УДК 621.039

Критические эксперименты на сборках с металлическим плутонием, выполненные в РФЯЦ-ВНИИЭФ

Представлен краткий обзор методики проведения экспериментов в РФЯЦ-ВНИИЭФ по изучению характеристик размножения нейтронов и критических масс сборок, содержащих металлические делящиеся материалы. Приведены результаты измерений критических масс сборок из плутония в α - и δ -фазах с различным изотопным составом, выполненных в РФЯЦ-ВНИИЭФ М. И. Кувшиновым, А. А. Малинкиным, Б. Д. Сциборским, В. А. Давиденко, В. П. Егоровым в 1956–1965 гг.

С. В. Воронцов, М. И. Кувшинов

Введение

Знание критических масс и характеристик размножения нейтронов сборок, содержащих металлический плутоний, необходимо для определения условий ядерной безопасности (ЯБ) при производстве, хранении и транспортировке как делящихся материалов (ДМ), так и изделий из них. Кроме того, экспериментальные данные об этих параметрах для размножающих систем (PC) простой геометрии весьма полезны для верификации используемых в расчетах ядерных данных.

Экспериментальные исследования характеристик PC, содержащих активную зону из металлического плутония, начали систематически проводиться в РФЯЦ-ВНИИЭФ в 1950-х гг. [1]. При этом измерялись все основные ядерно-физические параметры PC: реактивность (подкритичность), распределение плотности различных ядерных реакций по объему активной зоны (АЗ), интегральное число делений во всем объеме АЗ, возмущение реактивности образцами из различных материалов, спектральные индексы $\left[\sigma(X)/\sigma(^{235}U)\right]$, энергетические спектры нейтронов, спады плотно-

сти мгновенных нейтронов во времени, характеристики запаздывающих нейтронов.

Основные нейтронные характеристики критической сборки из сплава ²³⁹ Pu (96,4 %) в δ-фазе без отражателя, полученные во ВНИИЭФ, представлены на XI Международном семинаре по фундаментальным свойствам плутония [2].

В настоящей статье приведен краткий обзор экспериментов только по изучению характеристик размножения нейтронов и критических масс для большого числа сборок, содержащих металлический плутоний. В экспериментах использовались детали из сплавов плутония в αи δ-фазах с различным содержанием нуклида ²³⁹ Pu: ²³⁹ Pu (96,4 %) в δ-фазе, ²³⁹ Pu (87,9 %) в δ-фазе, ²³⁹Pu (88,3 %) в α-фазе. Изучались также PC, в состав которых одновременно входили детали из ²³⁹Pu (96,4 %) в δ-фазе и ²³⁵U (89,6 %) [3].

Исследовались сборки из металлического плутония без отражателя и с отражающими оболочками различной толщины. В качестве отражателей в составе PC изучено более 30 материалов, наиболее широко используемых в технике. Эти эксперименты были выполнены в РФЯЦ-ВНИИЭФ М. И. Кувшиновым, А. А. Малинкиным, Б. Д. Сциборским, В. А. Давиденко, В. П. Егоровым в 1956–1965 гг. [1].

Методика экспериментов

Эксперименты проводились на созданном во ВНИИЭФ специальном стенде ФКБН (физический котел на быстрых нейтронах). В последующие годы он неоднократно модернизировался и совершенствовался с целью повышения безопасности проводимых на нем работ [3]. Электромеханический стенд установки ФКБН-2М размещен в зале размером $12 \times 10 \times 8$ м, имеющем толстые (1–3 м) бетонные стены и потолок для защиты от нейтронного и гамма-излучений, а также от взрывного воздействия.

Схематическое изображение современного электромеханического стенда установки ФКБН-2М представлено на рис. 1. Критическая система собирается на стенде в виде двух заведомо подкритических блоков на безопасном расстоянии друг от друга. Конструкция стенда и его система управления обеспечивают возможность дистанционного сближения этих блоков с целью образования критической конфигурации сборки.

Рис. 1. Схематическое изображение электромеханического стенда установки ФКБН-2М: 1 – нижний блок PC; 2 – опора, перемещаемая в вертикальном направлении; 3 – верхний блок PC; 4 – опора, перемещаемая в горизонтальном направлении; 5 – устройство загрузки центрального канала

На рис. 2 показан стенд ФКБН-2М с размножающей сборкой в экспериментальном зале. Для реализации критических экспериментов установка ФКБН-2М укомплектована большим набором деталей (в основном полусферической формы) из делящихся и инертных конструкционных материалов (рис. 3). На рис. 4 изображена полномасштабная модель критической сборки из 239 Ри в α -фазе.

Рис. 2. Стенд ФКБН-2М с размножающей сборкой в экспериментальном зале

Рис. 3. Набор макетных деталей из делящихся и конструкционных материалов для сборки критических систем на установке ФКБН-2М

Рис. 4. Полномасштабная модель критической сборки из ²³⁹Ри в α-фазе

Основным измеряемым в эксперименте параметром служил коэффициент умножения Q. Он определялся по соотношению $Q = (N - N_{\phi})/N_0$, где N – поток нейтронов утечки из сборки с плутонием, в центре которой размещен изотопный источник нейтронов; N_{ϕ} – поток нейтронов утечки из сборки с плутонием без изотопного источника нейтронов (в этом случае поток нейтронов утечки обусловлен размножением в сборке нейтронов собственного фона плутония); N_0 – поток нейтронов утечки из макетной сборки, в которой плутоний заменен инертным материалом (свинцом или сталью) и в центре размещен тот же изотопный источник нейтронов.

Величина, обратная коэффициенту умножения, $\Delta = 1/Q$ называется подкритичностью и характеризует близость сборки к критическому состоянию (в критическом состоянии $\Delta = 0$).

В работе применялся источник нейтронов, имеющий состав Po + B₄C + CaF₂, спектр которого близок к спектру нейтронов деления. Для регистрации потока нейтронов использовался «всеволновый» счетчик. Точность измерения коэффициента умножения составляла 1–2 %.

Критическое состояние определялось путем линейной экстраполяции к нулю зависимости подкритичности от изменяемого параметра сборки (радиуса активной зоны, толщины отражателя, расстояния между двумя частями сборки, возмущения подкритичности малым образцом плутония и др.). В большинстве случаев экспериментально подбирались сборки, близкие к критическим, для которых $\Delta < 0,01$. При этом масса делящегося материала в сборке отличалась от критической менее чем на 1 %.

Сферические сборки собирались из деталей полусферической формы. Используемые в качестве отражателя жидкости заливались в тонкостенные медные конверты. Средние плотности материалов определялись путем деления массы материала на занимаемый объем, ограниченный наружным и внутренним радиусами АЗ и отражателя. Для удобства использования (например, для построения зависимости критической массы от толщины отражающей оболочки) прямые экспериментальные значения критических масс плутония в ряде случаев были пересчитаны к их значениям для сплошных шаров с нормальной плотностью металла. В случае сборок с отражающими оболочками при пересчете толщина оболочки оставалась такой же, как и в опыте, а плотность принималась равной нормальной плотности материала оболочки. Пересчет производился в односкоростном приближении методом сферических гармоник. Проверка правильности расчета проводилась путем сравнения экспериментальных и расчетных данных при небольших вариациях средней плотности материалов АЗ и отражателя и размеров центральной полости. Было показано, что пересчет не вносит сколько-нибудь существенной ошибки в значения критических масс.

Результаты экспериментов

Во ВНИИЭФ были изучены размножающие характеристики и критические параметры около 200 сборок, содержащих в активной зоне металлический плутоний. В качестве отражателя в критических сборках использовались: вода, полиэтилен, плексиглас, медь, графит, сталь, дюралюминий, бериллий, окись бериллия, естественный уран, ²³⁸U, бетон, свинец, вольфрам, никель, B₄C, молибден, титан, B₄C + полиэтилен, диффузионное масло, цирконий, кадмий + полиэтилен, четырехфтористый углерод, гидрид лития и др. Отражающая оболочка содержала один или два из указанных материалов и либо вплотную прилегала к A3, либо была отдалена от нее на некоторое расстояние. В большинстве сборок A3 имела форму сплошного или полого шара, в некоторых сборках – форму полушария.

Результаты экспериментов представлены в табл. 1–12. Отметим, что данные табл. 4 позволяют построить зависимости критической массы плутония от толщины отражателя. На рис. 5 в качестве примера приведены такие зависимости для отражателей из ²³⁸ U, Fe, Al.

Таблица 1

Фазовое состояние	Принятые	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	N1	Ga
+ usoboe coeromine	обозначения		Mac	совая доля	ı, %	
Плутоний в б-фазе	Pu(δ)-I	96,42	1,77	-	1,2	1,69
Плутоний в б-фазе	Pu(δ)-II	87,87	9,06	1,02	0,9	1,68
Плутоний в α-фазе	$Pu(\alpha)$	88,25	9,90	1,60	_	-

Основные компоненты сплавов плутония [4]

Таблица 2

Критические массы шаров из плутония без отражателя

Делящийся материал	Средняя плотность, г/см ³	Критическая масса, кг
Pu(δ)-I	15,7	$16,9\pm 0,1$
$Pu(\alpha)$	19,5	$10,6\pm 0,1$

Таблица 3

Mananual apparente	Царижиний ранниа	Коэффи	циент умножени	я для активной	ЗОНЫ		
	паружный радиус	с наружным радиусом, см					
его плотность, т/см	отражателя», см	3,15	4,02	4,66	5,35		
	6,75	1,70	2,63	4,00	7,94		
Уран естественный,	9,15	1,82	3,12	5,88	87,6		
$\rho = 18,4$	15,00	1,89	3,85	13,3	_		
	25,00	2,00	4,35	30,3	_		
	6,00	1,72	2,50	_	_		
Потители о 0.01	7,55	_	_	4,76	9,43		
Полиэтилен, $\rho = 0,91$	9,15	1,96	3,45	6,25	25,6		
	23,0	2,00	3,57	7,69	_		
	8,00	1,67	2,63	4,00	8,54		
Графит, ρ = 1,60	15,0	1,79	2,94	5,55	50,0		
	35,0	1,80	3,57	_	_		
	7,55	1,58	2,35	3,34	6,06		
Дюралюминий,	9,15	1,62	2,38	3,57	7,14		
$\rho = 2,55$	15,00	1,67	2,57	4,17	10,4		
	25,0	1,70	2,63	4,66	14,9		
	7,55	1,67	2,53	3,75	8,00		
7.50	9,15	_	2,57	4,24	11,00		
железо, $\rho = 7,50$	15,0	1,70	2,78	5,27	32,3		
	25,0	_	2,90	5,88	_		

Коэффициенты умножения сборок с активной зоной из Pu(δ)-I плотностью 15,3 г/см³ и сферическими оболочками из различных материалов

Примечание: * внутренний радиус АЗ во всех сборках был равен 1,4 см; внутренний радиус отражателя равен наружному радиусу АЗ.

Таблица 4

Критические массы сплошных шаров из Pu(δ)-I плотностью 15,7 г/см³ в сферических отражателях

Материал отражателя, его плотность, г/см ³	Толщина отражателя, см	Критическая масса, кг	Материал отражателя, его плотность, г/см ³	Толщина отражателя, см	Критическая масса, кг
Бериллий, ρ = 1,84	1,5 3,8 6,1 13,4 17,2	$11,5\pm0,18,7\pm0,056,9\pm0,15,0\pm0,14,3\pm0,1$	Плексиглас, ρ = 1,20	3,4 5,7 12,7	$10,4\pm0,3\\8,7\pm0,1\\7,2\pm0,3$
Окись бериллия, ρ = 2,70	4,0 6,4	$8,2\pm0,4$ $6,8\pm0,3$	Кадмий + плексиглас, $\rho_{Cd} = 8, 6, \ \rho_{\Pi\Pi} = 1, 20$	3,2 5,5 11,3	$11,0\pm 0,2 \\9,9\pm 0,3 \\9,6\pm 0,3$
Уран естественный, р = 18,8	1,3 3,8 8,3 20,3	$12,5\pm0,128,9\pm0,087,2\pm0,16,1\pm0,07$	Карбид бора + плексиглас, $\rho_{B_4C} = 1, 0, \ \rho_{\Pi\Pi} = 1, 20$	3,2 6,6 12,3	$12,6\pm0,3\\11,0\pm0,3\\11,0\pm0,3$
Графит, ρ = 1,70	2,0 9,2 39,2	$12,4\pm 0,12 \\ 8,6\pm 0,1 \\ 6,6\pm 0,2$	Диффузионное масло Д-1, ρ = 0,91	3,4 8,2 16,2	9,9 \pm 0,3 8,5 \pm 0,2 8,3 \pm 0,2

Окончание табл. 4

1,5 4,9	12,3±0,12		1.00	
8,7	$9,1\pm0,1$ $8,0\pm0,2$	Железо, ρ = 7,80	6,7 12,1 19,5	$12,8\pm0,129,3\pm0,28,7\pm0,18,5\pm0,1$
2,3 8,9 16,2	$12,2\pm0,28,9\pm0,28,3\pm0,2$	Цирконий, р = 6,5	1,2 6,0	$13,0\pm0,2$ $10,1\pm0,3$
1,3	13,1±0,2	Бетон марки 200, ρ = 2	2,4 10,2 23,5	$\begin{array}{c} 12,9\pm 0,2\\ 9,4\pm 0,2\\ 8,6\pm 0,3\end{array}$
1,6 4,5 9,8 25,2	$12,8\pm0,129,4\pm0,17,7\pm0,17,2\pm0,1$	Свинец, ρ = 11,1	3,0 5,8 12,3	$\begin{array}{c} 13,1\pm0,3\\ 11,1\pm0,3\\ 9,6\pm0,3\end{array}$
2,6 5,3 12,3	$\begin{array}{c} 12,\!4\!\pm\!0,\!15\\ 11,\!1\!\pm\!0,\!2\\ 10,\!9\!\pm\!0,\!2\end{array}$	Дюралюминий, ρ = 2,7	3,2 10,8 19,5	$\begin{array}{c} 12,9\pm 0,13\\ 10,5\pm 0,4\\ 10,0\pm 0,3\end{array}$
2,4 3,1 5,0 9,2	$12,9\pm0,2\\12,4\pm0,2\\12,0\pm0,2\\12,0\pm0,2$	Гидрид лития естественного, ρ = 0,77 Четыреххлористый углерод ρ = 1.59	10,0 14,0 19,0 3,1 7,1	$12,2\pm0,412,2\pm0,412,4\pm0,414,5\pm0,413,9\pm0,4$
	8,7 2,3 8,9 16,2 1,3 1,6 4,5 9,8 25,2 2,6 5,3 12,3 2,4 3,1 5,0 9,2	$8,7$ $8,0\pm0,2$ $2,3$ $12,2\pm0,2$ $8,9$ $8,9\pm0,2$ $16,2$ $8,3\pm0,2$ $1,3$ $13,1\pm0,2$ $1,6$ $12,8\pm0,12$ $4,5$ $9,4\pm0,1$ $9,8$ $7,7\pm0,1$ $25,2$ $7,2\pm0,1$ $2,6$ $12,4\pm0,15$ $5,3$ $11,1\pm0,2$ $12,3$ $10,9\pm0,2$ $2,4$ $12,9\pm0,2$ $3,1$ $12,4\pm0,2$ $5,0$ $12,0\pm0,2$ $9,2$ $12,0\pm0,2$	8,78,0 \pm 0,22,312,2 \pm 0,28,98,9 \pm 0,216,28,3 \pm 0,21,313,1 \pm 0,21,612,8 \pm 0,124,59,4 \pm 0,19,87,7 \pm 0,125,27,2 \pm 0,12,612,4 \pm 0,155,311,1 \pm 0,212,310,9 \pm 0,22,412,9 \pm 0,22,412,9 \pm 0,29,212,0 \pm 0,29,212,0 \pm 0,2	8,78,0 \pm 0,212,1 19,52,312,2 \pm 0,2Цирконий, $\rho = 6,5$ 1,28,98,9 \pm 0,2Цирконий, $\rho = 6,5$ 1,216,28,3 \pm 0,2Цирконий, $\rho = 6,5$ 6,01,313,1 \pm 0,2Бетон марки 200, $\rho = 2$ 10,21,612,8 \pm 0,1223,51,612,8 \pm 0,123,04,59,4 \pm 0,15,89,87,7 \pm 0,112,325,27,2 \pm 0,112,32,612,4 \pm 0,153,25,311,1 \pm 0,2Дюралюминий, $\rho = 2,7$ 10,810,9 \pm 0,210,02,412,9 \pm 0,2Гидрид лития3,112,4 \pm 0,29,25,012,0 \pm 0,2Четыреххлористый9,212,0 \pm 0,2Четыреххлористый7,119,0

Примечание: * слой Cd толщиной ~0,5 мм (или B₄C толщиной ~8 мм) расположен между A3 и отражателем. Приведенная в таблице толщина отражателя – суммарная.

Таблица 5

Критическая масса сплошных шаров из Pu(δ)-II плотностью 15,7 г/см³ в сферическом отражателе из естественного урана и полиэтилена

Материал отражателя, его плотность, г/см ³	Толщина отражателя, см	Критическая масса Рu(δ)-II, кг
Уран естественный, $\rho = 18,8$	3,8	9,4±0,1
Полиэтилен, ρ = 0,93	5,6	$9,2\pm 0,1$

Таблица б

Критическая масса сплошных шаров из Pu(α) плотностью 19,5 г/см³ в сферических отражателях

Материал отражателя, его плотность, г/см ³	Толщина отражателя, см	Критическая масса, кг
	2,1	$6,94 \pm 0,07$
Бериллий, ρ = 1,84	8,2	$4,50 \pm 0,06$
	9,2	$4,31 \pm 0,05$
	17,5	$3,60 \pm 0,06$
Полиэтилен, ρ = 0,93	3,7	$6,73 \pm 0,07$
	11,0	$5,3 \pm 0,2$

Материал отражателя, его плотность, г/см3	Толщина отражателя, см	Критическая масса, кг
Железо, ρ = 7,80	4,5	$7,02 \pm 0,07$
	2,1	$7,18 \pm 0,07$
Уран естественный,	2,9	$6,52 \pm 0,06$
$\rho = 18,8$	11,0	$4,74 \pm 0,05$
	21,0	$4,50 \pm 0,05$
Experimental $a = 1.70$	4,5	$7,0 \pm 0,1$
1 рафит, <i>р</i> = 1,70	31,0	$4,75 \pm 0,05$

Окончание табл. 6

Таблица 7

Критические массы полых шаров из Pu (б)-I в сферических отражателях

Отражатель		Активная зона		
Материал, его плотность, г/см ³	Толщина, см	Внутренний радиус, см	Плотность, г/см ³	Критическая масса, кг
	2,2	3,15	15,3	$17,7 \pm 0,3$
Железо, ρ = 7,50	34,5	3,15	15,2	$11,8\pm0,3$
	10,4	4,02	15,3	$15,5 \pm 0,2$
	2,6	3,15	15,3	$17,7 \pm 0,3$
	4,3	3,15	14,1	$16,3\pm 0,3$
	15,9	3,15	15,2	$11,8\pm 0,2$
	29,3	3,15	15,3	$10,1 \pm 0,4$
Графит, ρ = 1,55	46,6	3,15	15,3	$9,8 \pm 0,5$
	10,7	4,02	15,3	$15,5 \pm 0,2$
	28,5	4,02	14,9	$12,4\pm 0,3$
	28,5	4,66	15,3	$13,9\pm 0,3$
	37,7	4,66	15,3	$13,2\pm 0,3$
Дюралюминий, ρ = 2,55	4,3	3,15	15,3	$17,7 \pm 0,2$
	5,0	3,15	15,8	$12,3\pm 0,2$
	9,7	3,15	15,0	$11,6\pm 0,2$
Полиэтилен, ρ = 0,93	4,4	4,02	15,3	$15,5 \pm 0,2$
	8,4	4,66	16,2	$14,0\pm 0,3$
	15,7	4,66	15,3	$13,2\pm 0,2$
	5,0	3,15	15,2	$11,8\pm 0,1$
	4,3	4,02	14,7	$15,0\pm 0,3$
Vpau ectectrolulu $\mathbf{U} = 0 - 19 1$	6,8	4,02	15,1	$12,9\pm 0,3$
у ран естественный, $\rho = 18,4$	7,7	4,02	15,0	$12,4\pm 0,2$
	8,3	4,66	15,6	$13,5 \pm 0,2$
	8,7	4,66	15,4	$13,3\pm 0,2$

Таблица 8

Критические параметры сборок из полых шаров Pu(δ)-I в сферических отражателях при заполнении центральной полости в активной зоне материалом отражателя

Внешний от и заполнитель полог	гражатель центральной сти	Акти	вная зона Ри	ı(δ)-I	Изменение критической массы	Изменение подкритичности
Материал, его плотность, г/см ³	Толщина отражателя, см	Внутренний радиус, см	Плотность, г/см ³	Критическая масса, кг	при заполнении центральной полости*, %	при заполнении центральной полости, 1000/ <i>Q</i> **
Железо, ρ = 7,50	11,3	4,02	15,3	$15,2\pm0,2$	+0,65	+9
Уран естественный, р = 18,4	7,7	4,02	15,0	12,3±0,2	-0,81	-14
Полиэтилен, ρ = 0,90	8,4	4,66	14,8	12,8±0,3	-21,0	-105

Примечания: * «плюс» и «минус» при численных значениях означают соответственно увеличение и уменьшение критической массы при заполнении центральной полости неделящимся материалом; ** Q – коэффициент умножения от центрального источника.

Таблица 9

Критическая масса сплошных шаров из Pu(δ)-I плотностью 15,7 г/см³ в сборках с отражателем, составленным из двух слоев

Активная зо	на из Ри(δ)-Ι	из Ри(δ)-І Состав и размерь		Состав и размеры внутреннего слоя отражателя		
Наружный	Критическая	Моториол	Плотность,	Толщина слоя,	слоя из железа,	
радиус, см	масса, кг	материал	г/см ³	СМ	$\rho = 7,5 \ r/cm^3$	
4,96	8,0±0,3	Полиэтилен	0,90	0,8	19,2	
4,76	$7,1\pm 0,3$	Полиэтилен	0,90	1,6	18,6	
4,75	$7,0\pm 0,3$	Полиэтилен	0,90	4,1	16,1	
5,08	$8,6\pm 0,3$	Графит	1,60	1,6	18,3	
5,02	$8,3 \pm 0,3$	Графит	1,60	5,9	14,1	
5,12	$8,8 \pm 0,2$	Свинец	10,8	2,4	17,5	

Таблица 10

Параметры критических сборок с воздушным зазором между активной зоной и отражающей оболочкой

Активная зона в виде полого шара из Pu(δ)-I	Симметричный воздушный зазор между активной зоной и отражателем, см	Толщина сферической оболочки из естественного урана, см (ρ = 18,4 г/см ³)	
Внутренний радиус 3,15 см	1,6	12,6	
Наружный радиус 6,00 см	1,8	13,8	
Критическая масса 11,8±0,2 кг	2,4	20,4	

Таблица 11

Критическая масса полушаров из Pu(δ)-I, окруженных оболочками из графита, естественного урана и полиэтилена

Активная зона из Pu(б)-I			Отражатель*			Отношение
в виде полушара						критических масс
Наружный	Плотность,	Критическая	Моторио т	Плотность,	Наружный	полушара
радиус, см	г/см ³	масса, кг	материал	г/см ³	радиус, см	и сплошного шара
6,00	15,1	$6,8\pm 0,1$	Естественный уран	18,4	32,5	1,10
6,75	14,2	$9,2\pm 0,2$	Графит	1,60	35,0	1,15
6,75	15,1	$9,6\pm 0,1$	Полиэтилен	0,90	22,0	1,20

Примечание: * отражатель состоял из полусферического слоя, прилегающего к внешней полусфере АЗ, и полушара, прилегающего к плоской поверхности АЗ.

Таблица 12

Критические сборки с шарами из Pu(δ)-I и Pu(δ)-II в сферических оболочках из обогащенного урана с содержанием изотопа ²³⁵U 89,6 %

	Плутоний		Обогащенный уран			
Состав и плотность,	Внутренний	Масса, кг	Наружный	Плотность,	Масса, кг	
г/см ³	радиус, см		радиус, см	г/см ³		
	0	$2,00\pm 0,01$	8,40	18,4	$43,3\pm 0,1$	
$\mathbf{D}_{\mathbf{u}}(\mathbf{S})$ I	0	$4,15\pm 0,02$	7,73	18,4	$30,7 \pm 0,2$	
Pu(0)-1	1,4	$6,30 \pm 0,02$	7,55	18,2	$24,4\pm 0,1$	
$\rho = 15, 3$	0	9,80±0,03	6,85	18,5	$13,0\pm 0,1$	
	1,4	$13,60\pm0,04$	6,78	18,6	$7,40\pm0,1$	
Pu(δ)-II	1,4	6,40±0,03	7,55	18,4	$25,5 \pm 0,1$	
$\rho = 15,5$						

Рис. 5. Зависимость критической массы шара из Pu(δ)-I от толщины отражателя: ■ – U-238; ● – Fe; △ – Al

Заключение

Представлен краткий обзор методики проведения экспериментов в РФЯЦ-ВНИИЭФ по изучению характеристик размножения нейтронов и критических масс сборок, содержащих металлические делящиеся материалы. Приведены результаты измерений критических масс плутония в α- и δ-фазах с различным изотопным составом, выполненных в РФЯЦ-ВНИИЭФ М. И. Кувшиновым, А. А. Малинкиным, Б. Д. Сциборским, В. А. Давиденко, В. П. Егоровым в 1956–1965 гг. [1].

Во ВНИИЭФ были изучены размножающие характеристики и критические параметры около 200 сборок, содержащих в активной зоне металлический плутоний. При этом использовались детали из сплава плутония в α - и δ -фазах с различным содержанием нуклида ²³⁹ Pu: ²³⁹ Pu (96,4 %) в δ -фазе, ²³⁹ Pu (87,9 %) в δ -фазе, ²³⁹ Pu (88,3%) в α -фазе. Изучались также сборки, в состав которых одновременно входили детали из ²³⁹ Pu (95,4 %) в δ -фазе и ²³⁵ U (89,6 %). Экспериментальные данные были необходимы для решения задач ядерной критической безопасности при производстве, хранении и транспортировке деталей из металлического плутония.

Многообразие технологических операций, выполняемых при изготовлении деталей и обращении с ними, потребовало проведения многочисленных критических экспериментов, результаты которых использованы для разработки правил по ядерной безопасности при обращении с металлическим плутонием.

На основании экспериментальных данных о размножающих характеристиках сборок, содержащих ДМ, были разработаны и внедрены в промышленность защищающие контейнеры, обеспечивающие ядерную безопасность при хранении и транспортировке металлического плутония.

Параметры критических сборок использовались для верификации ядерных констант. Часть сравнительных расчетных и экспериментальных данных включена в Международный справочник по ядерной безопасности [4] и информационный материал МАГАТЭ [5].

Выполненный недавно в РФЯЦ-ВНИИЭФ (с применением современных программ метода Монте-Карло и международных библиотек оцененных ядерных констант) анализ точности ядерно-физической информации для некоторых из упомянутых в данной статье критических сборок показал хорошее согласие расчетных и экспериментальных данных [2], что свидетельствует об актуальности представленной информации.

Подобный расчетный анализ точности ядерно-физической информации был бы целесообразен для всех экспериментально изученных ранее во ВНИИЭФ критических сборок с целью возможности использования ее в качестве бенчмарк-данных.

Список литературы

1. Kuvshinov M. I., Voinov A. M., Zagrafov V. G. The history of works on nuclear criticality in RFNC-VNIIEF // Proc. of the 1st Int. conf. on nuclear criticality safety. Albuquerque, New Mexico, USA, September 17–21, 1995.

2. Кувшинов М. И., Колесов В. Ф. Нейтронные характеристики критической сборки из ²³⁹ Ри в δ-фазе без отражателя // Тез. докл. XI Межд. семинара «Фундаментальные свойства плутония». – Снежинск: РФЯЦ-ВНИИТФ, 2011. С. 224.

3. Кувшинов М. И., Воронцов С. В., Горелов В. П. и др. Тестовые критические эксперименты на установке ФКБН-2М // Вопросы атомной науки и техники. Сер. Физика и техника ядерных реакторов. 2000. Вып. 2/3. С. 142–149.

4. International Handbook of Evaluated Critical Safety Benchmark Experiments. Vol. I-VII. – Paris, 2006.

5. Kuvshinov M. I., Gorelov V. P., Egorov V. P., Il'yin V. I. Measurements of critical parameters of ²³⁹Pu and ²³⁵U spherical assemblies, which contain nickel as a reflector and filler of the central cavity, for the purpose of nuclear date testing. Final Report Research Contract 10079 IAEA, INDC, Vienna, December 1999.

Critical Experiments on the Assemblies with Plutonium Metal Carried out in RFNC-VNIIEF

S. V. Vorontsov, M. I. Kuvshinov

Reported is a brief review of a procedure for experiments on studying of neutron characteristics of neutron multiplication and critical masses of assemblies, containing metal fissile materials to be performed in RFNC-VNIIEF. Presented are measurement results of critical masses of assemblies made of plutonium in α - and δ -phases with different isotope composition, performed in RFNC-VNIIEF by M. I. Kuvshinov, A. A. Malinkin, B. D. Stsiborskii, V. A. Davidenko, V. P. Yegorov in 1956–1965.