СПОСОБЫ ОПРЕДЕЛЕНИЯ ЗНАЧЕНИЯ ОТКОЛЬНОЙ ПОВРЕЖДЕННОСТИ

И. А. Терешкина^{1,2}, И. Р. Трунин^{1,2}, В. Г. Симаков^{1,2}, М. И. Ткаченко^{1,2}

¹ФГУП «РФЯЦ-ВНИИЭФ», 607188, г. Саров Нижегородской обл. ²СарФТИ НИЯУ МИФИ, 607186, г. Саров Нижегородской обл.

На примере стали 10 рассмотрены способы определения величины откольной поврежденности образцов. Первый способ основывается на измерениях плотности образца до и после эксперимента и вычислении поврежденности. Второй способ предполагает проведение металлографического структурного анализа поперечного среза образца и использование планиметрической методики определения площади среза дефекта.

Ключевые слова: откольное разрушение, поврежденность, планиметрическая металлографическая методика.

Введение

Многостадийность процесса откольного разрушения, подтвержденная многочисленными экспериментами, лежит в основе формулировки современных моделей разрушения, например [1–3]. В таких моделях в качестве меры поврежденности, в большинстве случаев, используют скалярный параметр ω , изменяющийся от начального состояния $\omega_0 = 0$, соответствующего неповрежденному материалу, до предельной величины $\omega_{\rm kp}$, соответствующей образованию в данном объеме материала макроскопической трещины определенных размеров.

По определению $\omega = 1 - \frac{\rho}{\rho_s}$, где ρ – плотность

материала с дефектами, ρ_S – плотность сплошной матрицы.

Кроме меры поврежденности большое значение имеют структурные изменения материала, которые происходят после динамического воздействия и, в частности, кратковременного растяжения. Металлографический анализ постопытных образцов позволяет определить характер, степень разрушения, изменение микротвердости и т. д.

В результате исследований, выполненных в рамках данной работы, будут получены данные о поврежденности образцов из стали 10 размером \emptyset 20×4 мм: характер и степень разрушения, коли-

чественные значения откольной поврежденности этих образцов, которые будут использоваться при определении параметров численной модели от-кольного разрушения стали.

1. Постановка и результаты экспериментов

Определение плотности исследуемых образцов

Исследуемые образцы представляли собой цилиндры из стали 10 диаметром 20 мм и толщиной 4 мм.

Перед тем как проводить эксперименты, вычислялась плотность стальных образцов, которая в дальнейшем будет использоваться для определения поврежденности этих образцов. Методика определения плотности заключается в следующем:

 – на электронных весах GX-1000 измеряются массы образца в воде и воздухе;

– плотность образца вычисляется по формуле: $\rho_S = m_1 \rho_B / (m_1 - m_2)$, выведенной из закона Архимеда, где m_1 – масса образца, измеренная в воздухе, m_2 – масса образца, измеренная в воде, ρ_B – плотность воды. Также определялся объем исследуемых образцов $V_S = m_1 / \rho_S$.

Полученные значения массы, плотности ρ_S и объема V_S четырех образцов из стали приведены в табл. 1. Определенная указанным способом плотность вещества совпадает со справочным значением плотности стали.

Таблица 1

Начальные характеристики образцов

Образец	m_1	m_2	$\Omega_{\rm C}$ Γ/\rm{CM}^3	V_S , cm ³	
		Г	PS, 170m		
1	9,677	8,442	7,836	1,235	
2	9,700	8,465	7,854	1,235	
3	9,632	8,403	7,837	1,229	
4	9,666	8,435	7,852	1,231	

Затем образцы с известными измеренными характеристиками (плотность и объем) нагружались ударниками с различными скоростями.

Постановка экспериментов

Схема постановки опытов приведена на рис. 1 (материалы ударника и образца – сталь 10, подложка – фторопласт; все размеры сборки приведены на рисунке). Разгон ударника осуществлялся в стволе легкогазовой пушки калибра 37 мм. Было проведено четыре эксперимента в одинаковой постановке, изменялась только скорость соударения ударника и мишени – $W_{va} = 247, 287, 348, 391$ м/с.

При такой постановке опытов в срединном сечении образца создаются условия для возникновения растягивающих напряжений, что приводит к откольному разрушению образцов. В зависимости от скорости нагружения изменяется степень откольного разрушения образцов.

Рис. 1. Схема эксперимента

Результаты экспериментов. Определение величины поврежденности стальных образцов

После каждого ударно-волнового эксперимента с зарегистрированной скоростью нагружения сохраненный образец:

1) взвешивался в воздухе и воде, и вычислялись его плотность ρ и объем V (аналогично определению ρ_S и V_S исходных образцов) для дальнейшего определения поврежденности образца;

2) разрезался по диаметру, и по шлифу его поперечного среза определялись степень и характер поврежденности. С использованием планиметрической металлографической методики определялась величина поврежденности образца и строилось распределение поврежденности по толщине образца.

1. После взвешивания образцов вычислялись объем дефектов $V_T = V - V_S$ и поврежденность $\omega = \frac{V_T}{V} = 1 - \frac{\rho}{\rho_s}$. Результаты вычислений приведены в табл. 2.

Таблица 2

Результаты экспериментов

Обра-	$W_{\rm yg},$	m_1	m_2	ρ,	V	V_T	M
зец	м/с	Г		г/см ³ см ³		• экс	
1	247	9,679	8,436	7,786	1,243	0,008	0,006
2	287	9,696	8,442	7,732	1,254	0,019	0,015
3	348	9,633	8,380	7,687	1,253	0,024	0,019
4	391	9,665	8,395	7,610	1,270	0,039	0,031

Как видно из табл. 2, с ростом скорости соударения поврежденность возрастает от значения $\omega_{\rm экc} \sim 0,006$ при $W_{\rm yg} = 247$ м/с до $\omega_{\rm экc} \sim 0,031$ при $W_{\rm yg} = 391$ м/с. Отметим здесь, что полученные значения поврежденности соответствуют поврежденности стального образца размером $\emptyset 20 \times 4$ мм, и при изменении размеров образца (его объема $V_S = m_1/\rho_S$) значение поврежденности будет меняться. То есть при увеличении начального объема образца относительная величина $\omega = \frac{V_T}{V_T + V_S}$ будет уменьшаться, а при уменьшении V_s – увеличиваться.

2. Изображения диаметральных поперечных срезов сохраненных в четырех опытах стальных образцов приведены на рис. 2. В серединных сечениях образцов образовалась зона, в которой видны следы повреждений – нарушения сплошной структуры материала образца. Как следует из рис. 2, с увеличением скорости нагружения возрастает поврежденность образцов: при $W_{yd} = 247$ м/с повреждения незначительные – видны отдельные микротрещины; при $W_{yd} = 287$ и 348 м/с размеры дефектов увеличиваются и наиболее крупные – объединяются; при $W_{yd} = 391$ м/с в середине образца образуется магистральная трещина. Характер разрушения стальных образцов – хрупкий с характерным дефектом, имеющим форму трещины. На рис. 3 приведены изображения отдельных зон срезов образцов – исходная структура и образцы 1–4, на которых четко видны трещины, увеличивающиеся в размерах при возрастании действующей нагрузки.

Образец 1, $W_{yg} = 247$ м/с

Образец 2, *W*_{уд} = 287 м/с

Образец 3, $W_{yg} = 348 \text{ м/c}$

Образец 4, $W_{yg} = 391 \text{ м/c}$

Рис. 2. Картина шлифов стальных образцов при увеличении 50х

Согласно стереометрическому соотношению, измерение относительного объема дефектов (поврежденности) в образце с дефектами можно заменить измерением и суммированием площадей на единице площади шлифа его поперечного среза. Поэтому для определения количественной величины поврежденности в постопытных образцах из стали использовался планиметрический метод, который основывается на измерении суммарной площади сечений дефектов на определенной площади металлографического шлифа.

Метод предполагает, используя пакет компьютерных программ Vestra [4], проводить обработку изображений микроструктуры и определять общее количество дефектов в кадре, среднюю площадь дефектов, площадь всех дефектов и плотность дефектов на данной площади – поврежденность ω .

В качестве примера применения планиметрического метода определения поврежденности рассмотрим этапы обработки изображения поперечного среза образца 4 (см. рис. 2).

I. На срезе с помощью графического редактора выделялись дефекты и контур образца. На рис. 4а светло-серый прямоугольник – контур образца, поврежденность – трещины черного цвета.

Рис. 4а. Этап 1 обработки изображения

II. Изображение среза образца закрашивалось в черный цвет, дефектная структура – в темносерый (см. рис. 4б). Для большей точности определения площадей выделенных областей в пакете Vestra предусмотрено контрастное выделение рассматриваемой площади и имеющихся в ней неоднородностей. Поэтому были выбраны: контур – светло-серый, дефекты – темно-серый, срез образца – черный.

Рис. 4б. Этап 2 обработки изображения

III. Сечение разбивалось на *N* одинаковых зон, каждая зона соответствовала объемной части образца, которая имела массу, равную 1 г. То есть

объем каждой такой части образца $V = \frac{1}{\rho_S}$ и

 $\sum_{i=1}^{N} V_i = V_S$, где ρ_S, V_S – начальные плотность и

объем образца. Поперечный размер зоны равнялся диаметру образца; ширина каждой зоны по толщине образца определялась из следующего соот-

ношения:
$$\Delta x = \frac{1}{\pi \rho_S R^2}$$
, где R – радиус цилиндри-

ческого образца. Таким образом, на изображение накладывается прямоугольная сетка, внешняя граница которой соответствует начальным размерам образца – диаметр и толщина, а шаг сетки Δx по толщине образца определялся из приведенного выше соотношения.

Для данного примера $\emptyset = 20$ мм, h = 4 мм. Площадь поперечного сечения, которое покрывает сетка S = 20 мм · 4 мм = 0,8 см²; шаг сетки $\Delta x \approx 0,04$ см; площадь каждой зоны $S_i = \emptyset \Delta x \approx 20,08$ см². Всего получается 10 зон.

Для примера приведены зоны 4, 6 и 8. Номера зон отсчитываются от верхней (нагружаемой) границы образца (рис. 4в).

Рис. 4в. Этап 3 обработки изображения

IV. В каждой зоне определяются общая площадь зоны и площадь зоны без дефектов, и вычитанием получается площадь, занимаемая дефектами (окрашена в темно-серый цвет) – S_T . Тогда поврежденность в каждой зоне образца, площадь которой S_i , равна $\omega_i = \frac{S_T}{S_i}$, а общая поврежденность всего $\sum_{i=1}^{N} S_T$

образца
$$\omega = \frac{\sum S_T}{S}$$
.

Значения поврежденности, полученные по результатам обработки поперечных сечений образцов 1–4 (см. рис. 2), приведены в табл. 3. Здесь же для сравнения представлены значения поврежденности $\omega_{
m экс}$, полученные методом взвешивания.

Таблица 3

Образец	<i>W</i> _{уд} , м/с	Номер зоны	ω _i	ω	ω _{экс}
1	247	1 2 3 4 5 6 7 8 9 10	0 0,0004 0,063 0,033 0,0354 0,00732 3,85E-5 0 0	0,008	0,006
2	287	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0\\ 0\\ 0,0007\\ 0,0077\\ 0,0457\\ 0,0638\\ 0,0070\\ 0,0004\\ 0\\ 0\\ 0\end{array}$	0,013	0,015
3	348	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0\\ 0\\ 0,0051\\ 0,0197\\ 0,0932\\ 0,0667\\ 0,0150\\ 0,0037\\ 0,0007\\ 0\end{array}$	0,020	0,019
4	391	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0\\ 0\\ 0\\ 0,0023\\ 0,0131\\ 0,1025\\ 0,2005\\ 0,0339\\ 0,0046\\ 4,19E\text{-}5\\ 0\end{array}$	0,036	0,031

Рассмотрены два способа определения значения откольной поврежденности ω : 1 – взвешивание образцов до и после опыта; 2 – измерение суммарной площади дефектов на площади металлографического шлифа поперечного среза постопытного образца.

На примере образцов из стали 10 размером $\emptyset = 20$ мм, h = 4 мм, имеющих различную степень откольного разрушения, получено удовлетвори-

тельное соответствие значений поврежденности, определенных разными способами.

Планиметрический метод также позволяет построить распределение поврежденности по всей толщине образца, что может быть использовано при определении параметров и тестировании численных моделей откольного разрушения.

2. Численное моделирование откольного разрушения образцов из стали 10

Моделирование экспериментов по откольному разрушению стальных образцов проводилось по одномерной программе [5]. Расчетная схема экспериментальной сборки приведена на рис. 5.

Процедура численного моделирования заключается в решении системы дифференциальных уравнений, выведенных из законов сохранения импульса, массы и энергии, которая замыкается уравнением состояния в форме Ми–Грюнайзена, а для описания девиаторной составляющей тензора напряжений используется уравнение Малверна–Дуввала [6] с дислокационным релаксационным уравнением для скорости пластических сдвигов [7]. Моделирование откольного разрушения стали проводилось по кинетической модели хрупкого разрушения [1].

Такой набор уравнений и моделей традиционно используется авторами для решения одномерных задач ударно-волнового сжатия, упругопластического деформирования и откольного разрушения металлов.

В данной работе информацию, получаемую из расчетов, ограничим представлением о развитии поврежденности во внутренних сечениях стальных образцов.

На рис. 6 показаны расчетные распределения поврежденности $\omega(x)$ по толщине образца и сравнение результатов численного моделирования с результатами металлографического анализа сохраненных после опытов образцов.

Как видно из рис. 6, с ростом скорости соударения поврежденность возрастает от значения $\omega_{max} \sim 0.034$ при $W_{yg} = 247$ м/с до $\omega_{max} \sim 0.23$ при $W_{yg} = 391$ м/с, что качественно соответствует данным по визуальному наблюдению поперечных срезов образцов. Количественные значения максимальной поврежденности сравниваются на рис. 7 с гистограммами распределения поврежденности, полученными планиметрическим методом (см. табл. 3).

Рис. 6. Распределение поврежденности по толщине образца и результаты металлографического анализа: а – образец 1 $(W_{yg} = 247 \text{ м/c}); 6$ – образец 2 $(W_{yg} = 287 \text{ м/c}); 8$ – образец 3 $(W_{yg} = 348 \text{ м/c}); \Gamma$ – образец 4 $(W_{yg} = 391 \text{ м/c}).$ (Продолжение с. 30, 31)

Рис. 6. Продолжение

Рис. 7. Сравнение результатов расчета и металлографического анализа: а – образец 1 (W_{yg} = 247 м/с); б – образец 2 (W_{yg} = 287 м/с); в – образец 3 (W_{yg} = 348 м/с); г – образец 4 (W_{yg} = 391 м/с)

Как следует из рис. 7, получено удовлетворительное согласие результатов расчетов и результатов обработки экспериментальных данных металлографическим методом. Хорошо воспроизводится зона разрушения образцов – ширина зоны и сечение с максимальной величиной поврежденности, есть лишь отклонения от максимальных значений поврежденности для опытов с большой скоростью нагружения, когда поврежденность образца соответствует образованию магистральной трещины.

Заключение

Рассмотрены способы определения величины откольной поврежденности металлических образцов. Первый способ основывается на измерениях плотности образца до ρ_S и после ρ эксперимента и вычислении поврежденности по известному соотношению $\omega = 1 - \frac{\rho}{\rho_s}$. Второй способ предполагает проведение металлографического структурного анализа поперечного среза сохраненного в опыте образца и использование планиметрической методики определения площади среза дефекта.

Оба способа отработаны на экспериментах с образцами из стали 10, нагруженными ударниками с различными скоростями. Получено хорошее согласие результатов по обеим методикам.

Проведены модельные расчеты экспериментов, и построены распределения поврежденности по толщине мишеней, которые качественно и количественно совпадают с результатами, полученными по планиметрической металлографической методике. Количественная дополнительная информация об откольном разрушении, способы определения которой рассмотрены в данной работе, позволит более корректно определять параметры модели откольного разрушения материалов.

Список литературы

1. Seaman L., Curran D., Shockey A. Computational models for ductile and brittle fracture // J. Appl. Phys. 1976. Vol. 47, № 11. P. 4814–4826.

2. Ахмадеев Н. Х. Исследование откольного разрушения при ударном деформировании // ПМТФ. 1980, № 4. С. 158–167.

3. Бушман А. В., Канель Г. И. и др. Динамика конденсированных сред при интенсивных импульсных воздействиях. Механические свойства: Препринт. ИХФ АН РФ. Черноголовка. 1983.

4. Комплекс видеоизмерительный для анализа микроструктур и макроструктур материалов «VESTRA Imaging System». http://latemi.ru/catalog/ vestra-imaging-system, рубрики: Автоматизированные системы анализа изображений.

5. Гаврилов Н. Ф., Иванова Г. Г., Селин В. И., Софронов В. Н. Программа УП-ОК для решения одномерных задач механики сплошной среды в одномерном комплексе // ВАНТ. Сер. Методики и программы численного решения задач математической физики. 1982. Вып. 3(11). С. 11–14.

6. Malvern L. E. Plastic wave propagation in bar of material exhibiting a strain rate effect // Quart. Appl. Math. 1951. Vol. 8, № 4. P. 50–54.

7. Гилман Д. Д. Динамика дислокаций и поведение материалов при ударном воздействии. Пер. с англ. // Механика. 1970. Т. 120, № 2. С. 96–124.

Статья поступила в редакцию 28.11.2016