компонентов комплекса k_{12} , k_{21} и, благодаря уменьшению объема АЗ УФН-П, существенно увеличило флюенс нейтронов в полости, отнесенный к одному делению в АЗ БИГР. Это дало возможность поднять флюенс нейтронов в полости до требуемого уровня.

Общий вид установки БИГР + УФН-П с первоначальными размерами полости и отражателя показан на рис. 1. Вид УФН-П в горизонтальном разрезе показан на рис. 2, в вертикальном разрезе — на рис. 3.

УФН-П установлена на подвижной дистанционно управляемой платформе. Ее габариты (в см) в первоначальной конфигурации:

- высота (макс.) 272;
- ширина 192;
- глубина 152,4;
- длина платформы ~250.

Рис. 1. Схема размещения УФН-П около АЗ реактора БИГР: 1 – реактор БИГР; 2 – АЗ БИГР; 3 – борный экран УФН-П; 4 – экспериментальный канал УФН-П; 5 – АЗ УФН-П; 6 – графитовый отражатель; 7 – нейтронный источник; 8 – механизм нейтронного источника; 9 – привод РБ; 10 – платформа УФН-П

Рис. 2. Горизонтальный разрез АЗ УФН-П: 1 – реактор БИГР; 2 – борный экран УФН-П; 3 – АЗ УФН-П; 4, 9 – графитовый отражатель; 5 – платформа УФН-П; 6, 11 – привод РБ; 7 – регулирующий блок РБ-1; 8 – нейтронный источник; 10 – регулирующий блок РБ-2; 12 – рельсы

Рис. 3. Вертикальный разрез АЗ УФН-П: 1- АЗ УФН-П; 2- чехол АЗ УФН-П; 3- графитовый отражатель; 4- чехол отражателя; 5- экспериментальный канал УФН-П; 6- траверса; 7- электромагнит; 8- якорь электромагнита; 9- ползун; 10- регулирующий блок РБ-1; 11- гидравлический демпфер; 12- привод РБ; 13- платформа УФН-П; 14- выключатель путевой; 15- опора РБ; 16- поддон экспериментального канала

В первоначальном варианте предполагалось, что активная зона УФН-П имеет форму полого цилиндра с наружным диаметром 86 см, внутренним 32 см и высотой 100 см. Предполагалось также, что АЗ будет собрана из шестигранных блоков топливного материала размерами 60–70 мм «под ключ» и высотой 70–100 мм. В качестве топлива намечалось использование гомогенной смеси диоксида урана с обогащением 90 % по изотопу 235 U с графитом. Отношение числа ядер С к числу ядер U в смеси C/U принималось равным 1100, 2200 или 4000. Выбор топливной композиции на основе графитовой матрицы был обусловлен ее хорошей термостойкостью, приемлемыми теплофизическими, ядерными и прочностными свойствами. Топливная композиция на основе диоксида урана и графита обеспечивает работоспособность активной зоны при температурах до ~ 1000 °C.

Как уже говорилось, более поздние варианты УФН-П имеют другие размеры полости и могут иметь отражатель с меньшей толщиной. Отношение числа ядер C к числу ядер U в топливной смеси этих вариантов могло браться равным 2000.

В целях создания защиты топлива от окисления, сохранения конфигурации и защиты от механических воздействий, предотвращения выхода в окружающее пространство продуктов деления блоки АЗ УФН-П заключались в защитный чехол из нержавеющей стали (поз. 2 на рис. 3). Неже-

лательный по ряду причин локальный всплеск делений в периферийной, обращенной к УФН-П области АЗ БИГР хотя бы отчасти предотвращался штатным кадмиевым экраном, размещенным на кожухе реактора, а более радикально — экраном из карбида обогащенного бора, закрепленным на скошенной боковой поверхности УФН-П (см. рис. 2).

В целях регулирования уровня подкритичности сборки и надежного заглушения ее в периоды пребывания в отстойнике в УФН-П были предусмотрены два регулирующих блока (РБ-1 и РБ-2), перемещаемые порознь или синхронно на базе 50 см со скоростью 1 мм/с. РБ-1, РБ-2 представляют собой призматические фрагменты графитового отражателя, размещаемые в удаленной от БИГР области.

2. Расчеты статических и кинетических нейтронных параметров установки БИГР + УФН-П

Расчеты статических нейтронных характеристик первоначальной конфигурации установки БИГР + УФН-П проводились с помощью программы С-95 [6], последующих конфигураций — с помощью программы С-007 [7]. В этих расчетах использовались нейтронные константы ENDF/B-VI и БАС [8]. Кинетические нейтронные характеристики установки определялись с помощью оперативной программы «Кинрид».

При проведении расчетов предполагалось, что теплофизические свойства топливного материала идентичны свойствам графита [9, 10].

Гашение реактивности в реакторе БИГР и УФН-П рассчитывалось с учетом зависимости теплофизических параметров АЗ от температуры. Коэффициент размножения нейтронов для реактора БИГР записывался как

$$k_{11}(t) = k_{11}(0) - 8,666 \cdot 10^{-6} Y_1 + 0,1666 \cdot 10^{-6} Y_1^{3/2} - 5,9 \cdot 10^{-12} Y_1^3$$

 $(Y_1(t)$ — энерговыделение за ипульс в БИГР, МДж), для УФН-П с полостью диаметром 15 см — как

$$k_{22}(t) = k_{22}(0) - 8,8031 \cdot 10^{-5} \Theta_2 + 4,1842 \cdot 10^{-7} \Theta_2^{1,59}$$

и для УФН-П с полостью диаметром 20 см – как

$$k_{22}(t) = k_{22}(0) - 8,6965 \cdot 10^{-5} \Theta_2 + 3,4518 \cdot 10^{-7} \Theta_2^{1,61}$$

где $\Theta_2(t)$ — максимальное повышение температуры в УФН-П, соответствующее энерговыделению $Y_2(t)$.

 Θ_2 определялось с использованием следующей аналитической аппроксимации зависимости теплоемкости графита от температуры, отсчитываемой от 20 °C:

$$C(\Theta) = (A\Theta + B)^{\gamma}$$
 Дж·г⁻¹·град.⁻¹,
 $A = 0.010348$, $B = 0.24295$, $\gamma = 0.27$.

Эта аппроксимация с точностью 3-4 % описывает экспериментальную зависимость теплоемкости при температурах от 0 до 1700 °C и позволила получить аналитическое выражение для энтальпии топливного материала:

$$H(\Theta) = \int_{0}^{\Theta} d\Theta' C(\Theta') = \frac{1}{A(\gamma+1)} \left[\left(A\Theta + B\right)^{\gamma+1} - B^{\gamma+1} \right],$$
Дж· Γ^{-1} .

Полученные в итоге интегральные уравнения кинетики сводились к дифференциальным и интегрировались с помощью метода Гира [11].

2.1. УФН-П с диаметром полости 30 см и толщиной графитового отражателя 50 см

В результате расчетов по программе C-95 первоначальной конфигурации установки БИГР + + УФН-П были получены коэффициенты размножения и времена жизни нейтронов k_j и τ_j , коэффициенты нейтронной связи секций k_{12} , k_{21} , коэффициент гашения реактивности в УФН-П в зависимости от температуры. Были получены также распределение флюенса нейтронов в осевом канале УФН-П, веса реактивности блоков РБ-1, РБ-2 и оценено влияние УФН-П на пространственное распределение плотности делений в АЗ БИГР.

Было показано, что в первоначальной конфигурации установки БИГР + УФН-П:

- флюенс нейтронов в осевом канале УФН-П в зависимости от параметра γ равен (6–8)·10⁻⁴ см⁻² на одно деление в его АЗ;
- реактор БИГР практически не влияет на реактивность УФН-П, а УФН-П увеличивает реактивность БИГР примерно на 2 %;
- при штатном кадмиевом экране, размещенном на внешнем кожухе БИГР, приближение УФН-П к реактору БИГР сильно возмущает пространственное распределение плотности делений в АЗ, что приводит к повышению в 3,7 раза температуры периферийной, обращенной к УФН-П области АЗ БИГР. При замене кадмиевого экрана борным (B_4C) толщиной 0,69 г/см² температура периферийной области АЗ БИГР повышается в 2 раза;
- изменение реактивности УФН-П при опускании на 50 см каждого из блоков РБ-1, РБ-2 (см. рис. 2) составляет примерно 6 %.

Получены следующие значения других статических и кинетических параметров установки БИГР + УФН-П с первоначальной конфигурацией УФН-П.

В варианте УФН-П с АЗ из уран-графитовой смеси с параметром $\gamma = 4000$ и штатным кадмиевым экраном, размещенным на внешнем кожухе БИГР: внешний радиус АЗ \cong 46 см; $k_{12} = 0.049$; $k_{21} = 0.059$; $\tau_2 = 8.6 \cdot 10^{-4}$ с; коэффициент гашения реактивности $1.299 \cdot 10^{-4}$ МДж⁻¹ в интервале температур от 16.9 до 307 °C; $0.871 \cdot 10^{-4}$ МДж⁻¹ в интервале температур от 307 до 597 °C и $0.507 \cdot 10^{-4}$ МДж⁻¹ в интервале температур от 597 до 887 °C.

В варианте УФН-П с A3 из уран-графитовой смеси с показателем $\gamma=2200$, графитовым отражателем толщиной 50 см и штатным кадмиевым экраном: внешний радиус A3 = 42 см; $k_{12}=0.038$; $k_{21}=0.048$; $\tau_2=6.3\cdot10^{-4}$ с; коэффициент гашения реактивности в указанных выше интервалах температур соответственно $1.473\cdot10^{-4}$; $0.691\cdot10^{-4}$ и $0.345\cdot10^{-4}$ МДж⁻¹.

Получено, что спектр флюенса нейтронов в полости УФН-П содержит 8 % тепловых нейтронов, 9 % нейтронов с энергией выше 1 МэВ и 29 % — с энергией выше 0,1 МэВ. Пространственная неоднородность флюенса нейтронов в экваториальной плоскости полости не превышает 10 %. Борный экран по сравнению с кадмиевым гораздо эффективнее защищает АЗ БИГР от нежелательных перекосов в пространственном распределении температуры. Вместе с тем замена кадмиевого экрана борным влечет за собой неблагоприятное уменьшение коэффициентов связи k_{12} , k_{21} . В случае штатного экрана $k_{12} = 0,038$, $k_{21} = 0,0480$, а в случае борного экрана — соответственно 0,0289 и 0,0395.

Генерирование импульсов с флюенсом $8\cdot10^{15}$ см⁻² во всех случаях, в особенности при наличии борного экрана, может осуществляться лишь при относительно небольших подкритичностях УФН-П и при значительном запасе реактивности импульсного блока БИГР. Наличие борного экрана во всех случаях приводит к заметному ухудшению параметров установки, выражающемуся, главным образом, в снижении уровней подкритичности УФН-П. Имеет место сильная зависимость подкритичности УФН-П и требуемого запаса реактивности импульсного блока БИГР от уровня флюенса нейтронов. Так, при снижении флюенса на 25 %, т. е. до $6\cdot10^{15}$ нейтр./см², глубина подкритичности УФН-П увеличивается в 2–3 раза, а требуемый запас реактивности импульсного блока уменьшается примерно в 2,5 раза.

Сказанное означает, что в установке БИГР + УФН-П с первоначальной конфигурацией УФН-П ввод избыточной реактивности, необходимой для генерирования мощного импульса делений, может быть реализован лишь с помощью модернизированного импульсного блока. Как было показано, практическая реализация такой модернизации вполне возможна.

2.2. УФН-П с диаметром полости 15 или 20 см и толщиной графитового отражателя 30 см

В более позднем варианте установки БИГР + УФН-П было принято, что диаметр полости в УФН-П равен 15 или 20 см, толщина графитового отражателя 30 см, $\gamma = 2000$. Предполагалось, что между активными зонами БИГР и УФН-П устанавливается экран из насыпного карбида природного бора толщиной 0,5 см (поверхностная плотность 10 B $\sim 0,03$ г/см 2) или такой же толщины экран из металлического бора с обогащением по 10 B 85 % (поверхностная плотность 10 B $\sim 0,85$ г/см 2). Внешний радиус АЗ УФН-П в вариантах с полостями 15 и 20 см получен равным 38,5 см и 41 см соответственно.

Расчетные значения коэффициентов нейтронной связи активных зон k_{12} , k_{21} в установке БИГР + УФН-П в случае экранов из насыпного карбида природного бора или металлического обогащенного бора приведены в табл. 1. Параметры установки БИГР + УФН-П и импульсов делений в ней при тех же условиях представлены в табл. 2, 3. В этих таблицах приведены энерговыделения Y_1 , Y_2 за импульс и значения коэффициента размножения нейтронов k_{11} , k_{22} в БИГР и УФН-П соответственно, полный для установки коэффициент размножения нейтронов $k_{9\phi}$, ширина импульса на половине высоты $\theta_{1/2}$ в сборке УФН-П и в ней же максимальные значения флюенса нейтронов в полости за импульс F_2 и температуры в АЗ T_2 .

Картина изменения мощности в импульсах делений в компонентах установки БИГР + + УФН-П показана на рис. 4, 5.

Из табл. 2, 3 следует, что при начальной подкритичности сборки с полостью диаметром 20 см на уровне 1-2 % в установке с экраном из насыпного карбида бора могут генерироваться импульсы с флюенсом нейтронов $1,04\cdot10^{16}$ см $^{-2}$ и $0,84\cdot10^{16}$ см $^{-2}$, а в установке с экраном из металлического обогащенного бора $-0,84\cdot10^{16}$ см $^{-2}$ и $0,66\cdot10^{16}$ см $^{-2}$. Как видим, присутствие более сильного борного экрана приводит к заметному ухудшению параметров установки, выражающемуся, главным образом, в снижении уровня флюенса нейтронов при заданной подкритичности УФН-П.

 $\label{eq:Tadef} T\ a\ б\ \pi\ u\ ц\ a\ 1$ Коэффициенты нейтронной связи активных зон в установке БИГР + УФН-П

Коэффициенты	10 B ~ 0,	03 г/см ²	$^{10}{ m B} \sim 0.85 \; { m \Gamma/cm}^2$		
СВЯЗИ	Полость Ø15 см	Полость Ø20 см	Полость Ø15 см	Полость Ø20 см	
k_{12}	0,0282	0,0258	0,0170	0,0155	
k_{21}	0,0315	0,0325	0,0238	0,0244	

Таблица 2 Параметры установки БИГР + УФН-П и импульсов делений в УФН-П в случае слабого экрана (10 B $\sim 0.03 \text{ г/см}^2$)

<i>Y</i> ₁ , МДж	<i>Y</i> ₂ , МДж	$k_{\circ \Phi}$	k_{11}	k_{22}	$\theta_{1/2}$, MC	F_2 , 10^{16} cm ⁻²	T_2 , °C
	БИГР + УТС (полость ∅15 см)						
280	78	1,00859	1,00041	0,90	90,7	0,33	142
280	94	1,00882	0,99882	0,92	105	0,40	163
280	117	1,00929	0,99647	0,94	115	0,50	192
279	153	1,01036	0,99272	0,96	115	0,65	236
281	220	1,01304	0,98615	0,98	102	0,94	310
279	348	1,01924	0,97307	1,00	80,0	1,48	442
БИГР + УТС (полость ⊘20 см)							
281	81	1,00855	1,00083	0,90	90,4	0,29	135
280	97	1,00875	0,99930	0,92	106	0,35	154
281	121	1,00918	0,99706	0,94	118	0,44	182
280	160	1,01017	0,99346	0,96	120	0,58	224
280	230	1,01270	0,98706	0,98	107	0,84	294
281	371	1,01879	0,97417	1,00	83,3	1,35	426

Таблица 3 Параметры установки БИГР + УФН-П и импульсов делений в УФН-П в случае сильного экрана (10 B ~ 0.85 г/см²)

<i>Y</i> ₁ , МДж	<i>Y</i> ₂ , МДж	$k_{9\Phi}$	k_{11}	k_{22}	θ _{1/2} , мс	F_2 , 10^{16} cm ⁻²	T_2 , °C
	Полость Ø15 см						
281	60	1,00840	1,00467	0,90	56,2	0,26	117
281	72	1,00849	1,00392	0,92	72,7	0,31	134
281	90	1,00869	1,00280	0,94	92,1	0,38	158
280	120	1,00920	1,00098	0,96	108	0,51	195
280	174	1,01080	0,99766	0,98	109	0,74	259
281	290	1,01600	0,99071	1,00	88,6	1,24	383
Полость Ø20 см							
279	61	1,00838	1,00489	0,90	54,9	0,22	110
280	74	1,00846	1,00419	0,92	71,7	0,27	126
279	92	1,00863	1,00312	0,94	93,0	0,33	148
281	124	1,00910	1,00140	0,96	111	0,45	185
281	182	1,01058	0,99821	0,98	113	0,66	246
281	306	1,01560	0,99136	1,00	92,5	1,11	367

Ширина на половине высоты указанных импульсов составляет, соответственно, 96,4-113 мс.

В установке БИГР + УФН-П с диаметром полости 15 см по сравнению с установкой с диаметром полости 20 см при тех же подкритичностях УФН-П на уровне 1-2 % и экранах ширина на половине высоты указанных импульсов уменьшается примерно на 5 %, а флюенс нейтронов в полости повышается примерно на 12 %.

Максимальная температура топлива в сборке УФН- Π в указанных импульсах составит 246—365 °C, а энерговыделение за импульс — 174—287 МДж. Загрузка обогащенного урана в АЗ УФН- Π при диаметре полости 15 и 20 см составит 8,28 и 9,18 кг соответственно.

Рис. 4. Зависимость от времени мощности компонентов в установке БИГР + УФН-П с полостью диаметром 20 см, сильным экраном (10 B $\sim 0,85 \ r\cdot cm^{-2}$) и k_{22} = 0,99: P_1 – мощность БИГР; P_2 – мощность УФН-П

Рис. 5. Плотность потока нейтронов в центре полости УФН-П в установке БИГР + УФН-П с полостью диаметром 20 см, сильным экраном (10 B $\sim 0.85 \text{ г/cm}^2$) и $k_{22} = 0.99$

2.3. УФН-П с диаметром полости 15 или 20 см и толщиной графитового отражателя 50 см

Была рассчитана также установка, конфигурация которой отличалась от первоначальной лишь уменьшенным, равным 15 или 20 см, диаметром полости. Толщина графитового отражателя в этом случае, как и в первоначальном варианте, принималась равной 50 см.

Получено, что в конфигурации с полостью диаметром 15 см внешний радиус АЗ УФН-П равен 34 см, масса урана в АЗ равна 6,38 кг, максимальное повышение температуры топлива и максимальный флюенс нейтронов в полости связаны с энерговыделением в импульсе как $1.43~{\rm ^{\circ}C\cdot M}\mbox{Д}\mbox{ж}^{-1}$ и $4.7\cdot 10^{13}~{\rm cm}^{-2}\cdot {\rm M}\mbox{Д}\mbox{ж}^{-1}$ соответственно.

Для конфигурации с полостью диаметром 20 см значения аналогичных характеристик равны 36 см, 6,94 кг, 1,32 °C·МДж $^{-1}$ и 4,1· 10^{13} см $^{-2}$ ·МДж $^{-1}$.

Другие параметры установки БИГР + УФН-П и импульсов делений в УФН-П в случае полости диаметром 15 или 20 см и графитового отражателя толщиной 50 см приведены в табл. 4.

Если сравнить параметры установки БИГР + УФН-П в настоящем разделе и в разделе 2.1, то можно увидеть, что предложенное уменьшение диаметра полости в УФН-П от 30 см до 15-20 см имеет следствием:

- значительное повышение доминирующей роли реактора БИГР в комплексе, что выражается, в частности, в увеличении флюенса нейтронов за импульс в полости УФН-П при заданном уровне подкритичности сборки;
 - уменьшение объема и веса АЗ УФН-П, а также объема и веса всей сборки;
 - уменьшение массы обогащенного урана в АЗ УФН-П.

Очень важно также, что достигаемое путем уменьшения диаметра полости повышение доминирующей роли реактора БИГР приводит к упрощению задачи управления установкой, а именно к снижению жестких требований к запасу реактивности органов управления как самого реактора БИГР, так и сборки УФН-П.

Таблица 4

Параметры установки БИГР + УФН-П и импульсов делений в УФН-П в случае полости диаметром 15 или 20 см и графитового отражателя толщиной 50 см

Экран с плотност	ью 10 B ~ $0,03 \text{ г/см}^2$	Экран с плотностью ¹⁰ B ~ 0,85 г/см ²				
$\Delta k_2 = -0.01$	$\Delta k_2 = -0.02$	$\Delta k_2 = -0.01$	$\Delta k_2 = -0.02$			
Полость ∅15 см						
$k_{12} = 0.0326$	$k_{21} = 0.0326$	$k_{12} = 0.0252, \ k_{21} = 0.0252$				
Y_2 , = 281,1 МДж	226,8	232,8	184,2			
$T_2 = 402 {}^{\circ}\text{C}$	324,3	332,9	263,4			
$F_2 = 1.321 \cdot 10^{16} \text{ cm}^{-2}$	$1,066 \cdot 10^{16}$	$1,094 \cdot 10^{16}$	$0,866 \cdot 10^{16}$			
Полость Ø20 см						
$k_{12} = 0.0333$	$k_{21} = 0.0333$	$k_{12} = 0.0258, \ k_{21} = 0.0258$				
Y_2 , = 293,7 МДж	235,8	244,2	191,8			
$T_2 = 388 ^{\circ}\text{C}$	311	$322 \\ 1{,}148 \cdot 10^{16}$	253			
$F_2 = 1,204 \cdot 10^{16} \text{ cm}^{-2}$	$F_2 = 1,204 \cdot 10^{16} \text{ cm}^{-2}$ 1,108·10 ¹⁶		$0,901 \cdot 10^{16}$			

Оптимальной в отношении достижимого за импульс уровня флюенса нейтронов является конфигурация УФН-П с полостью диаметром 15 см и отражателем толщиной 50 см. Максимальное значение флюенса нейтронов в этой конфигурации $1,32\cdot10^{16}$ см $^{-2}$, что примерно на 35 % выше максимального флюенса нейтронов в первоначальной конфигурации УФН-П с полостью диаметром 30 см и отражателем толщиной 50 см. Конфигурация УФН-П с полостью диаметром 15 см и с более легким, чем в оптимальной сборке, отражателем, т. е. с отражателем толщиной 30 см, имеет в сравнении с ней примерно на 15 % меньшее значение максимального флюенса.

Заключение

Представлены принципиальная конструкция и расчетные параметры двухсекционной установки БИГР + УФН-П, составленной импульсным реактором БИГР и подкритической сборкой УФН-П и предназначенной для испытаний топлив АЭС с различными теплоносителями в нештатных условиях. Рассмотрены варианты УФН-П с несколькими значениями диаметра полости и толщины графитового отражателя. Оптимальной в отношении достижимого в полости флюенса нейтронов, габаритов, стоимости и управляемости всей установкой является сборка с АЗ из уранграфитового материала с равным 2000 отношением чисел ядер С и ²³⁵U, осевой полостью диаметром 15 см и графитовым отражателем толщиной 50 см.

В результате выполненной работы обоснована возможность создания лабораторной установки с флюенсом нейтронов за импульс в полости до $1,3\cdot10^{16}~{\rm cm}^{-2}$ с показателем радиальной неравномерности флюенса, не превышающим 10~%.

Список литературы

- 1. Кувшинов М. И., Колесов В. Ф., Смирнов И. Г. Апериодический импульсный реактор БИГР // Вопросы атомной науки и техники. Сер. Импульсные реакторы и простые критические сборки. 1988. Вып. 1. С. 3-12.
- 2. Колесов В. Ф. Апериодические импульсные реакторы. Саров: РФЯЦ-ВНИИЭФ, 2007.

- 3. Леваков Б. Г., Лукин А. В., Магда Э. П. и др. Импульсные ядерные реакторы РФЯЦ-ВНИИТФ. Снежинск: РФЯЦ-ВНИИТФ, 2002.
- 4. Гулевич А. В., Дьяченко П. П., Зродников А. В., Кухарчук О. Ф. Связанные реакторные системы импульсного действия. М.: Энергоатомиздат, 2003.
- 5. Rubio R. A., Cooper P. J., Schulze J. F. et al. FREC-II: an upgrade to SNL Annular Core Research Reactor // Trans. Amer. Nucl. Soc. 1989. Vol. 59 (Suppl. 1). P. 55–56.
- 6. Донской Е. Н., Ельцов В. А., Житник А. К. и др. Метод Монте-Карло во ВНИИЭФ // Вопросы атомной науки и техники. Сер. Матем. моделирование физ. процессов. 1993. Вып. 2. С. 61–64.
- 7. Житник А. К., Донской Е. Н., Огнев С. П. и др. Методика С-007 решения методом Монте-Карло связанных линейных уравнений переноса нейтронов, гамма-квантов, электронов и позитронов // Вопросы атомной науки и техники. Сер. Матем. моделирование физ. процессов. 2011. Вып. 1. С. 17–24.
- 8. Васильев А. П., Кандиев Я. 3., Читайкин В. И. Расчеты некоторых опытов на системах из 235 U и 238 U со спектральными нейтронными константами БАС // Нейтронная физика. Т. 2. М.: ЦНИИатоминформ, 1984. С. 119–123.
- 9. Вяткин С. Е., Деев А. Н., Нагорный В. Г. и др. Ядерный графит. М.: Атомиздат, 1967.
- 10. Уббелоде А. Р., Льюис Ф. А. Графит и его кристаллические соединения. М.: Мир, 1965.
- 11. Хоружий В. Х., Колесов В. Ф. Решение уравнений многозонной реакторной кинетики с автоматическим выбором шага счета // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 1997. Вып. 2. С. 22–24.

Principle Design and Neutron Parameters of Reactor Installation BIGR + UFN-P

V. F. Kolesov, V. Kh. Khoruzhy, S. V. Vorontsov, A. A. Devyatkin, M. I. Kuvshinov, V. V. Sazhnov

A principle design and a series of calculations of static and dynamic neutron parameters of two-section pulsed installation «BIGR + UFN-P» was developed. It is planned as a basic unit of an irradiation system with a multi-functional loop contour, meant for APP fuel testing with different heat carriers under non-standard conditions.