Реализация метода расчета вязкой несжимаемой жидкости с использованием многосеточного метода на основе алгоритма SIMPLE в пакете программ ЛОГОС

Ю. Н. Дерюгин, А. С. Козелков, С. В. Лашкин, Д. П. Силаев, П. Г. Симонов, Е. С. Тятюшкина

Рассматриваются особенности программной реализации многосеточного метода решения систем линейных алгебраических уравнений с агрегативным способом огрубления. Реализация метода выполнена в пакете программ ЛОГОС для модуля, ориентированного на численное решение уравнений гидродинамики вязкой несжимаемой жидкости на произвольных неструктурированных сетках. Рассматриваются варианты решения скалярных систем линейных алгебраических уравнений с использованием V-, W- и F-циклов многосеточного метода. Особое внимание уделяется распараллеливанию метода, показано решение «проблемы грубых уровней». Приводится сравнение эффективности, полученной при расчетах течений вязкой несжимаемой жидкости с применением алгебраического многосеточного метода и предобусловленного метода сопряженных градиентов, а также многосеточного метода без использования глобального уровня.

Введение

Течения жидкостей и газов описываются краевыми задачами для системы уравнений Навье – Стокса, представляющей собой нелинейные дифференциальные уравнения в частных производных. Проблема дискретизации этих уравнений, а также их численного решения является одной из ключевых в математическом моделировании.

Использование явных разностных схем для дискретизации уравнений Навье – Стокса во многих случаях приводит к жестким ограничениям на шаг интегрирования по времени, что требуется для сохранения устойчивости вычислительной процедуры, и к большому общему времени счета. Применение неявных схем снимает ограничения на шаг интегрирования по времени, который выбирается исходя из необходимой точности вычислений. Однако трудоемкость решения системы линейных уравнений большого размера, порожденной дискретизацией, в некоторых случаях делает невыгодным использование неявных схем. Другим обстоятельством, препятствующим их широкому использованию в вычислительной практике, является трудность построения параллельных итерационных решателей для систем линейных алгебраических уравнений.

Неявная дискретизация уравнений Навье – Стокса порождает систему линейных уравнений, которая решается тем или иным итерационным методом. Выбор подходящего итерационного метода и его реализация во многом определяют общую эффективность вычислительного алгоритма.

На практике используются классические итерационные методы, такие как методы сопряженных и бисопряженных градиентов, метод глобальной минимизации невязки и др. [1].

В большинстве практических задач дискретизация уравнений Навье – Стокса дает систему линейных алгебраических уравнений с плохо обусловленной матрицей. Такая ситуация зачастую имеет место при дискретизации уравнений на неструктурированных сетках, состоящих из многогранников произвольной формы. При этом классические итерационные методы либо «перестают работать», либо имеют очень медленную скорость сходимости [2].

Одним из универсальных методов решения систем разностных уравнений является многосеточный метод Федоренко, основанный на использовании последовательности вложенных сеток и операторов перехода от одной сетки к другой [3, 4]. В этом методе процесс решения начинается с самой грубой сетки. Полученное решение интерполируется на подробную сетку и используется в качестве начального приближения в каком-либо итерационном процессе, что требует сравнительно небольшого числа итераций для достижения заданной точности. При этом учитывается свойство некоторых итерационных методов (например, метода Зейделя) сходиться с высокой скоростью на нескольких итерациях за счет быстрого подавления высокочастотных компонент Фурье [5]. Низкочастотные гармоники сходятся медленнее и составляют основную часть ошибки.

Алгебраические многосеточные методы обычно разделяются на классические селективные методы [6] и методы на основе агрегации [7]. Производительность различных *параллельных* методов агрегации исследуется в работе [8] применительно к решению задач газовой динамики на основе алгоритма SIMPLE [9]. Многосеточный метод использует V-цикл и процедуру Зейделя для сглаживания. Параллельная реализация алгебраического многосеточного метода для решения системы линейных уравнений, порожденной конечно-объемной дискретизацией уравнений Навье – Стокса на неструктурированных сетках, рассматривается в работе [10]. Подходы к параллелизации алгебраических многосеточных методов, использующих различные способы агрегации, сравниваются в работе [11]. В литературе описывается достаточно большое число реализаций алгебраических многосеточных методов, которых, например BoomerAMG [12], имеют открытый исходный код. Обзор алгебраических многосеточных методов приводится в работе [13].

В данной работе представлены особенности реализации алгебраического многосеточного метода с агрегативным способом огрубления. Вариации метода, рассмотренные в работах [2, 6–8, 10–13], невозможно эффективно применить и реализовать в пакете программ ЛОГОС^{*} ввиду его модели памяти, ориентированной на *гране-ячеечное* хранение данных, и механизмов распараллеливания, необходимых для эффективной реализации метода конечных объемов для решения уравнений гидродинамики [9]. Практически все внешние решатели реализуют свою модель памяти, что требует создания дополнительных интерфейсов для доступа к элементам матрицы, а также задействуют свои «внутренние» алгоритмы межпроцессорного взаимодействия, не позволяющие эффективно использовать гране-ячеечный формат данных, что негативно сказывается на времени счета, увеличивая его в несколько раз.

В данной работе описаны алгоритмы адаптации многосеточного метода к структуре памяти пакета программ ЛОГОС и его механизмам распараллеливания. Кроме того, предлагается решение *проблемы грубых уровней*, заключающейся в том, что из-за небольшого размера матриц на уровнях с грубыми сетками время, затрачиваемое на обмены, заметно превышает время на вычисления. Для минимизации временных затрат реализован сбор матриц грубого уровня на одном

^{*}Пакет программ ЛОГОС является разработкой ФГУП «РФЯЦ-ВНИИЭФ» и предназначен для решения сопряженных трехмерных задач конвективного тепломассопереноса, аэродинамики, гидродинамики и прочности на параллельных ЭВМ [14, 15]. ЛОГОС позволяет рассчитывать течения вязкого сжимаемого и несжимаемого газа с учетом турбулентного перемешивания, процессы распространения тепла в твердом теле, течения в анизотропных пористых средах и другие процессы.

процессе, где происходит формирование *глобального уровня* и дальнейшее продолжение огрубления и решения систем линейных алгебраических уравнений (СЛАУ) в последовательном режиме.

Уравнения для описания течений вязкой несжимаемой жидкости и их дискретизация

Для решения задач вычислительной гидродинамики применяются методы, основанные на решении полной системы уравнений Навье – Стокса и методе расщепления. Одним из наиболее используемых на практике методов расщепления является метод SIMPLE, основанный на методе конечных объемов и итерационной процедуре коррекции давления [9, 16–18].

В результате применения метода конечных объемов дискретный аналог системы уравнений Навье – Стокса относитетельно неизвестной компоненты скорости *ui* записывается в виде [16–19]

$$\sum_{f=1}^{nb(P)} m_f = 0; \ \sum_f (\rho \mathbf{u} u_i)_f \mathbf{S}_f = \sum_f (\Gamma \nabla u_i)_f \mathbf{S}_f + (Q)_P V,$$

где nb(P) – количество граней в рассматриваемой ячейке P (рис. 1); m_f – массовый поток через грань f; $\mathbf{u} = \{u_i\}$ – вектор скорости; ρ – плотность; Γ – эффективный коэффициент диффузионного переноса; Q – источник; V – объем ячейки; \mathbf{S}_f – вектор площади грани. Здесь суммирование осуществляется по всем граням контрольного объема. Нижние индексы P, N соответствуют значениям в центрах контрольных объемов P и N, индекс f – значениям на соединяющей их грани. Вектор нормали грани направлен от центра рассматриваемого контрольного объема $P \kappa N$ (см. рис. 1).

Рис. 1. Контрольные объемы Р и N

Применение метода SIMPLE для решения системы уравнений (1) подразумевает введение нескольких этапов [16–18]. В результате решения системы уравнений на этапе *предиктор* $a_{P}(u_{i})_{P}^{*} + \sum_{N} a_{N}(u_{i})_{N}^{*} = -V_{P}\left(\frac{\partial p}{\partial x_{i}}\right)_{P}$ находятся предварительные значения компонент вектора скорости (u_{i}^{*}) . В ячейке P

$$\left(u_{i}\right)_{P}^{*} = \frac{-\sum_{N} a_{N} \left(u_{i}\right)_{N}^{*}}{a_{P}} - \frac{V_{P}}{a_{P}} \left(\frac{\partial p}{\partial x_{i}}\right)_{P}$$

или

$$(u_i)_P^* = (\tilde{u}_i)_P^* - \frac{V_P}{a_P} \left(\frac{\partial p}{\partial x_i}\right)_P,$$

где введено обозначение

$$\left(\tilde{u}_{i}\right)_{P}^{*}=\frac{-\sum_{N}a_{N}\left(u_{i}\right)_{N}^{*}}{a_{P}}.$$

Определенные таким способом предварительные значения компонент вектора скорости не удовлетворяют уравнению неразрывности. Если их подставить в разностный аналог уравнения неразрывности, можно получить следующее выражение:

$$\sum_{f=1}^{nb(P)} \dot{m}_f^* = \delta Q_\rho,$$

где δQ_{ρ} – результирующий дисбаланс, который устраняется подправкой скорости на этапе *кор*-*ректор*.

Соотношение, связывающее скорректированные компоненты вектора скорости со скорректированным давлением, запишем в виде

$$(u_i)_P^{n+1} = (\tilde{u}_i)_P^* - \frac{V_P}{a_P} \left(\frac{\partial p}{\partial x_i}\right)_P^{n+1}.$$

В методе SIMPLE для определения давления выводится уравнение Пуассона из предположения выполнения уравнения неразрывности для скорректированных компонент вектора скорости:

$$\operatorname{div}\left(\rho\frac{V_P}{a_p}(\operatorname{grad} p)_P^{n+1}\right) = \operatorname{div}\left(\rho\tilde{u}\right)_P^*.$$

Для обеспечения единственности решения уравнения Пуассона, когда для него заданы только граничные условия второго рода, необходимо зафиксировать значение давления в любой точке либо применить непосредственно граничное условие, которое в общем случае ухудшает обусловленность матрицы. В результате решения находится поправка поля давления в ячейках сетки. По этому полю восстанавливаются компоненты вектора градиента давления в ячейках сетки.

Таким образом, в результате применения метода SIMPLE имеем четыре скалярных СЛАУ: три системы для каждой из компонент скоростей и одну для коррекции давления.

Практика показывает, что наиболее затратным по времени является решение матрицы давления: при использовании классических итерационных методов оно занимает около 90 % вычислительного времени расчетного шага, что требует аккуратной и оптимальной реализации даже многосеточного метода. Матрица СЛАУ для давления симметрична и в большинстве случаев не имеет строгого диагонального преобладания из-за применяемых граничных условий. При использовании выходной границы *статическое давление* число обусловленности матрицы имеет порядок 10^7-10^8 [20, 21], что делает ее довольно трудной для решения. Если же использовать выходную границу *свободный выход*, то данное число может достигать порядка 10^{10} и более. Матрицы остальных СЛАУ – для компонент скорости, температуры и параметров турбулентности – имеют числа обусловленности порядка 10^1-10^2 , что позволяет решать их классическими методами, такими как метод сопряженных градиентов, метод Зейделя и др.

В приведенных ниже тестах число обусловленности для матрицы давления имеет порядок 10⁷, и практика показывает, что для задач гидродинамики на произвольных неструктурированных сетках это число всегда находится в пределах 10⁵–10¹⁰. Наиболее подходящим методом для решения таких СЛАУ является алгебраический многосеточный метод.

В приведенных выше дискретных соотношениях, в том числе в правой части уравнения Пуассона для давления, основной вычисляемой величиной является поток через грань, в связи с чем для численной реализации этих уравнений наиболее удобно и эффективно использовать гране-ячеечный формат представления и расчета сеточных данных.

Гране-ячеечный формат служит для реализации модели памяти относительно граней (см. рис. 1), где грань f разделяет две ячейки и задает вектор единичной нормали, направленный от ячейки Pк ячейке N. При построении численной схемы вычисление потоков через внутреннюю грань осуществляется всегда с использование двух ячеек, вне зависимости от того, сколько на самом деле ячеек прилегает к исходной грани. Внутренняя грань всегда разделяет две ячейки, и локальный индекс ячейки P строго меньше индекса ячейки N. Такая структура оптимальна с точки зрения реализации вычислительных алгоритмов, основные соотношения которых записаны относительно массового потока через грань. В этом случае заполнение матрицы осуществляется относительно грани и за один цикл формируются сразу две строки матрицы: P и N. В случае же ячеечного представления сеточных данных за один цикл возможно сформировать только одну строку матрицы.

Реализация многосеточного метода для скалярных систем

Кратко познакомимся с организацией вычислений с помощью многосеточного метода в соответствии с [2, 3, 5–7, 22]. Для этого рассмотрим систему уравнений:

$$A_h x^h = b^h$$

Оператор интерполяции P с грубой сетки H на подробную сетку h позволяет представить оператор A_H на грубой сетке в виде

$$A_H = RA_h P,$$

где $R = P^{T}$. Шаг коррекции решения имеет вид

$$x_{\text{new}}^h = x_{\text{old}}^h + Pe^H$$

Коррекция e^H является точным решением уравнения

$$A_H e^H = r^H,$$

где $r^{H} = Rr^{h}; r^{h} = b^{h} - A_{h}x_{old}^{h}.$

Таким образом, многосеточный метод, использующий схему коррекции решения, представляет собой следующую последовательность шагов:

1. Делается µ₁ приближений решения на сетке *h* при помощи метода Зейделя (предварительное сглаживание).

2. Невязка $r^h = b^h - A_h x_{old}^h \in V_h$ проецируется на пространство V_H , т. е. $r^H = Rr^h$.

3. Находится приближенное решение $A_H e^H = r^H$ на грубой сетке. Для этого рекурсивно выполняется γ циклов многосеточного метода.

4. Коррекция e^{H} интерполируется на подробную сетку и производится уточнение решения: $x_{\text{new}}^{h} = x_{\text{old}}^{h} + Pe^{H}$.

5. Делается μ_2 приближений решения на подробной сетке для подавления ошибки интерполяции (заключительное сглаживание).

В зависимости от числа γ рекурсивных вызовов метода на каждом сеточном уровне выделяют различные типы циклов. При $\gamma = 1$ имеет место V-цикл, а при $\gamma = 2 - W$ -цикл (рис. 2,а). Если на каждом уровне рекурсивно сначала вызывать один W-цикл, а затем V-цикл, получим F-цикл (рис. 2,б).

Рис. 2. Типы циклов: а – V- и W-циклы; б – F-цикл

В агрегативном методе огрубления с постоянной интерполяцией [23] все переменные разделяются на агрегаты I_k , содержащие все индексы *i*, соответствующие ячейкам, которые включены в агрегат *k*.

Построение оператора на грубой сетке производится при помощи соотношения

$$A_{H} = RA_{h}P = \left\{a_{kl}^{H}\right\}, \ a_{kl}^{H} = \sum_{i \in I_{k}} \sum_{j \in I_{l}} a_{ij}^{h} \ (k, l \in C).$$

Рассмотрим сетку, огрубление которой показано на рис. 3. Вычисление матрицы грубого уровня в данном случае будет происходить следующим образом:

$$A_{H} = RA_{h}P = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ 0 & a_{32} & a_{33} & a_{34} \\ 0 & 0 & a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} + a_{21} + a_{21} + a_{22} & a_{23} \\ a_{32} & a_{33} + a_{34} + a_{43} + a_{44} \end{pmatrix}.$$

Для хранения матрицы использован гране-ячеечный формат. Отдельно хранятся диагональ D, верхнетреугольная U и нижнетреугольная L части матрицы. Соответственно A = L + D + U. Три массива, в которых хранятся D, U и L, являются одномерными. Массив, хранящий диагональ, индексируется номером соответствующей ячейки. Два других массива индексируются номерами граней, определяющих значения соответствующих коэффициентов. Направления упорядочения массивов показаны на рис. 4.

Рис. 3. Пример огрубления сетки

Рис. 4. Расположение матрицы в памяти

В данной работе в качестве *сглаживателя* используется метод Зейделя [20], обладающий признанным сглаживающим оператором [21]

$$x_{i}^{k+1} = \frac{b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{k+1} - \sum_{j=i+1}^{N} a_{ij} x_{j}^{k}}{a_{ii}}, \ i \in 1, \ \dots, N,$$
(2)

где N – число ячеек, i – номер строки, j – номер столбца, k – номер шага сглаживания, x_j^k – j-компонента вектора решения на k-м шаге сглаживания. Представление метода в виде (2) не подходит для эффективной реализации, так как требует выборки элементов из массива нижнетреугольной матрицы не в порядке возрастания индексов (см. рис. 4). Доступ к данным в произвольном порядке существенно медленнее последовательного доступа из-за аппаратных особенностей функционирования оперативной памяти. Добиться строго последовательного доступа к элементам массивов хранения коэффициентов матрицы можно преобразованием данного алгоритма к виду

$$x_i^{k+1} = \frac{\tilde{b}_i - \sum_{j=i+1}^N a_{ij} x_i^k}{a_{ii}}; \quad \tilde{b}_j = \tilde{b}_j - a_{ji} x_i; \quad i \in 1, \dots, N; \quad j \in i+1, \dots, N,$$

где $\tilde{\mathbf{b}} = \{b_k\}(k = \overline{1, N})$ – копия вектора **b**, подвергающаяся модификации в процессе работы алгоритма.

В алгоритме распараллеливания пакета программ ЛОГОС вводится понятие фиктивных ячеек, которые представляют собой временные копии реальных счетных ячеек и используются для удобства реализации счетных параллельных алгоритмов. Это вызвано тем, что для расчета требуется информация, относящаяся ко всем соседним ячейкам, в то время как доступ к ней затруднен, поскольку реальные счетные ячейки могут размещаться на других MPI-процессах. На рис. 5 показана передача информации при применении данного подхода.

Рис. 5. Передача информации в фиктивные ячейки

При распараллеливании огрубление происходит независимо на каждом MPI-процессе. Фиктивные ячейки огрубляются в соответствии с огрублением их действительных прообразов на соответствующих процессах. Таким образом, в ходе огрубления число связей между процессами уменьшается (рис. 6,а).

Однако данный подход к распараллеливанию огрубления порождает две проблемы. Во-первых, огрубление прекращается, если на каждом процессе осталось по одной действительной ячейке. Во-вторых, на грубых уровнях, где размерность матриц невелика, время, затрачиваемое на межпроцессорные обмены, из-за латентности коммуникационной среды начинает многократно превосходить время, затрачиваемое на вычисления.

Для решения этих проблем предлагается выполнять сбор всех матриц небольшого размера на одном процессе, формируя глобальный уровень, и продолжать огрубление и решение в последовательном режиме (рис. 6,б).

Рис. 6. Огрубление ячеек в параллельном режиме (а) и формирование глобального уровня (б)

Таким образом, использование глобального уровня позволяет не только полностью завершить процесс огрубления в параллельном случае, но и, ввиду хранения информации глобального уровня на одном процессе, избежать накладных расходов на избыточные межпроцессорные обмены при обработке уровней с самыми грубыми сетками.

Анализ применения многосеточных технологий для расчета течений вязкой несжимаемой жидкости

Для анализа эффективности применения описанной реализации^{**} рассматривается численное решение типичных задач динамики вязкой несжимаемой жидкости. В этих задачах рассчитываются стационарное изотермическое турбулентное течение вязкой несжимаемой жидкости в прямолинейной трубе с круглым сечением, соответствующее числу Рейнольдса 10000, и течение за обратным уступом [24]. Данные задачи требуют решения:

- трех СЛАУ для сохранения импульса (матриц скоростей);

- одной СЛАУ относительно коррекции давления (матрицы давления);

– двух СЛАУ для турбулентных параметров (матриц турбулентности).

Матрицы этих СЛАУ сильно различаются по своим свойствам и требуют экспериментального подбора методов их решения. Все матрицы, кроме матрицы давления, являются несимметричными и имеют строгое диагональное преобладание. Матрица давления является симметричной и не имеет строгого диагонального преобладания.

Результаты решения СЛАУ с использованием трех различных методов для задачи с течением в прямолинейной круглой трубе приведены в табл. 1. Относительная точность во всех решателях задавалась равной 0,1, максимальное число внутренних итераций ограничивалось 1000.

Таблица 1

Матрица/Решатель	Шиала	Время решения СЛАУ, с				
	число обусловленности матрицы	Метод Зейделя	Метод сопряженных градиентов	Алгебраический многосеточный метод		
Скорость по Х	$6,1\cdot 10^1$	0,001	0,008	0,044		
Скорость по У	$6,1\cdot 10^1$	0,001	0,008	0,044		
Скорость по Z	$6,1\cdot 10^1$	0,001	0,008	0,044		
Давление	$4,8 \cdot 10^{7}$	11,791	0,562	0,201		
Турбулентный параметр <i>К</i>	$5,4 \cdot 10^{1}$	0,001	0,005	0,045		
Турбулентный параметр W	$2,2 \cdot 10^{1}$	0,001	0,005	0,057		

Среднее время решения различных матриц за один шаг

Для метода сопряженных градиентов использовался предобуславливатель Эйзенштата [25]. Решение матрицы СЛАУ многосеточным методом осуществляется с помощью V-цикла как наименее требовательного с вычислительной точки зрения. В параллельном режиме предобуславливатель работает автономно на каждом процессе для локальной матрицы, и после каждой итерации решателя происходят межпроцессорные обмены.

^{**}Общие предварительные исследования данной реализации приведены в [22].

Результаты расчетов, приведенные в табл. 1, показывают, что по времени решения отдельную группу составляют матрицы скоростей и турбулености, для которых порядок числа обусловленности равен единице. В эту группу не входит матрица давления, имеющая число обусловленности на несколько порядков выше и требующая значительно больших ресурсов для решения.

Из табл. 1 следует, что для матриц с небольшим числом обусловленности целесообразнее использовать классические итерационные методы, такие как метод Зейделя и метод сопряженных градиентов. Хотя эти методы и имеют более низкую скорость сходимости по сравнению с многосеточным методом, что следует из числа необходимых итераций для решения матриц СЛАУ, они не требуют дополнительных этапов построения последовательности вложенных матриц.

Ситуация кардинально меняется для матриц с большим числом обусловленности, таких как матрица давления. Классические итерационные методы в этом случае требуют большого числа итераций для достижения даже небольшой точности [21]. Использование же многосеточного метода, несмотря на затраты дополнительного времени для построения последовательности вложенных матриц, здесь оправдано за счет более высокой скорости сходимости. Результаты также свидетельствуют о том, что при решении матрицы давления многосеточный метод дает существенный (более чем в 2 раза) выигрыш по сравнению с наиболее используемым на практике методом сопряженных градиентов.

Чтобы детально проанализировать применимость многосеточного метода для решения матриц давления, получаемых в результате дискретизации основной системы уравнений методом SIMPLE, использовались три теста.

Тест 1. Рассматривалось стационарное изотермическое турбулентное течение вязкой несжимаемой жидкости в прямолинейной гладкой трубе с круглым сечением, соответствующее числу Рейнольдса 10000. Для анализа применения многосеточного метода на последовательности сгущающихся сеток были выбраны три сеточные модели трубы: с 40000, 800000 и 1500000 ячеек (рис. 7). Численный расчет проводился на установление до получения стационарного режима течения с использованием SST-модели турбулентности [26] с автоматическим определением ширины пограничного слоя.

Рис. 7. Варианты сеточных моделей: а – 40000 ячеек; б – 800000 ячеек; в – 1500000 ячеек

Для каждой из представленных моделей задача решалась с использованием двух методов решения СЛАУ: предобусловленного метода сопряженных градиентов (РСG) и алгебраического многосеточного метода с агрегативным способом огрубления (AMG). Применялось граничное условие *статическое давление*. Для такой постановки число обусловленности матрицы давления, как отмечалось выше, имеет значение 10⁷. Задача решалась в параллельном режиме, и для всех вариантов количество процессоров равнялось двенадцати.

Из результатов решения для матриц давления, представленных в табл. 2, видно, что время решения задачи при использовании метода сопряженных градиентов для самой грубой сеточной модели в 3 раза больше, чем для многосеточного метода. Время решения для самой подробной сеточной модели с использованием метода сопряженных градиентов более чем в 40 раз превышает время решения алгебраическим многосеточным методом.

Таблица 2

Решатель СЛАУ	Модель 1 (40000 ячеек)		Модель 2 (800000 ячеек)		Модель 3 (1500000 ячеек)	
	Число итераций	Время решения, с	Число итераций	Время решения, с	Число итераций	Время решения, с
AMG	461	20,66	590	565	1168	3828
PCG	489	62,57	549	16113	1168	158742

Тест 1. Полное время решения задачи и число итераций

Отметим, что эти цифры не являются характерными для данного класса задач, а зависят от многих факторов, таких как структура течения, сложность сеточной модели, накладываемые граничные условия и т. д. Опыт практического применения многосеточного метода для решения задач вычислительной гидродинамики показывает, что среднее время увеличения скорости счета по сравнению с методом сопряженных градиентов составляется 4–6 раз.

Тест 2. Чтобы показать преимущества использования в многосеточном методе глобального уровня, были взяты три различные постановки задачи с течением в «круглой» трубе, отличающиеся количеством используемых МРІ-процессов: 6, 12 и 24. Сеточная модель решаемой задачи представлена на рис. 7,б. Задача решалась с помощью решателя AMG в двух вариантах: без использования глобального уровня (AMG1) и с его использованием (AMG2).

Время решения задачи и число итераций до сходимости решения задачи представлены в табл. 3. Видно, что при использовании решателя с глобальным уровнем на 24 процессах время решения уменьшается более чем в два раза, хотя на 6 процессах только в 1,2 раза.

Таблица 3

Решатель СЛАУ	6 процессов		12 процессов		24 процесса	
	Число итераций	Время решения, с	Число итераций	Время решения, с	Число итераций	Время решения, с
Многосеточный метод без глобального уровня	1425	647	1377	365	1397	238
Многосеточный метод с глобальным уровнем	1469	552	1402	233	1442	104

Тест 2. Полное время решения задачи и число итераций

Тест 3. Наиболее ярко различие между применением классических и многосеточных технологий решения СЛАУ проявляется при решении задач, содержащих десятки миллионов счетных ячеек, где время счета отдельной задачи может различаться на несколько, а то и несколько десятков часов. В качестве примера приведем решение задачи с течением в канале за обратным уступом (рис. 8, см. также цв. вкл.). Полное описание, постановка и методы решения задачи описаны в [24]. В качестве модели турбулентности выбрана SST-модель с автоматическим определением ширины пограничного слоя. Подчеркнем, что цель данного теста – не демонстрировать точность полученных результатов по сравнению с экспериментом, а показать основные преимущества алгебраического многосеточного метода по сравнению с итерационными методами. Поэтому, чтобы сделать задачу показательной с точки зрения решателей СЛАУ, были построены две сеточные модели: на 14 и 30 млн счетных ячеек.

Рис. 8. Сеточная топология. Распределение скорости, турбулентной вязкости и давления

Чтобы наиболее полно и точно оценить результаты теста и сделать соответствующие выводы, для каждой из перечисленных моделей было выбрано 9 тестовых случаев. Каждая модель решалась с использованием разного количества процессов (в зависимости от числа счетных ячеек) и разных решателей СЛАУ: многосеточного метода с глобальным уровнем и без него, а также метода сопряженных градиентов. Все полученные результаты сведены в табл. 4, 5 и позволяют сделать однозначный вывод в пользу применения того или иного решателя. Также в таблицах представлены результаты по количеству внешних итераций до сходимости метода SIMPLE, так как это количество ожидаемо разное и находится в пределах ± 1000 итераций, что также вызывает дополнительные сложности при вычислении временных характеристик решателей СЛАУ.

Таблица 4

Количество - процессов	Многосеточный метод с глобальным уровнем		Многосеточный метод без глобального уровня		Метод сопряженных градиентов	
	Время решения, с	Число итераций SIMPLE	Время решения, с	Число итераций SIMPLE	Время решения, с	Число итераций SIMPLE
100	15927	6642	223623	5909	67519	5738
250	7888	6237	98444	5962	31177	5661
500	5695	6569	62181	5141	19006	5918
1000	5377	5853	63850	6935	9814	5737

Тест 3. Результаты решения задачи на сетке с 14 млн ячеек

Таблица 5

Количество процессов	Многосеточный метод с глобальным уровнем		Многосеточный метод без глобального уровня		Метод сопряженных градиентов	
	Время решения, с	Число итераций SIMPLE	Время решения, с	Число итераций SIMPLE	Время решения, с	Число итераций SIMPLE
100	42701	10295	176973	10179	177169	10414
250	17458	9886	126147	10240	83461	10719
500	11199	9882	72190	10211	54799	9998
1000	12352	10368	75130	10355	23787	10009
2000	15848	10001	95201	9611	19858	10172

Тест 3. Результаты решения задачи на сетке с 30 млн ячеек

Что касается эффективности распараллеливания, то, по оценкам авторов, при использовании многосеточных технологий наиболее эффективно на одном вычислительном ядре вести расчет 30–70 тысяч ячеек. Данный диапазон чисел является совокупным показателем и определяется как самой вычислительной машиной (используемые процессоры, архитектура, топология коммуникационной среды и т. п.), так и методами распараллеливания, применяемыми в программном комплексе ЛОГОС.

Из представленных в табл. 4, 5 результатов расчетов следует, что использование глобального уровня в многосеточном методе позволяет значительно сократить время решения задачи. Кроме того, многосеточный метод с глобальным уровнем по времени решения предпочтительнее метода сопряженных градиентов. Однако следует отметить, что метод сопряженных градиентов лучше масштабируется на большом числе процессов. Это связано с тем, что решение на глобальном уровне является этапом, выполняющимся в последовательном режиме, и, следовательно, ухудшает масштабируемость. В перспективе в качестве решения данной проблемы планируется реализовать сбор каскадных уровней для постепенного уменьшения числа процессов, участвующих в счете, сохраняя при этом преимущества глобального уровня.

Выводы

Рассмотрено применение алгебраического многосеточного метода с агрегативным способом огрубления для численного решения уравнений гидродинамики вязкой несжимаемой жидкости на произвольных неструктурированных сетках. Описаны принципы реализации этого метода в пакете программ ЛОГОС, показано преимущество использования грубых уровней при распараллеливании метода. Анализ времени счета для типичных задач динамики вязкой несжимаемой

жидкости показал, что время увеличения скорости счета по сравнению с методом сопряженных градиентов при использовании нескольких сотен процессоров и сетки в несколько десятков миллионов ячеек составляет не менее 4 раз.

Список литературы

1. Saad Y. Iterative methods for sparse linear systems. – Philadelphia: Society for Industrial and Applied Mathematics, 2003.

2. Brandt A. Guide to multigrid development // Lecture Notes in Mathematics. 1982. Vol. 960. P. 220–312.

3. Федоренко Р. П. Релаксационный метод решения разностных эллиптических уравнений // Журнал вычисл. математики и матем. физики. 1961. Т. 1, № 5. С. 922–927.

4. Бахвалов Н. С. О сходимости одного релаксационного метода для эллиптического оператора с естественными ограничениями // Там же. 1966. Т. 6. С. 101–135.

5. Петров И. Б., Лобанов А. И. Лекции по вычислительной математике: учебное пособие. – М.: Интернет-университет информационных технологий, БИНОМ, 2006.

6. Stuben K., Trottenberg U. Multigrid methods: fundamental algorithms, model problem analysis and applications // Multigrid methods, lecture notes in mathematics 960 / Ed. by W. Hackbusch and U. Trottenberg. – Berlin: Springer, 1982.

7. Vanek P., Mandel J., Brezina M. Algebraic multigrid based on smoothed aggregation for second and fourth order problems // Computing. 1996. Vol. 56, N 2. P. 179–196.

8. Emans M. Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows // Parallel Computing. 2010. Vol. 36, N 5–6. P. 326–338.

9. Ferziger J. H., Peric M. Computational methods for fluid dynamics. - Springer, 2002.

10. Darwish M. S., Saad T., Hamdan Z. A high scalability parallel algebraic multigrid solver // Proc. of the European Confer. on Computational Fluid Dynamics (ECCOMAS CFD 2006). Netherlands 5–8 September 2006.

11. Emans M. Benchmarking aggregation amg for linear systems in CFD simulations of compressible internal flows // El. Transactions on Num. Analysis. 2010. Vol. 37. P. 351–366.

12. Van Emden H., Meier-Yang U. BoomerAMG: a parallel algebraic multigrid solver and preconditioner // Appl. Num. Math. 2001. Vol. 41, N 1. P. 155–177.

13. Stuben K. A review of algebraic multigrid // J. of Comp. and Appl. Math. 2001. Vol. 128, N 1–2. P. 281–309.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ

14. Погосян М. А., Савельевских Е. П., Стрелец Д. Ю., Корнев А. В. Отечественные суперкомпьютерные технологии в авиационной промышленности // Наука и технологии в промышленности. 2012. № 2. С. 26–35.

15. Козелков А. С., Дерюгин Ю. Н., Зеленский Д. К. и др. Многофункциональный пакет программ ЛОГОС для расчета задач гидродинамики и тепломассопереноса на многопроцессорных ЭВМ: базовые технологии и алгоритмы // Тр. XII Межд. семинара «Супервычисления и математическое моделирование». – Саров: РФЯЦ-ВНИИЭФ, 2011. С. 215–230.

16. Флетчер К. Вычислительные методы в динамике жидкостей. – М.: Мир, 1991.

17. Быстров Ю. А., Исаев С. А., Кудрявцев Н. А., Леонтьев А. И. Численное моделирование вихревой интенсификации теплообмена в пакетах труб. – С.-Пб: Судостроение, 2005.

18. Швыдкий В. С., Ярошенко Ю. Г. Механика жидкости и газа. – М.: Академкнига, 2003,

19. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. Thesis submitted for the degree of doctor. Department of Mechanical Engineering, Imperial College of Science, 1996.

20. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. – М.: Лаборатория базовых знаний, 2002.

21. Уоткинс Д. С. Основы матричных вычислений. – М.: БИНОМ, 2009.

22. Дерюгин Ю. Н., Голубев А. А., Зеленский Д. К. и др. Пакет программ ЛОГОС. Разработка и реализация алгебраического многосеточного метода // Тез. докл. XIV Межд. конф. «Супервычисления и математическое моделирование». – Саров: ВНИИЭФ, 2013. С. 58.

23. Weiss J. M., Maruszewski J. P., Smith W. A. Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid // AIAA Journal. 1997. Vol. 37, N 1. P. 29–36.

24. Vogel J. C., Eaton J. K. Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step // J. of Heat Transfer. 1985. Vol. 107. P. 922–929.

25. Meurant G. Computer solution of large linear systems. - Elsevier, 1999.

26. Menter F. R. Two-equation Eddy-Viscosity turbulence models for engineering applications // AIAA Journal. 1994. Vol. 32. P. 1598–1605.

The Software Package LOGOS. Algebraic Multigrid Method for Solution of Linear Equations Systems from CFD-Problems

J. N. Derjugin, A. S. Kozelkov, S. V. Lashkin, D. P. Silaev, P. G. Simonov, E. S. Tyatyushkina

In the paper a software implementation of an algebraic multigrid method (AMG) with aggregative coarsening for solution of systems of linear equations was reviewed. Data and memory structure of the LOGOS, a software package for solving of CFD-problems by SIMPLE-method, were used during the implementation. V-, W-, F-cycles of multigrid method were considered for solution of systems of linear algebraic equations (SLAE). Facebycell storage format for a matrix and an adaptation of Gauss-Seidel method for efficient processing of the format were reviewed. Parallelization of algorithms of both smoothing and coarsening is examined in extra details. Also solution for a problem of parallel coarse level's usage is presented. The problem was the following: because of small matrix size at coarse level's time spent for data exchanges is longer comparing to the time of calculations. The paper contains results of test problems solutions, and comparison of results against other implementations of AMG.