УДК 621.019.039.571:539.1.084

Спектральные характеристики гамма-полей реакторных установок ВНИИЭФ

Представлены расчетные версии спектров мгновенных и запаздывающих гамма-квантов в 23-групповом энергетическом формате на реакторах БР-КІ, БР-ІМ, ГИР-2 и БИГР для 7, 14, 10 и 6 полей излучений соответственно. Для каждого спектрального распределения дополнительно представлены соотношения мгновенной и запаздывающей компонент, средние энергии спектра, поглощенные дозы в воздухе, кремнии, биологической ткани, материале детектора ИС-7, в газе-наполнителе промышленных ионизационных камер и в стали 12X18H10T в нормировке на поглощенную дозу в материале детектора ДТС.

Для избранных спектральных распределений приведены их графические версии.

А. С. Кошелев, В. Х. Хоружий

Введение

Спектральные характеристики γ-составляющей реакторных полей излучений, без сомнения, относятся к наиболее востребованным данным как для специалистов по исследованию таких полей, так и специалистов по использованию разнообразных полей радиационного нагружения в прикладных целях и обеспечению их диагностического сопровождения.

Несмотря на постоянные и значительные усилия, направленные на детализацию спектров γ-компоненты реакторных полей экспериментальным путем непосредственно в планируемых для прикладного использования позиционных координатах, приходится констатировать фактическое отсутствие результатов, позволяющих достичь желаемого.

Анализ обширной экспериментальной информации интегрального характера, полученной в полях реакторных излучений различного спектрального и компонентного состава разнообразными γ -детекторами (представленный, в частности, в работах [1–4]) с использованием наиболее совершенных расчетных методов C-95 [5], C-007 [6], показывает, на наш взгляд, достаточно аргументированную целесообразность использования расчетно-прогнозируемых спектральных γ -представлений в практике анализа как фактически полученных, так и ожидаемых эффектов радиационного воздействия в поле реакторного излучения конкретного исследовательского или прикладного интереса.

Избранные поля излучений и формы представления спектральных характеристик

На реакторе БР-К1 создан и функционирует специализированный гамма-источник (СГИ), пространственно совмещенный с моделирующим опорным полем нейтронов МОП-К2 [7], предназначенный для приоритетной калибровки всех *у*-детекторов, ориентированных на использова-

ние в полях излучений реакторных установок ВНИИЭФ. Очевидный базовый характер γ -поля в СГИ предопределил выбор указанного поля излучений первым в ряду прочих. Конфигурационные особенности формирования данного поля излучений иллюстрирует фрагмент рис. 1 с аббревиатурным обозначением СГИ КГЗ (контейнер горизонтальной загрузки).

Рис. 1. Поля излучений СГИ КГЗ, СФ КГЗ, НГК КГЗ на реакторе БР-К1

Принадлежность поля излучений СГИ реактору БР-К1 обусловила последующую конкретизацию полей излучений, начиная с реактора БР-К1. На рис. 1 с обозначением СФ КГЗ представлена конфигурация формирования γ-поля в свинцовом фильтре реактора, а с обозначением НГК КГЗ – в устройстве конвертирования нейтронов в гамма-кванты.

Для иллюстрации спектральной трансформации γ -поля в пространстве зала автономной работы реактора БР-К1 выбраны четыре позиционные координаты в системе центральных осевых перемещения телеги собственно реактора с активной зоной (АЗ) (ось *Y*) и телеги перемещения стенда с механизмами горизонтальной загрузки (СГЗ) (ось *X*) и вертикальной осевой АЗ (ось *H*). Схема размещения избранных позиционных координат в плоскости *XY* представлена на рис. 2. Для всех указанных позиций принято H = 2,2 м, что соответствует высоте центра АЗ от уровня пола.

Рис. 2. Поля излучений X0Y2,5; X3Y2,5; X6Y2,5; X9Y2,5 в однотипных по размерам залах автономной работы реакторов БР-К1 и БР-1М

Однотипность залов автономной работы реакторов БР-К1 и БР-1М [8] по размерам и размещению в них реакторного оборудования обусловила однотипность выбора позиционных координат для избранных полей излучений в зале автономной работы реактора БР-1М. Представленная на рис. 2 схема размещения избранных позиций в плоскости *XY* для реактора БР-К1 соответствует таковой и для реактора БР-1М.

Важными в аспекте практического использования при функционировании реактора БР-1М являются конкретизированные в [4] поля излучений внутри контейнера вертикальной загрузки (КВЗ) в АЗ реактора (ОП-1), снаружи АЗ на расстоянии 200 мм от центральной осевой АЗ и в специализированном гамма-конверторе (СГК) с варьируемой по толщине стенкой со стороны АЗ. Особенности конфигурационного расположения избранных полей внутри и снаружи АЗ иллюстрирует рис. 3, а в СГК – рис. 4.

Совместная работа реактора БР-1М и ускорителя ЛИУ-30 [9] осуществляется в зале комплексной работы, по размерам значимо отличающемся от зала автономной работы реактора. Схема размещения избранных позиционных координат в плоскости XY в зале комплексной работы представлена на рис. 5. Для всех указанных позиций принято H = 2,2 м, что соответствует высоте центра АЗ от уровня пола.

Рис. 3. Поля излучений ОП-1 и в позиционной координате R = 200 мм на реакторе БР-1М

Рис. 4. Поля излучений ПС-30 и ПС-0 (при удалении ПС) на реакторе БР-1М

Рис. 5. Поля излучений X0Y2,5; X3Y2,5; X6Y2,5; X9Y2,5; X15Y2,5; X21Y2,5 на реакторе БР-1М в зале комплексной работы

При выборе полей излучений на реакторе ГИР-2 [8] учитывались ранее использованная схема расчетного прогнозирования, представленная в [4], и практическая востребованность распространения расчета на большие удаления от центра АЗ реактора. Особенности конфигурационного расположения избранных полей снаружи АЗ ГИР-2 иллюстрирует рис. 6.

При формировании списка избранных полей излучений на реакторе БИГР в качестве основного ориентира использовались данные, представленные в работе [10]. Особенности конфигурационного расположения избранных полей внутри и снаружи АЗ реактора БИГР иллюстрирует рис. 7.

Рис. 6. Поля излучений в позиционных координатах R = 0,3; 0,5; 1; 2; 3 м на реакторе ГИР-2

Рис. 7. Поля излучений в центре АЗ и в позиционных координатах снаружи АЗ *R* = 1; 2; 3; 4; 5 м на реакторе БИГР

В качестве основной характеристики выбран спектр единичного флюенса мгновенных и запаздывающих гамма-квантов (далее по тексту МГК и ЗГК) в 23-групповом энергетическом формате (далее по тексту Ф23). Конфигурация Ф23 представлена в табл. 1.

Таблица 1

Группа	Энергет границы	гические и группы	ΔE ,	\overline{E} ,	Группа	Энергет границь	гические і группы	ΔE ,	\overline{E} ,
i pjiiiu	E _{min} , МэВ	E _{max} , МэВ	МэВ	МэВ	1 pyinia	E _{min} , МэВ	E _{max} , МэВ	МэВ	МэВ
1	0,01	0,02	0,01	0,015	13	1,00	1,25	0,25	1,125
2	0,02	0,03	0,01	0,025	14	1,25	1,50	0,25	1,175
3	0,03	0,05	0,02	0,040	15	1,50	1,75	0,25	1,625
4	0,05	0,07	0,02	0,060	16	1,75	2,00	0,25	1,875
5	0,07	0,10	0,03	0,085	17	2,00	2,50	0,50	2,250
6	0,10	0,20	0,10	0,150	18	2,50	3,00	0,50	2,750
7	0,20	0,40	0,20	0,300	19	3,00	4,00	1,00	3,500
8	0,40	0,50	0,10	0,450	20	4,00	5,00	1,00	4,500
9	0,50	0,60	0,10	0,550	21	5,00	6,00	1,00	5,500
10	0,60	0,70	0,10	0,650	22	6,00	8,00	2,00	7,000
11	0,70	0,80	0,10	0,750	23	8,00	10,0	2,00	9,000
12	0,80	1,00	0,20	0,900	-	_	—	_	-

Групповой энергетический формат Ф23

Средняя энергия спектра определялась как $\overline{E} = \sum_{i=1}^{23} \overline{E}_i F_i$ (*i* – номер группы, \overline{E}_i – средняя энергия в группе, F_i – групповой флюенс в нормировке $\sum_{i=1}^{23} F_i = 1$).

Для каждого включенного в рассмотрение спектра МГК и ЗГК определялись поглощенные дозы в кремнии, воздухе (массовое содержание, %: азот 75,4; кислород 23,2; аргон 1,4), биологической ткани (Standard of Man, SM-био, состав из [11]), дозиметре ДТС (состав из [12]), дозиметре ИС-7 (состав из [13]), газе-наполнителе промышленных ионизационных камер (ИК-газ, усредненное массовое содержание, %: аргон 98,36; азот 1,44; гелий 0,20) и стали марки 12X18H10T (состав из [14]). Выборки полученных данных в формате «Гр/дел. АЗ» перенормировались в относительный формат путем деления всех полученных значений поглощенных доз для конкретного γ-спектра на соответствующее этому спектру значение поглощенной дозы для ДТС. Выбор параметра нормировки обусловлен использованием дозиметра ДТС (в варианте рекомендованных государственных стандартных образцов поглощенной дозы СО ПД (ДТС)-0.05/10) в качестве основного средства переноса дозовой меры от эталонного γ-поля ВНИИФТРИ в СГИ реактора БР-К1.

Расчетные спектральные характеристики избранных полей излучений реакторов БР-К1, БР-1М, ГИР-2 и БИГР

Результаты определения перечисленных выше спектральных характеристик для избранных полей излучения реактора БР-К1 представлены в табл. 2 (спектры единичного флюенса), 3 (средние энергии), 4 (нормализованные поглощенные дозы).

Таблица 2

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
		Спект	р в гео	метричес	ком цент	ре СГИ	КГЗ, <i>F</i> _{ЗГК}	$/F_{\rm M\Gamma K} = 0$	0,4976		
1	0,00000	0,00000	7	0,14109	0,14690	13	0,08658	0,05808	19	0,02951	0,00094
2	0,00000	0,00000	8	0,07834	0,08254	14	0,07974	0,06228	20	0,01061	0,00085
3	0,00004	0,00000	9	0,07455	0,09547	15	0,04783	0,06350	21	0,00474	0,00032
4	0,00043	0,00039	10	0,05444	0,09165	16	0,03942	0,04188	22	0,00244	0,00000
5	0,01254	0,01377	11	0,05035	0,09401	17	0,05363	0,04509	23	0,00072	0,00000
6	0,07967	0,07824	12	0,12111	0,11831	18	0,03222	0,00578	-	_	-
	Спектр	в позицио	энной н	соордина	Te $Z = 6$ c	м СФ К	Γ3, ENDF	/В-VI, <i>F</i> _{ЗГ}	$_{\rm K}/F_{\rm M\Gamma K}$	= 0,1232	
1	0,00007	0,00000	7	0,13596	0,08055	13	0,06392	0,12561	19	0,02654	0,00269
2	0,00002	0,00000	8	0,04201	0,03335	14	0,05609	0,12834	20	0,01114	0,00189
3	0,00009	0,00001	9	0,07403	0,05055	15	0,03789	0,12167	21	0,00464	0,00064
4	0,00038	0,00024	10	0,03660	0,05030	16	0,03839	0,08250	22	0,00550	0,00000
5	0,00798	0,00525	11	0,03456	0,05909	17	0,04619	0,08733	23	0,00167	0,00000
6	0,07738	0,04806	12	0,24004	0,11084	18	0,05891	0,01109	_	_	_

Спектры единичного ү-флюенса для избранных полей излучений реактора БР-К1

Продолжение табл. 2

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
	Спект	р в позиці	ионной	координа	the $Z = 6$ c	м СФ КІ	3, ENDF/	B-VII, $F_{3\Gamma}$	$_{\rm K}/F_{\rm M\Gamma K}$	= 0,1237	
1	0,00007	0,00000	7	0,13909	0,08055	13	0,06638	0,12561	19	0,02540	0,00269
2	0,00002	0,00000	8	0,04277	0,03335	14	0,05437	0,12834	20	0,01071	0,00189
3	0,00008	0,00001	9	0,07359	0,05055	15	0.03953	0,12167	21	0,00417	0,00064
4	0,00039	0,00024	10	0,03817	0,05030	16	0,03538	0,08250	22	0,00404	0,00000
5	0,00813	0,00525	11	0,03515	0,05909	17	0,04526	0,08733	23	0,00159	0,00000
6	0,07876	0,04806	12	0,24961	0,11084	18	0,04734	0,01109	_	_	_
	Спек	стр в пози	ционно	й коорди	нате $Z = 6$	см СФ І	кгз, endi	L-82, <i>F</i> _{ЗГК}	$/F_{\rm M\Gamma K}$ =	= 0,1251	
1	0,00007	0,00000	7	0,14657	0,08055	13	0,07942	0,12561	19	0,02729	0,00269
2	0,00001	0,00000	8	0,04871	0,03335	14	0,06617	0,12834	20	0,00898	0,00189
3	0,00008	0,00001	9	0,05971	0,05055	15	0,04525	0,12167	21	0,00382	0,00064
4	0,00039	0,00024	10	0,04050	0,05030	16	0,03972	0,08250	22	0,00817	0,00000
5	0,00863	0,00525	11	0,03784	0,05909	17	0,05386	0,08733	23	0,00156	0,00000
6	0,07975	0,04806	12	0,21279	0,11084	18	0,03071	0,01109	-	_	_
		Спектр в	позици	онной кос	ординате 2	Z = 6 cm	НГК КГЗ,	$F_{3\Gamma \mathrm{K}}/F_{\mathrm{MI}}$	$T_{\rm K} = 0,12$	245	
1	0,00000	0,00000	7	0,14507	0,19237	13	0,02465	0,05673	19	0,09882	0,00092
2	0,00275	0,00314	8	0,05742	0,09140	14	0,03693	0,05837	20	0,05085	0,00083
3	0,00000	0,00000	9	0,10133	0,09338	15	0,01825	0,05777	21	0,03986	0,00032
4	0,00003	0,00002	10	0,07012	0,08518	16	0,02492	0,03831	22	0,01355	0,00000
5	0,00233	0,00319	11	0,04142	0,08285	17	0,08387	0,04132	23	0,00182	0,00000
6	0,07311	0,08483	12	0,02857	0,10373	18	0,08433	0,00534	—	_	-
	Спе	ктр в пози	иционн	ой коорди	нате $X = 0$), $Y = 2,5$	5 м в зале	107, <i>F</i> _{3ГК} /	$F_{\rm M\Gamma K} =$	0,1439	
1	0,00000	0,00000	7	0,17210	0,17291	13	0,04081	0,05603	19	0,03837	0,00094
2	0,00000	0,00000	8	0,04971	0,07833	14	0,04099	0,05546	20	0,03044	0,00080
3	0,00023	0,00014	9	0,06295	0,07972	15	0,02990	0,05283	21	0,01876	0,00030
4	0,00605	0,00448	10	0,03158	0,07196	16	0,02699	0,03466	22	0,08188	0,00000
5	0,03702	0,02885	11	0,02600	0,06806	17	0,04146	0,03777	23	0,00621	0,00000
6	0,16975	0,16424	12	0,06626	0,08771	18	0,02254	0,00481	-	_	-
	Спект	р в позиц	ионной	і координа	ате X = 3 м	X = 2,	5 м в зале	107, <i>F</i> _{ЗГК}	$/F_{M\Gamma K} =$	= 0,09399	
1	0,00000	0,00000	7	0,18070	0,20345	13	0,03103	0,04338	19	0,03977	0,00077
2	0,00000	0,00000	8	0,04546	0,06623	14	0,03110	0,04376	20	0,03453	0,00066
3	0,00030	0,00026	9	0,06138	0,06703	15	0,02669	0,04271	21	0,02174	0,00024
4	0,00786	0,00775	10	0,02554	0,06045	16	0,02391	0,02888	22	0,09887	0,00000
5	0,04649	0,04733	11	0,01960	0,05767	17	0,03897	0,03026	23	0,00689	0,00000
6	0,19274	0,22120	12	0,04653	0,07405	18	0,01990	0,00392	—	_	-
	Спект	р в позиц	ионной	і координ	ате X = 6 и	M, $Y = 2$,	5 м в зале	107, <i>F</i> _{ЗГК}	$/F_{M\Gamma K} =$	= 0,06023	
1	0,00000	0,00000	7	0,18282	0,22694	13	0,02494	0,03323	19	0,04036	0,00056
2	0,00000	0,00000	8	0,04371	0,05984	14	0,02564	0,03342	20	0,03657	0,00048
3	0,00036	0,00045	9	0,06088	0,05652	15	0,02486	0,03247	21	0,02322	0,00018
4	0,00926	0,01218	10	0,02315	0,04854	16	0,02204	0,02132	22	0,10828	0,00000
5	0,05269	0,06824	11	0,01607	0,04648	17	0,03756	0,02289	23	0,00720	0,00000
6	0,20602	0,27497	12	0,03594	0.05836	18	0,01843	0,00293	_	—	_

Окончание табл. 2

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	
	Спектр в позиционной координате $X = 9$ м, $Y = 2,5$ м в зале 107, $F_{3\Gamma K}/F_{M\Gamma K} = 0,03985$											
1	0,00000	0,00000	7	0,18241	0,23610	13	0,02249	0,02511	19	0,04184	0,00040	
2	0,00000	0,00000	8	0,04261	0,05382	14	0,02320	0,02472	20	0,03871	0,00035	
3	0,00035	0,00065	9	0,06069	0,04677	15	0,02435	0,02413	21	0,02455	0,00013	
4	0,00954	0,01677	10	0,02031	0,03885	16	0,02086	0,01563	22	0,11581	0,00000	
5	0,05465	0,09039	11	0,01448	0,03562	17	0,03791	0,01697	23	0,00759	0,00000	
6	0,20891	0,32761	12	0,03057	0,04382	18	0,01817	0,00216	_	_	-	

Наличие значимых различий при отсутствии весомых аргументов в пользу одной из константных версий предопределило целесообразность приведения трех версий для СФ КГЗ.

Таблица 3

Средние энергии спектра единичного ү-флюенса для избранных полей излучений реактора БР-К1

Спектр	\overline{E} , 1	МэВ	Спектр	\overline{E} , M $ m B$		
Chekip	МГК	ЗГК	Спектр	МГК	ЗГК	
КГЗ СГИ	1,082	0,842	КГЗ-НГК	1,719	0,800	
КГЗ СФ: ENDF/B-VI ENDF/B-VII ENDL-82	1,149 1,104 1,120	1,170 1,170 1,170	Зал 107: <i>R</i> = 0 <i>R</i> = 3 м <i>R</i> = 6 м <i>R</i> = 9 м	1,598 1,692 1,740 1,801	0,732 0,633 0,534 0,449	

Таблица 4

Поглощенные γ -дозы (*D*) в избранных материалах относительно γ -дозы в ДТС ($D_{\text{ДТС}}$)

Спектр				$D/D_{\rm JTC}$			
enemp	Воздух	Кремний	SM-био	ДТС	ИС-7	ИК-газ	Сталь
			МΓ	К			
КГЗ СГИ	0,9909	1,0124	1,0961	1,0000	0,9902	0,9338	1,0377
КГЗ СФ:							
ENDF/B-VI	0,9879	1,0115	1,0946	1,0000	0,9888	0,9327	1,0182
ENDF/B-VII	0,9889	1,0125	1,0953	1,0000	0,9971	0,9322	1,0182
ENDL-82	0,9856	1,0140	1,0941	1,0000	0,9917	0,9337	1,0215
КГЗ-НГК	0,9712	1,0211	1,0730	1,0000	0,9871	0,9487	1,0548
Зал 107:							
R = 0	0,9467	1,0298	1,0473	1,0000	0,9802	0,9865	1,1759
<i>R</i> = 3 м	0,9395	1,0326	1,0383	1,0000	0,9780	0,9960	1,2059
<i>R</i> = 6 м	0,9345	1,0338	1,0333	1,0000	0,9765	1,0014	1,2222
<i>R</i> = 9 м	0,9322	1,0322	1,0311	1,0000	0,9762	1,0048	1,2283

для избранных полей излучений реактора БР-К1

Окончание табл. 4

Спектр				$D/D_{\rm ATC}$			
Chekip	Воздух	Кремний	SM-био	ДТС	ИС-7	ИК-газ	Сталь
			ЗГІ	ζ			
КГЗ СГИ	0,9963	1,0091	1,1028	1,0000	0,9908	0,9261	1,0174
КГЗ СФ:							
ENDF/B-VI	1,0012	1,0081	1,1096	1,0000	0,9936	0,9213	0,9786
ENDF/B-VII	1,0012	1,0081	1,1096	1,0000	0,9936	0,9213	0,9786
ENDL-82	1,0012	1,0081	1,1096	1,0000	0,9936	0,9213	0,9786
КГЗ-НГК	0,9910	1,0079	1,0969	1,0000	0,9884	0,9343	1,0486
Зал 107:							
R = 0	0,9866	1,0072	1,0916	1,0000	0,9852	0,9575	1,0972
<i>R</i> = 3 м	0,9720	1,0042	1,0789	1,0000	0,9785	0,9823	1,1852
<i>R</i> = 6 м	0,9574	1,0060	1,0613	1,0000	0,9709	1,0158	1,3088
<i>R</i> = 9 м	0,9353	1,0045	1,0389	1,0000	0,9605	1,0582	1,4690

Спектры единичного γ-флюенса МГК и ЗГК в полях излучений СГИ КГЗ, СФ КГЗ ENDL-82, НГК КГЗ и X9Y2,5 реактора БР-К1 в графической форме представлены на рис. 8.

Рис. 8. Спектры единичного γ-флюенса МГК и ЗГК в полях излучений СГИ КГЗ (■), СФ КГЗ (■), НГК КГЗ (□) и Х9У2,5 (□) реактора БР-К1

Результаты определения аналогичных спектральных характеристик для избранных полей излучения реактора БР-1М представлены в табл. 5 (спектры единичного флюенса), 6 (средние энергии), 7 (нормализованные поглощенные дозы).

Таблица 5

Спектры единичного	ү-флюенса	для избранных	полей излу	/чений реак	тора БР-	-1M
I ' '	• •	· 1	2	· • •		

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
	Сг	ектр во в	нутриз	онной поз	иционной	коорди	инате ОП-	I, $F_{3\Gamma K}/F_{N}$	$M\Gamma K = 0$,5625	
1	0,00000	0,00000	7	0,12868	0,13795	13	0,09689	0,05829	19	0,03027	0,00089
2	0,00000	0,00000	8	0,06159	0,08418	14	0,08595	0,06219	20	0,01002	0,00081
3	0,00007	0,00000	9	0,07831	0,09943	15	0,05123	0,06328	21	0,00462	0,00032
4	0,00128	0,00036	10	0,05907	0,09522	16	0,04273	0,04171	22	0,00165	0,00000
5	0,01869	0,01375	11	0,05457	0,09866	17	0,05661	0,04482	23	0,00017	0,00000
6	0,06697	0,06979	12	0,11745	0,12261	18	0,03318	0,00574	_	-	_
	Спе	ктр в окол	юзонно	ой позицио	онной коо	рдинато	e R = 200 n	мм, <i>F</i> _{ЗГК} /	$F_{\rm M\Gamma K} =$	0,5597	
1	0,00000	0,00000	7	0,12004	0,14966	13	0,10161	0,06390	19	0,03313	0,00108
2	0,00000	0,00000	8	0,06313	0,08777	14	0,09277	0,06729	20	0,01106	0,00092
3	0,00003	0,00000	9	0,07376	0,09707	15	0,05349	0,06785	21	0,00516	0,00032
4	0,00035	0,00019	10	0,05919	0,09267	16	0,04610	0,04478	22	0,00225	0,00000
5	0,00673	0,00640	11	0,05584	0,09289	17	0,06144	0,04790	23	0,00037	0,00000
6	0,04462	0,05346	12	0,13288	0,11959	18	0,03605	0,00626	_	-	—
				Спектр в С	СГК ПС-0,	$F_{3\Gamma \mathrm{K}}/$	$F_{\rm M\Gamma K}=0,$	1046			
1	0,00001	0,00001	7	0,14388	0,20652	13	0,02892	0,05128	19	0,09128	0,00083
2	0,00595	0,00815	8	0,03830	0,08520	14	0,04000	0,05199	20	0,04699	0,00073
3	0,00003	0,00003	9	0,08493	0,08234	15	0,02024	0,05065	21	0,03632	0,00027
4	0,00141	0,00188	10	0,06613	0,07380	16	0,02608	0,03420	22	0,01326	0,00000
5	0,01426	0,02000	11	0,04023	0,07028	17	0,08258	0,03594	23	0,00177	0,00000
6	0,10331	0,13203	12	0,03595	0,08927	18	0,07817	0,00460	_	-	_
			(Спектр в С	СГК ПС-30	, <i>F</i> _{ЗГК /}	$F_{\rm M\Gamma K} = 0$,1044	•		
1	0,00001	0,00000	7	0,14394	0,20648	13	0,02878	0,05136	19	0,09133	0,00083
2	0,00597	0,00816	8	0,03826	0,08511	14	0,04018	0,05176	20	0,04701	0,00073
3	0,00003	0,00003	9	0,08506	0,08223	15	0,02016	0,05054	21	0,03639	0,00027
4	0,00139	0,00191	10	0,06600	0,07379	16	0,02592	0,03434	22	0,01324	0,00000
5	0,01426	0,02002	11	0,04026	0,07009	17	0,08218	0,03598	23	0,00178	0,00000
6	0,10339	0,13214	12	0,03600	0,08960	18	0,07846	0,00463	_	-	_
	Спек	тр в пози	ционнс	ой координ	нате $X = 0$,	Y = 2,3	5 м в зале	105, <i>F</i> _{ЗГК}	$F_{\rm M\Gamma K} =$	= 0,2867	
1	0,00000	0,00000	7	0,15883	0,15414	13	0,05628	0,05422	19	0,03522	0,00088
2	0,00000	0,00000	8	0,04943	0,07504	14	0,05293	0,05677	20	0,02402	0,00077
3	0,00017	0,00010	9	0,06285	0,08260	15	0,03544	0,05683	21	0,01450	0,00029
4	0,00510	0,00373	10	0,03664	0,07799	16	0,03417	0,03702	22	0,05859	0,00000
5	0,03440	0,02858	11	0,03253	0,07818	17	0,04507	0,03962	23	0,00404	0,00000
6	0,15580	0,14789	12	0,07911	0,10030	18	0,02488	0,00505	_	_	_
	Спект	р в позиц	ионной	і координа	ате $X = 3$ м	x, Y = 2	,5 м в зале	105, <i>F</i> _{ЗГК}	$F_{\rm M\Gamma K}$	= 0,2081	
1	0,00000	0,00000	7	0,17282	0,17534	13	0,04195	0,04732	19	0,03630	0,00076
2	0,00000	0,00000	8	0,04567	0,06536	14	0,04039	0,04938	20	0,02819	0,00067
3	0,00024	0,00019	9	0,06005	0,07194	15	0,03030	0,04871	21	0,01752	0,00025
4	0,00694	0,00638	10	0,02973	0,06757	16	0,03030	0,03235	22	0,07644	0,00000
5	0,04377	0,04296	11	0,02523	0,06758	17	0,04100	0,03445	23	0,00511	0,00000
6	0,18541	0,19821	12	0,06097	0,08621	18	0,02167	0,00437	-	-	—

Продолжение табл. 5

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
	Спект	р в позиц	ионно	й координ	ате $X = 6$	м, Y = 2	2,5 м в зале	е 105, <i>F</i> _{ЗГР}	$\zeta/F_{\rm M\Gamma K}$	= 0,1365	
1	0,00000	0,00000	7	0,18350	0,20831	13	0,03081	0,03674	19	0,03724	0,00059
2	0,00000	0,00000	8	0,04411	0,05817	14	0,03029	0,03826	20	0,03200	0,00052
3	0,00028	0,00034	9	0,05926	0,05864	15	0,02625	0,03786	21	0,02030	0,00019
4	0,00864	0,01048	10	0,02404	0,05276	16	0,02620	0,02478	22	0,09236	0,00000
5	0,05147	0,06426	11	0,01905	0,05255	17	0,03754	0,02662	23	0,00608	0,00000
6	0,20635	0,25903	12	0,04513	0,06650	18	0,01909	0,00340	-	-	-
	Спектр	э в позици	юнной	і координа	ате X = 9 м	X = 2	,5 м в зале	105, <i>F</i> _{ЗГК}	$/F_{M\Gamma K}$	= 0,09757	
1	0,00000	0,00000	7	0,18421	0,22322	13	0,02590	0,02967	19	0,03865	0,00047
2	0,00000	0,00000	8	0,04341	0,05552	14	0,02573	0,03038	20	0,03458	0,00042
3	0,00029	0,00044	9	0,05909	0,05125	15	0,02474	0,03015	21	0,02193	0,00015
4	0,00884	0,01367	10	0,02206	0,04455	16	0,02417	0,01974	22	0,10242	0,00000
5	0,05399	0,08096	11	0,01646	0,04300	17	0,03678	0,02113	23	0,00664	0,00000
6	0,21411	0,29902	12	0,03778	0,05357	18	0,01822	0,00269	-	_	_
	Спек	тр в пози	ционн	ой коорди	нате $X = 0$), $Y = 2$,	5 м в зале	106, <i>F</i> _{ЗГК}	$/F_{M\Gamma K}$ =	= 0,3035	
1	0,00000	0,00000	7	0,16527	0,16601	13	0,05875	0,05474	19	0,03483	0,00089
2	0,00000	0,00000	8	0,05096	0,07517	14	0,05518	0,05705	20	0,02285	0,00078
3	0,00004	0,00002	9	0,06554	0,08325	15	0,03693	0,05707	21	0,01424	0,00029
4	0,00165	0,00139	10	0,03853	0,07842	16	0,03506	0,03736	22	0,05699	0,00000
5	0,02150	0,02015	11	0,03393	0,07857	17	0,04522	0,04002	23	0,00397	0,00000
6	0,14390	0,14347	12	0,08868	0,10023	18	0,02598	0,00512	_	-	-
	Спект	р в позиц	ионно	й координ	ате $X = 3$	м, Y = 2	2,5 м в зале	е 106, <i>F</i> _{ЗГР}	$\zeta/F_{\rm M\Gamma K}$	= 0,2278	
1	0,00000	0,00000	7	0,17880	0,18196	13	0,04586	0,04895	19	0,03573	0,00078
2	0,00000	0,00000	8	0,04713	0,06759	14	0,04355	0,05069	20	0,02688	0,00071
3	0,00005	0,00003	9	0,06393	0,07440	15	0,03247	0,05090	21	0,01736	0,00025
4	0,00225	0,00226	10	0,03203	0,06956	16	0,03107	0,03324	22	0,07539	0,00000
5	0,02735	0,02893	11	0,02718	0,07004	17	0,04088	0,03549	23	0,00509	0,00000
6	0,17185	0,19031	12	0,07213	0,08939	18	0,02302	0,00452	_	_	_
	Спект	р в позиц	ионно	й координ	ате $X = 6$	м, Y = 2	2,5 м в зале	е 106, <i>F</i> _{ЗГР}	$\zeta/F_{\rm M\Gamma K}$	= 0,1566	
1	0,00000	0,00000	7	0,19079	0,21706	13	0,03461	0,03978	19	0,03664	0,00064
2	0,00000	0,00000	8	0,04627	0,06227	14	0,03306	0,04108	20	0,03061	0,00056
3	0,00006	0,00006	9	0,06409	0,06346	15	0,02842	0,04056	21	0,02034	0,00021
4	0,00284	0,00351	10	0,02650	0,05685	16	0,02688	0,02696	22	0,09293	0,00000
5	0,03212	0,04093	11	0,02104	0,05657	17	0,03706	0,02882	23	0,00616	0,00000
6	0,19173	0,24498	12	0,05736	0,07202	18	0,02049	0,00368	_	_	_
	Спект	р в позиц	ионно	й координ	ате X = 9	м, Y = 2	2,5 м в зале	е 106, <i>F</i> _{ЗГР}	$\zeta/F_{\rm M\Gamma K}$	= 0,1204	
1	0,00000	0,00000	7	0,19415	0,23431	13	0,02964	0,03441	19	0,03731	0,00056
2	0,00000	0,00000	8	0,04592	0,06240	14	0,02921	0,03567	20	0,03256	0,00049
3	0,00008	0,00008	9	0,06506	0,05943	15	0,02709	0,03514	21	0,02204	0,00018
4	0.00313	0,00449	10	0,02474	0,05250	16	0,02441	0,02310	22	0,10212	0,00000
5	0,03403	0,04822	11	0,01867	0,05019	17	0,03528	0,02471	23	0,00669	0,00000
6	0 19869	0 26824	12	0.04969	0.06273	18	0 01949	0.00315	_	_	_

Окончание табл. 5

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	
	Спектр в позиционной координате $X = 15$ м, $Y = 2,5$ м в зале 106, $F_{3\Gamma K}/F_{M\Gamma K} = 0,08433$											
1	0,00000	0,00000	7	0,19603	0,24464	13	0,02597	0,03214	19	0,03796	0,00049	
2	0,00000	0,00000	8	0,04645	0,06529	14	0,02531	0,03108	20	0,03435	0,00042	
3	0,00007	0,00009	9	0,06722	0,05831	15	0,02616	0,03016	21	0,02328	0,00015	
4	0,00355	0,00525	10	0,02345	0,04829	16	0,02186	0,01987	22	0,11085	0,00000	
5	0,03579	0,05429	11	0,01667	0,04492	17	0,03413	0,02112	23	0,00721	0,00000	
6	0,20237	0,28327	12	0,04256	0,05737	18	0,01876	0,00285	-	-	-	
	Спектр	в позици	онной	координа	те $X = 21$	м, Y = 2	2,5 м в зале	е 106, <i>F</i> _{ЗГІ}	$\kappa/F_{\rm M\Gamma K}$	= 0,06091		
1	0,00000	0,00000	7	0,19276	0,24712	13	0,02449	0,02945	19	0,03975	0,00043	
2	0,00000	0,00000	8	0,04556	0,06489	14	0,02424	0,02807	20	0,03653	0,00037	
3	0,00006	0,00007	9	0,06854	0,05590	15	0,02677	0,02642	21	0,02526	0,00014	
4	0,00274	0,00537	10	0,02252	0,04590	16	0,02086	0,01720	22	0,12121	0,00000	
5	0,03334	0,05746	11	0,01579	0,04118	17	0,03433	0,01843	23	0,00787	0,00000	
6	0,19920	0,30855	12	0,03895	0,05069	18	0,01923	0,00236	_	_	—	

Таблица б

Средние энергии спектра единичного ү-флюенса для избранных полей излучений реактора БР-1М

Спектр	\overline{E} , 1	МэВ	Спектр	\overline{E} , 1	МэВ	Спектр	\overline{E} , M $ m B$	
Спектр	МГК	ЗГК	Chekip	МГК	ЗГК	Спектр	МГК	ЗГК
ОП-1 R = 200 мм	1,105 1,178	0,849 0,877 0,725	Зал 105: <i>R</i> = 3 м <i>R</i> = 6 м	1,522 1,606	0,685 0,576	Зал 106: R = 3 м R = 6 м	1,537	0,705
СГК ПС-30	1,637	0,725	R = 9 M	1,676	0,503	R = 0 M R = 9 M	1,692	0,562
Зал 105: <i>R</i> = 0	1,436	0,762	Зал 106: <i>R</i> = 0	1,441	0,768	<i>R</i> = 15 м <i>R</i> = 21 м	1,749 1,846	0,524 0,491

Таблица 7

Поглощенные γ -дозы (*D*) в избранных материалах относительно γ -дозы в ДТС ($D_{\text{ДТС}}$)

для избранных полей излучений реактора БР-К1

Спектр		$D/D_{ m ДTC}$										
Chekip	Воздух	Кремний	SM-био	ДТС	ИС-7	ИК-газ	Сталь					
			Ν	ІГК								
ОП-1	0,9913	1,0120	1,0972	1,0000	0,9967	0,9309	1,0189					
R = 200 MM	0,9926	1,0126	1,0998	1,0000	0,9981	0,9276	0,9977					
СГК ПС-0	0,9658	1,0209	1,0676	1,0000	0,9846	0,9571	1,0939					
СГК ПС-30	0,9660	1,0209	1,0676	1,0000	0,9901	0,9571	1,0939					
Зал 105:												
R = 0	0,9568	1,0242	1,0586	1,0000	0,9817	0,9663	1,1205					
<i>R</i> = 3 м	0,9462	1,0288	1,0472	1,0000	0,9792	0,9771	1,1544					
<i>R</i> = 6 м	0,9389	1,0322	1,0380	1,0000	0,9780	0,9856	1,1802					
<i>R</i> = 9 м	0,9345	1,0335	1,0341	1,0000	0,9769	0,9895	1,1882					

Окончание табл. 7

Спектр				$D/D_{\rm JTC}$			
Chekip	Воздух	Кремний	SM-био	ДТС	ИС-7	ИК-газ	Сталь
Зал 106:							
R = 0	0,9596	1,0235	1,0628	1,0000	0,9828	0,9615	1,0982
<i>R</i> = 3 м	0,9508	1,0284	1,0522	1,0000	0,9813	0,9712	1,1266
<i>R</i> = 6 м	0,9434	1,0317	1,0433	1,0000	0,9794	0,9793	1,1489
<i>R</i> = 9 м	0,9399	1,0329	1,0394	1,0000	0,9785	0,9827	1,1576
<i>R</i> = 15 м	0,9367	1,0340	1,0362	1,0000	0,9778	0,9856	1,1616
<i>R</i> = 21 м	0,9367	1,0356	1,0347	1,0000	0,9778	0,9864	1,1644
			3	ГК	•	•	
ОП-1	0,9990	1,0089	1,1034	1,0000	0,9997	0,9257	1,0125
R = 200 мм	1,0032	1,0092	1,1058	1,0000	0,9980	0,9231	0,9971
СГК ПС-0	0,9707	1,0097	1,0780	1,0000	0,9809	0,9598	1,1665
СГК ПС-30	0,9715	1,0107	1,0780	1,0000	0,9865	0,9598	1,1666
Зал 105:							
R = 0	0,9864	1,0061	1,0940	1,0000	0,9867	0,9375	1,0802
<i>R</i> = 3 м	0,9791	1,0057	1,0847	1,0000	0,9828	0,9490	1,1457
<i>R</i> = 6 м	0,9619	1,0036	1,0680	1,0000	0,9739	0,9695	1,2626
<i>R</i> = 9 м	0,9490	1,0048	1,0527	10000	0,9666	0,9884	1,3701
Зал 106:							
R = 0	0,9888	1,0056	1,0965	1,0000	0,9874	0,9341	1,0621
<i>R</i> = 3 м	0,9845	1,0063	1,0901	1,0000	0,9854	0,9419	1,1079
<i>R</i> = 6 м	0,9748	1,0052	1,0794	1,0000	0,9792	0,9548	1,1834
<i>R</i> = 9 м	0,9685	1,0048	1,0725	1,0000	0,9765	0,9631	1,2318
<i>R</i> = 15 м	0,9517	1,0033	1,0666	1,0000	0,9726	0,9700	1,2726
<i>R</i> = 21 м	0,9564	1,0060	1,0607	1,0000	0,9745	0,9769	1,3140

Спектры единичного γ -флюенса МГК и ЗГК в полях излучений ОП-1, R = 200 мм, СГК ПС-30 и X9Y2,5 реактора БР-1М в графической форме представлены на рис. 9.

Рис. 9. Спектры единичного γ-флюенса МГК (а) и ЗГК (б) в полях излучений ОП-1 (▮), *R* = 200 (і), СГК ПС-30 (і) и *Х*9*Y*2,5 (□) реактора БР-1М (окончание рис. см. на с. 167)

Рис. 9. Окончание

Результаты определения спектральных характеристик для избранных полей излучения реактора ГИР-2 представлены в табл. 8 (спектры единичного флюенса), 9 (средние энергии), 10 (нормализованные поглощенные дозы).

Таблица 8

р. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
С	пектр в по	озиционно	ой коор	динате <i>R</i>	= 0,3 м на	против	ОКНА в к	онверторе	е, <i>F</i> _{ЗГК} /	$F_{\rm M\Gamma K} = 0,$	1517
1	0,00000	0,00000	7	0,12182	0,16680	13	0,03829	0,06021	19	0,09616	0,00101
2	0,00193	0,00203	8	0,04406	0,08367	14	0,04882	0,06344	20	0,04965	0,00088
3	0,00003	0,00002	9	0,08746	0,09153	15	0,02616	0,06384	21	0,03833	0,00033
4	0,00075	0,00077	10	0,06648	0,08780	16	0,03102	0,04227	22	0,01438	0,00000
5	0,00713	0,01024	11	0,04254	0,08898	17	0,09004	0,04577	23	0,00220	0,00000
6	0,06094	0,07162	12	0,04934	0,11302	18	0,08247	0,00577	_	-	-
С	пектр в по	озиционно	ой коор	динате <i>R</i>	= 0,5 м на	против	ОКНА в к	онверторе	е, <i>F</i> _{ЗГК} /	$F_{\rm M\Gamma K} = 0,$	1323
1	0,00000	0,00000	7	0,11968	0,16666	13	0,03669	0,05905	19	0,09926	0,00096
2	0,00151	0,00156	8	0,04385	0,08706	14	0,04659	0,06246	20	0,05200	0,00087
3	0,00004	0,00003	9	0,08589	0,09358	15	0,02675	0,06284	21	0,04004	0,00032
4	0,00088	0,00089	10	0,06432	0,08762	16	0,03118	0,04143	22	0,01579	0,00000
5	0,00770	0,01142	11	0,04042	0,08945	17	0,09210	0,04442	23	0,00229	0,00000
6	0,06349	0,07097	12	0,04534	0,11276	18	0,08419	0,00565	—	-	-
С	пектр в по	озиционно	ой коор	динате <i>R</i>	= 1,0 м на	против	ОКНА в к	онверторе	е, <i>F</i> _{ЗГК} /	$F_{\rm M\Gamma K} = 0,$	1218
1	0,00000	0,00000	7	0,12467	0,16265	13	0,03502	0,05792	19	0,09618	0,00081
2	0,00120	0,00126	8	0,04427	0,08822	14	0,04457	0,06082	20	0,05063	0,00086
3	0,00005	0,00006	9	0,08275	0,09377	15	0,02607	0,06058	21	0,03963	0,00031
4	0,00168	0,00170	10	0,06068	0,08681	16	0,03065	0,03972	22	0,01769	0,00000
5	0,01199	0,01482	11	0,03718	0,08781	17	0,08696	0,04199	23	0,00256	0,00000
6	0,08215	0,08377	12	0,04385	0,11071	18	0,07957	0,00541	_	—	—

Спектры единичного у-флюенса для избранных полей излучений реактора ГИР-2

Продолжение табл. 8

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
C	спектр в по	озиционно	ой коор	динате <i>R</i>	= 2,0 м на	против	ОКНА в к	онверторе	, <i>F</i> _{3ГК} /	$F_{\rm M\Gamma K} = 0,$	1067
1	0,00000	0,00000	7	0,14444	0,16462	13	0,03087	0,05318	19	0,08432	0,00069
2	0,00102	0,00119	8	0,03981	0,08063	14	0,03877	0,05504	20	0,04527	0,00078
3	0,00022	0,00016	9	0,07680	0,08625	15	0,02269	0,05501	21	0,03361	0,00025
4	0,00399	0,00512	10	0,05122	0,08062	16	0,02854	0,03618	22	0,02349	0,00000
5	0,02423	0,02779	11	0,03238	0,08006	17	0,07782	0,03854	23	0,00297	0,00000
6	0,12932	0,12799	12	0,03762	0,10046	18	0,07060	0,00544	-	-	-
C	пектр в по	зиционно	й коор,	динате <i>R</i> =	= 3,0 м наг	іротив (ЭКНА в ко	онверторе,	$F_{3\Gamma K}/$	$F_{\rm M\Gamma K} = 0,0$)9385
1	0,00000	0,00000	7	0,16266	0,17967	13	0,02704	0,04749	19	0,07409	0,00056
2	0,00173	0,00189	8	0,03975	0,07197	14	0,03349	0,04582	20	0,04283	0,00047
3	0,00018	0,00020	9	0,07095	0,07763	15	0,02063	0,04749	21	0,03122	0,00026
4	0,00525	0,00711	10	0,04499	0,07197	16	0,02548	0,03035	22	0,02569	0,00000
5	0,03583	0,04176	11	0,02924	0,06945	17	0,06740	0,03416	23	0,00257	0,00000
6	0,16509	0,17541	12	0,03280	0,09208	18	0,06109	0,00426	-	-	-
Сг	ектр в поз	зиционноі	й коорд	цинате <i>R</i> =	= 0,3 м нап	ротив С	ТЕНКИ к	онвертора	, $F_{3\Gamma \mathrm{K}}/$	$F_{\mathrm{M}\Gamma\mathrm{K}}=0,$	05498
1	0,00000	0,00001	7	0,10976	0,18877	13	0,02966	0,05835	19	0,11165	0,00107
2	0,00192	0,00307	8	0,04015	0,09146	14	0,04199	0,05806	20	0,05824	0,00070
3	0,00002	0,00005	9	0,08528	0,08980	15	0,02338	0,05727	21	0,04565	0,00028
4	0,00094	0,00141	10	0,06659	0,08179	16	0,03013	0,03885	22	0,01687	0,00000
5	0,00755	0,01354	11	0,04016	0,07852	17	0,09930	0,04163	23	0,00237	0,00000
6	0,06156	0,09202	12	0,03323	0,09809	18	0,09360	0,00526	_	_	_
Сг	ектр в поз	зиционноі	й коорд	цинате <i>R</i> =	- 0,5 м нап	ротив С	ТЕНКИ к	онвертора	, <i>F</i> _{ЗГК} /	$F_{\rm M\Gamma K} = 0,$	06353
1	0,00000	0,00000	7	0,11916	0,17919	13	0,03011	0,05948	19	0,10670	0,00098
2	0,00204	0,00272	8	0,04149	0,08903	14	0,04198	0,06083	20	0,05611	0,00090
3	0,00003	0,00004	9	0,08495	0,08968	15	0,02315	0,05900	21	0,04361	0,00033
4	0,00099	0,00172	10	0,06584	0,08247	16	0,02948	0,03933	22	0,01652	0,00000
5	0,00873	0,01379	11	0,03987	0,07975	17	0,09474	0,04229	23	0,00241	0,00000
6	0,06786	0,09176	12	0,03433	0,10128	18	0,08990	0,00543	_	_	_
Сг	ектр в поз	зиционноі	й коорд	цинате <i>R</i> =	= 1,0 м нап	ротив С	ТЕНКИ к	онвертора	, <i>F</i> _{ЗГК} /	$F_{\rm M\Gamma K} = 0,$	06721
1	0,00000	0,00000	7	0,12574	0,17716	13	0,03014	0,05817	19	0,10055	0,00078
2	0,00194	0,00265	8	0,04230	0,08794	14	0,04099	0,05863	20	0,05386	0,00091
3	0,00005	0,00011	9	0,08462	0,08728	15	0,02287	0,05733	21	0,04116	0,00035
4	0,00172	0,00270	10	0,06280	0,08060	16	0,02868	0,03755	22	0,01718	0,00000
5	0,01254	0,01872	11	0,03797	0,07833	17	0,08994	0,04065	23	0,00234	0,00000
6	0,08226	0,10705	12	0,03528	0,09796	18	0,08507	0,00513	_	- -	_
Сг	ектр в поз	зиционноі	й коорд	цинате <i>R</i> =	= 2,0 м нап	ротив С	ТЕНКИ к	онвертора	, <i>F</i> _{3ГК} /	$F_{\rm M\Gamma K} = 0,$	06654
1	0,00001	0,00000	7	0,14331	0,18063	13	0,02820	0,05174	19	0,08985	0,00067
2	0,00175	0,00262	8	0,03951	0,07767	14	0,03603	0,05142	20	0,04879	0,00085
3	0,00010	0,00022	9	0,07687	0,07845	15	0,02085	0,05160	21	0,03715	0,00025
4	0,00334	0,00684	10	0,05517	0,07133	16	0,02697	0,03396	22	0,02073	0,00000
5	0,02323	0,03450	11	0,03367	0,06917	17	0,08206	0,03618	23	0,00245	0,00000
6	0.12420	0.15887	12	0.03122	0.08805	18	0.07454	0.00498	_	_	· _

Окончание табл. 8

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
Сг	Спектр в позиционной координате $R = 3,0$ м напротив СТЕНКИ конвертора, $F_{3\Gamma K}/F_{M\Gamma K} = 0,06267$										
1	0,00000	0,00000	7	0,16358	0,19618	13	0,02316	0,04510	19	0,07915	0,00051
2	0,00201	0,00304	8	0,03687	0,07016	14	0,03106	0,04424	20	0,04425	0,00057
3	0,00020	0,00033	9	0,07281	0,06864	15	0,01935	0,04428	21	0,03359	0,00022
4	0,00528	0,00838	10	0,04779	0,06326	16	0,02256	0,02825	22	0,02367	0,00000
5	0,03234	0,04965	11	0,03034	0,06087	17	0,07038	0,03259	23	0,00257	0,00000
6	0,16486	0,20382	12	0,02857	0,07584	18	0,06561	0,00407	-	—	-

Таблица 9

Средние энергии спектра единичного ү-флюенса для избранных полей излучений реактора ГИР-2

Спектр	\overline{E} , 1	МэВ	Спектр	\overline{E} , MəB		
Спектр	МГК	ЗГК	enekip	МГК	ЗГК	
Напротив ОКНА:			Напротив СТЕНКИ:			
<i>R</i> = 0,3 м	1,763	0,841	<i>R</i> = 0,3 м	1,919	0,791	
<i>R</i> = 0,5 м	1,805	0,834	<i>R</i> = 0,5 м	1,861	0,802	
<i>R</i> = 1,0 м	1,767	0,815	<i>R</i> = 1,0 м	1,797	0,782	
<i>R</i> = 2,0 м	1,639	0,760	<i>R</i> = 2,0 м	1,674	0,716	
R = 2,0 M R = 3,0 M	1,519	0,686	<i>R</i> = 3,0 м	1,544	0,645	

Таблица 10

Поглощенные γ -дозы (*D*) в избранных материалах относительно γ -дозы в ДТС ($D_{\text{ДТС}}$)

0				$D/D_{\Pi TC}$			
Спектр	Воздух	Кремний	SM-био	ДТС	ИС-7	ИК-газ	Сталь
		•	МΓΙ	К			
OKHO:							
<i>R</i> = 0,3 м	0,9806	1,0204	1,0755	1,0000	0,9934	0,9466	1,0451
<i>R</i> = 0,5 м	0,9802	1,0207	1,0749	1,0000	0,9933	0,9469	1,0457
<i>R</i> = 1,0 м	0,9786	1,0209	1,730	1,0000	0,9920	0,9489	1,0549
<i>R</i> = 2,0 м	0,9736	1,0213	1,0674	1,0000	0,9904	0,9554	1,0858
<i>R</i> = 3,0 м	0,9684	1,0216	1,0614	1,0000	0,9879	0,9625	1,1202
СТЕНКА:							
<i>R</i> = 0,3 м	0,9821	1,0211	1,0730	1,0000	0,9881	0,9483	1,0486
<i>R</i> = 0,5 м	0,9784	1,0205	1,0727	1,0000	0,9878	0,9489	1,0525
<i>R</i> = 1,0 м	0,9774	1,0172	1,0716	1,0000	0,9853	0,9503	1,0603
<i>R</i> = 2,0 м	0,9735	1,0204	1,0673	1,0000	0,9772	0,9555	1,0858
<i>R</i> = 3,0 м	0,9685	1,0224	1,0616	1,0000	0,9817	0,9622	1,1181
			3ГК	C			
ОКНО:							
<i>R</i> = 0,3 м	0,9927	1,0068	1,0995	1,0000	0,9888	0,9312	1,0348
<i>R</i> = 0,5 м	0,9934	1,0058	1,1000	1,0000	0,9883	0,9303	1,0318
<i>R</i> = 1,0 м	0,9939	1,0088	1,0988	1,0000	0,9897	0,9316	1,0409
<i>R</i> = 2,0 м	0,9879	1,0086	1,0919	1,0000	0,9841	0,9403	1,0896
<i>R</i> = 3,0 м	0,9759	1,0038	1,0817	1,0000	0,9782	0,9532	1,1592

для избранных полей излучений реактора ГИР-2

Окончание табл. 10

Спектр	$D/D_{\rm ДTC}$										
enemp	Воздух	Кремний	SM-био	ДТС	ИС-7	ИК-газ	Сталь				
СТЕНКА:											
<i>R</i> = 0,3 м	0,9846	1,0075	1,0942	1,0000	0,9866	0,9377	1,0676				
<i>R</i> = 0,5 м	0,9875	1,0055	1,0952	1,0000	0,9859	0,9365	1,0620				
<i>R</i> = 1,0 м	0,9869	1,0092	1,0929	1,0000	0,9868	0,9394	1,0785				
<i>R</i> = 2,0 м	0,9790	1,0066	1,0837	1,0000	0,9802	0,9511	1,1435				
<i>R</i> = 3,0 м	0,9728	1,0050	1,0729	1,0000	0,9761	0,9646	1,2177				

Спектры единичного γ -флюенса МГК и ЗГК в полях излучений R = 0,3 м; 1,0 м; 3,0 м напротив ОКНА и СТЕНКИ реактора ГИР-2 в графической форме представлены на рис. 10.

Рис. 10. Спектры единичного γ -флюенса МГК (а) и ЗГК (б) в полях излучений с позиционными координатами R = 0,3 м (\blacksquare) и R = 3,0 м (\blacksquare) напротив ОКНА, R = 0,3 м (\blacksquare) и R = 3,0 м (\blacksquare) напротив СТЕНКИ реактора ГИР-2

Результаты определения спектральных характеристик для избранных полей излучения реактора БИГР представлены в табл. 11 (спектры единичного флюенса), 12 (средние энергии), 13 (нормализованные поглощенные дозы).

Таблица 11

Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК	Гр. №	МГК	ЗГК
			Спектр	в центре	активной	зоны,	$F_{3\Gamma \mathrm{K}}/F_{\mathrm{M}\Gamma \mathrm{I}}$	_x = 0,5655			
1	0,00000	0,00000	7	0,20187	0,22001	13	0,06931	0,04723	19	0,02652	0,00074
2	0,00000	0,00000	8	0,06786	0,09780	14	0,05317	0,04507	20	0,01168	0,00058
3	0,00000	0,00000	9	0,06894	0,09246	15	0,03574	0,04402	21	0,00613	0,00022
4	0,00039	0,00044	10	0,05086	0,08081	16	0,02999	0,02881	22	0,00290	0,00000
5	0,01028	0,01002	11	0,04595	0,07246	17	0,04108	0,03136	23	0,00046	0,00000
6	0,12574	0,13529	12	0,12414	0,08843	18	0,02699	0,00425	-	-	-
		Спект	гр в позі	иционной	координа	ите $R = 1$	1,0 м, <i>F</i> _{ЗГК}	$F_{\rm M\Gamma K} =$	0,4257		
1	0,00000	0,00000	7	0,16140	0,19323	13	0,07219	0,06547	19	0,03878	0,00123
2	0,00100	0,00098	8	0,06832	0,10190	14	0,05743	0,06232	20	0,02020	0,00107
3	0,00007	0,00001	9	0,07501	0,09774	15	0,04068	0,05717	21	0,01065	0,00039
4	0,00129	0,00050	10	0,05493	0,08542	16	0,03638	0,03810	22	0,01765	0,00000
5	0,00855	0,00405	11	0,04805	0,07792	17	0,05263	0,04117	23	0,00147	0,00000
6	0,07731	0,06789	12	0,12093	0,09768	18	0,03508	0,00576	-	-	-
		Спект	гр в позн	иционной	координа	$\operatorname{Te} R = 2$	2,0 м, <i>F</i> _{ЗГК}	$F_{\rm M\Gamma K} =$	0,3178		
1	0,00000	0,00000	7	0,16854	0,19045	13	0,05571	0,06169	19	0,03876	0,00112
2	0,00064	0,00084	8	0,05844	0,09372	14	0,04570	0,05741	20	0,02498	0,00100
3	0,00016	0,00007	9	0,06787	0,09048	15	0,03483	0,05354	21	0,01435	0,00037
4	0,00394	0,00212	10	0,04330	0,07908	16	0,03167	0,03526	22	0,04525	0,00000
5	0,02438	0,01416	11	0,03712	0,07167	17	0,04706	0,03838	23	0,00316	0,00000
6	0,13267	0,11280	12	0,09209	0,09074	18	0,02938	0,00510	—	-	—
		Спект	р в поз	иционной	координа	the $R = 3$	3,0 м, <i>F</i> _{ЗГК}	$F_{\rm M\Gamma K} =$	0,2376		
1	0,00000	0,00000	7	0,17663	0,19770	13	0,04361	0,05512	19	0,03856	0,00104
2	0,00041	0,00073	8	0,05136	0,08393	14	0,03704	0,05148	20	0,02852	0,00090
3	0,00023	0,00014	9	0,06309	0,08112	15	0,03051	0,04787	21	0,01719	0,00033
4	0,00591	0,00421	10	0,03481	0,07072	16	0,02821	0,03170	22	0,06575	0,00000
5	0,03621	0,02678	11	0,02886	0,06368	17	0,04278	0,03407	23	0,00442	0,00000
6	0,17022	0,16275	12	0,07055	0,08116	18	0,02513	0,00457	-	—	—
		Спект	гр в позі	иционной	координа	tte $R = 4$	4,0 м, <i>F</i> _{ЗГР}	$F_{\rm M\Gamma K} =$	0,1857		
1	0,00000	0,00000	7	0,18103	0,20516	13	0,03607	0,04860	19	0,03861	0,00089
2	0,00027	0,00060	8	0,04772	0,07554	14	0,03168	0,04596	20	0,03107	0,00080
3	0,00029	0,00020	9	0,06057	0,07177	15	0,02787	0,04204	21	0,01900	0,00029
4	0,00724	0,00651	10	0,02918	0,06274	16	0,02610	0,02776	22	0,07948	0,00000
5	0,04365	0,03994	11	0,02373	0,05631	17	0,04010	0,03012	23	0,00527	0,00000
6	0,19159	0,20931	12	0,05709	0,07143	18	0,02239	0,00403	-	—	—
		Спект	р в поз	иционной	координа	tte $R = 3$	5,0 м, <i>F</i> _{ЗГК}	$r/F_{\rm M\Gamma K} =$	0,1511		
1	0,00000	0,00000	7	0,18387	0,21718	13	0,03099	0,04190	19	0,03920	0,00078
2	0,00018	0,00048	8	0,04546	0,06746	14	0,02814	0,03946	20	0,03312	0,00068
3	0,00026	0,00026	9	0,05922	0,06296	15	0,02633	0,03593	21	0,02050	0,00026
4	0,00790	0,00862	10	0,02574	0,05383	16	0,02462	0,02426	22	0,08988	0,00000
5	0,04731	0,05268	11	0,02024	0,04791	17	0,03864	0,02608	23	0,00596	0,00000
6	0,20349	0,25451	12	0,04811	0,06134	18	0,02084	0,00342	-	—	_

Спектры единичного ү-флюенса для избранных полей излучений реактора БИГР

Таблица 12

Спектр	\overline{E} , МэВ		Спектр	\overline{E} , 1	МэВ	Спектр	\overline{E} , 1	МэВ
	МГК	ЗГК	Спектр	МГК	ЗГК	Спектр	МГК	ЗГК
Центр АЗ	0,964	0,698	<i>R</i> = 2,0 м	1,376	0,766	<i>R</i> = 4,0 м	1,544	0,643
<i>R</i> = 1,0 м	1,245	0,814	<i>R</i> = 3,0 м	1,473	0,704	<i>R</i> = 5,0 м	1,607	0,580

Средние энергии спектра единичного ү-флюенса для избранных полей излучений реактора БИГР

Таблица 13

Поглощенные γ -дозы (D) в избранных материалах относительно γ -дозы в ДТС $(D_{\text{ЛТС}})$

Спектр		$D/D_{ m ДTC}$											
Chekip	Воздух	Кремний	SM-био	ДТС	ИС-7	ИК-газ	Сталь						
			МΓ	K									
Центр АЗ	0,9870	1,0160	1,0907	1,0000	0,9910	0,9365	1,0473						
<i>R</i> = 1 м	0,9780	1,0146	1,0834	1,0000	0,9868	0,9423	1,0445						
<i>R</i> = 2 м	0,9619	1,0220	1,0647	1,0000	0,9831	0,9602	1,1016						
<i>R</i> = 3 м	0,9509	1,0266	1,0519	1,0000	0,9803	0,9724	1,1403						
<i>R</i> = 4 м	0,9433	1,0293	1,0441	1,0000	0,9784	0,9798	1,1628						
<i>R</i> = 5 м	0,9405	1,0319	1,0394	1,0000	0,9779	0,9841	1,1745						
		•	3Г	К	•		•						
Центр АЗ	0,9874	1,0054	1,0966	1,0000	0,9863	0,9326	1,0574						
<i>R</i> = 1 м	0,9949	1,0042	1,1017	1,0000	0,9905	0,9274	1,0191						
<i>R</i> = 2 м	0,9901	1,0070	1,0966	1,0000	0,9895	0,9339	1,0564						
<i>R</i> = 3 м	0,9818	1,0041	1,0892	1,0000	0,9834	0,9431	1,1092						
<i>R</i> = 4 м	0,9759	1,0054	1,0806	1,0000	0,9805	0,9537	1,1703						
<i>R</i> = 5 м	0,9653	1,0052	1,0705	1,0000	0,9768	0,9662	1,2424						

для избранных полей излучений реактора БИГР

Спектры единичного γ -флюенса МГК и ЗГК в полях излучений в центре АЗ и в позиционных координатах R = 1,0 м; R = 3,0 м; R = 5,0 м снаружи АЗ реактора БИГР в графической форме представлены на рис. 11.

Рис. 11. Спектры единичного γ -флюенса МГК (а) и ЗГК (б) в полях излучений в центре АЗ (а) и с позиционными координатами R = 1,0 м (а), R = 3,0 м (а) и R = 5,0 м (а) снаружи АЗ реактора БИГР (окончание рис. см. на с. 173)

Рис. 11. Окончание

Заключение

Преимущественно табличная форма представления спектров единичного флюенса МГК и ЗГК ориентирована на возможность непосредственного практического использования данной спектральной характеристики при проведении разнообразных исследовательских и прикладных работ в полях излучений реакторных установок ВНИИЭФ.

Авторы будут признательны заинтересованным специалистам как за любые конструктивные замечания по представленным в статье данным, так и за любую конкретную информацию по использованию указанных данных в практике проведения работ профильной направленности в полях излучений реакторных установок ВНИИЭФ.

Список литературы

1. Кошелев А. С., Хоружий В. Х. Влияние спектра гамма-квантов на величину поглощенной дозы в материалах различного элементного состава // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 2009. Вып. 1. С. 17–27.

2. Кошелев А. С., Хоружий В. Х. Прецизионные особенности реализации поглощенной дозы от запаздывающих гамма-квантов в поле специализированного гамма-источника реактора БР-К1 // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 2009. Вып. 1. С. 28–35.

3. Кошелев А. С., Хоружий В. Х. Пространственные, спектральные и временные характеристики специализированного гамма-источника реактора БР-К1 // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 2010. Вып. 2. С. 61–68.

ЯДЕРНАЯ ФИЗИКА, ФИЗИКА ЯДЕРНЫХ РЕАКТОРОВ

4. Кошелев А. С., Хоружий В. Х. Спектральный фактор в гамма-диагностике полей излучений реакторных установок ВНИИЭФ // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 2012. Вып. 3. С. 31–42.

5. Кочубей Ю. К., Житник А. К., Артемьева Е. В. и др. Программа С-95. Современное состояние и возможности // Сб. докл. VI Межотраслевой конф. по радиационной стойкости. – Саров: РФЯЦ-ВНИИЭФ, 2003. С. 100–104.

6. Житник А. К., Донской Е. Н., Огнев С. П. и др, Методика С-007 решения методом Монте-Карло связанных линейных уравнений переноса нейтронов, гамма-квантов, электронов и позитронов // Вопросы атомной науки и техники. Сер. Матем. моделирование физ. процессов. 2011. Вып. 1. С. 17–24.

7. Генералова В. В., Жанжора А. П., Кошелев А. С., Нарожный А. Т. Специализированный источник гамма-излучения, пространственно совмещенный с моделирующим опорным полем нейтронов МОП-К2 // Измерительная техника. 2010. № 1. С. 24–27.

8. Колесов В. Ф., Кувшинов М. И., Воронцов С. В.и др. Критические стенды и импульсные реакторы РФЯЦ-ВНИИЭФ // 65 лет ВНИИЭФ. Физика и техника высоких плотностей энергий. – Саров: РФЯЦ-ВНИИЭФ, 2011. Вып. 1. С. 136–164.

9. Пунин В. Т., Савченко В. А., Завьялов Н. В., Гордеев В. С. и др. Мощные линейные индукционные ускорители электронов и облучательные комплексы на их основе для радиационных исследований // Вопросы атомной науки и техники. Сер. Физика радиационного воздействия на радиоэлектронную аппаратуру. 2000. Вып. 3–4. С. 95–99.

10. Кувшинов М. И., Колесов В. Ф., Воинов А. М., Смирнов И. Г. Апериодический импульсный реактор БИГР // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 1988. Вып. 1. С. 3–12.

11. Ritts J. J., Solomito M., Stevens P. N. Calculation of neutron fluence-to-Kerma factors for the human body // Nucl. Appl. and Technol. 1969. Vol. 7. P. 89–99.

12. Брискман Б. А., Генералова В. В., Крамер-Агеев Е. А., Трошин В. С. Внутриреакторная дозиметрия. Практическое руководство. – М.: Энергоатомиздат, 1985.

13. Бочвар И. А., Гимадова Т. Н., Кеирим-Маркус И. Б. и др. Метод дозиметрии ИКС. – М.: Энергоатомиздат, 1977.

14. Марочник сталей и сплавов / Под ред. В. Г. Сорокина. – М.: Машиностроение, 1989.

Gamma-Field Spectral Characteristics of VNIIEF Reactor Facilities

A. S. Koshelev, V. Kh. Khoruzhy

There are presented the calculated versions of spectra of prompt and delayed gammaquanta in a 23-group energy format on reactor BR-K1, BR-1M, GIR-2 and BIGR for 7, 14, 10 and 6 radiation fields, respectively. For each spectral distribution there are presented in addition the ratios between prompt and delayed components, average spectra energies, absorbed doses in air, silicon, biological tissue, IS-7 detector material, gas-filler used to fill ionization chambers and in 12X18H10T steel as normalized for the absorbed dose in DTS detector material.

For the selected spectral distributions their graphic versions are given.