ТРЕХМИКРОННЫЙ ЛАЗЕР НА ИОНАХ ГОЛЬМИЯ В КРИСТАЛЛЕ YSGG С МОЛУЛЯНИЕЙ ЛОБРОТНОСТИ

Ю. В. Керв. П. Г. Зверев. А. А. Сироткин. В. Г. Иванова

Институт обшей физики им. А. М. Прохорова Российской академии наук

1. Ввеление

В настоящее время активно исследуются и разрабатываются новые источники лазерного излучения, работающие в области 1.5 ÷ 3 мкм. Такие лазеры нахолят широкое практическое применение в медицине, биологии, для различных лидарных систем. Обычно такие лазеры используют активные среды, активированные ионами Ho³⁺, Tm³⁺, Er³⁺, Dy³⁺. В настоящей работе исследовалась лазерная генерация в области 3 мкм в кристалле YSGG, активированном ионами Ho³⁺. На рис. 1 представлена энергетическая схема иона гольмия. Лазерная генерация в области 3 мкм может быть получена на переходе ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$. При чем особенностью лазерной генерации ионов Ho³⁺ является то, что время жизни возбуждения на верхнем лазерном уровне ⁵I₆ значительно меньше времени жизни нижнего уровня ⁵I₇. В кристалле YSGG они составляют 470 мкс и 9.8 мс соответственно. Поэтому генерация на этом переходе является самоограниченной и дазерная генерация возможна только при импульсном возбуждении [1].

Рис. 1. Диаграмма энергетических уровней ионов Ho³⁺ в кристалле YSGG

В настоящей работе использовалась возбуждение активной среды лазера импульсной лампой накачки. Поглощение излучения ламп накачки ионами Ho³⁺ довольно слабое, поэтому ранее было предложено соактивировать кристаллы дополнительно ионами Cr³⁺ и Yb³⁺ [2-4]. Ионы Cr³⁺, имеющие широкие полосы поглощения, обеспечивают эффективное поглощение излучение ламп накачки и могут передавать возбуждение ионам Ho^{3+} и Yb^{3+} . В работах [2–4] было показано, что передача возбуждения по схеме $Cr^{3+} \rightarrow Yb^{3+} \rightarrow Ho^{3+}$ (рис. 2) более эффективна, чем по схеме $Cr^{3+} \rightarrow Ho^{3+}$. Высокая концентрация ионов Yb³⁺ позволяет не только осуществлять эффективную передачу энергии возбуждения Cr³⁺ → Yb³⁺, но и обеспечивать миграцию энергии по ионам Yb³⁺. Поэтому передача энергии Yb³⁺→Ho³⁺ является не статической, а миграционно-ускоренной. Оценки показывают, что при концентрации ионов Ho³⁺, равной 5·10¹⁹ см⁻³, эффективность передачи энергии по схеме Cr³⁺→Ho³⁺ составляет лишь 6%, а по схеме Cr³⁺→Yb³⁺→Ho³⁺ может достигать 99 % [1]. Лазерная генерация на кристалле YSGG:Cr³⁺Yb³⁺Ho³⁺ с возбуждением импульсной лампой

в режиме свободной генерации дает импульсы длительностью сотни микросекунд. Однако для мно-

гих практических применений необходимы лазеры с модуляцией добротности, дающие высокую пиковую мощность с длительностью импульсов десятки наносекунд. Активная модуляция добротности трехмикронного $YSGG:Cr^{3+}Yb^{3+}Ho^{3+}$ лазера с помощью электрооптических кристаллов LiNbO₃ и KTP были продемонстрированы в работах [5, 6]. Пассивная модуляция добротности с помощью эпитаксиального слоя InAs, а также ячейки с водой обсуждаются в [5].

Целью настоящей работы было исследовать лазерную генерацию на кристалле $YSGG:Cr^{3+}Yb^{3+}Ho^{3+}$ с возбуждением импульсной лампой и пассивной модуляцией добротности в кристалле ZnSe:Fe²⁺. Кристалл ZnSe:Fe²⁺ известен как эффективный активный элемент мощных перестраиваемых лазеров в средней ИК спектральной области с максимумом генерации на длине волны 4,35 мкм [6, 7]. Максимум широкой полосы поглощения Fe²⁺ в нем соответствует 3,1 мкм, время жизни возбуждения составляет 370 нс [6], поэтому он может использоваться в качестве пассивного затвора трехмикронных лазеров. В работе [8] кристалл ZnSe:Fe²⁺ впервые использовался для пассивной модуляции добротности YAG:Er³⁺ лазера ($\lambda = 2,9$ мкм).

Рис. 2. Схема передачи возбуждения активной лазерной среды

2. Экспериментальные исследования

Для получения и исследования генерации трехмикронного лазера на кристалле $YSGG:Cr^{3+}Yb^{3+}Ho^{3+}$ была создана экспериментальная установка, представленная на рис. 3. В качестве активной среды использовался лазерный элемент, кристалл $YSGG:Cr^{3+}Yb^{3+}Ho^{3+}$ длиной 100 мм и диаметром 4 мм, выращенный в отделе лазерных кристаллов ИОФ РАН. Концентрация ионов Ho^{3+} была $5 \cdot 10^{19}$ см⁻³. Элемент был закреплен в цанги и установлен в квантроне с диффузным отражателем и импульсной лампой ИНП 6/90А-1. Использовался блок питания 706-TS с длительностью разряда 250 мкс и энергией до 75 Дж. Частота следования импульсов во всех экспериментах была 5 Гц. Охлаждение квантрона и активного элемента осуществлялось дистиллированной водой.

Резонатор лазера длиной 340 мм был образован плоскими зеркалами: глухим с коэффициентом отражения R > 99,8 % ($\lambda = 2,8-2,9$ мкм) и выходным зеркалом $R_{\text{вых}}$. Использовались несколько дихроичных выходных зеркал с коэффициентами отражения в области 2,8÷3,0 мкм равными $R_{2,8-3,0 \text{ мкм}} = 57-60$ %, $R_{2,8-3,0 \text{ мкм}} = 31-76$ %, $R_{2,8-3,0 \text{ мкм}} = 74-76$ %, $R_{2,8-3,0 \text{ мкм}} = 94-98$ %.

Рис. 3. Схема экспериментальной установки

В качестве пассивного затвора была использована плоскопараллельная пластинка ZnSe:Fe²⁺ диаметром 18 мм и толщиной 2,5 мм, которая ставилась перед выходным зеркалом. Спектр пропускания плоскопараллельной пластинки представлен на рис. 4. Видно, что на длине волны 2,9 мкм коэффициент начального пропускания ионов Fe²⁺ (без учета френелевских потерь) составляет 86 %. Показатель преломления кристалла ZnSe на длине волны $\lambda = 3$ мкм равен 2,4376 [9]. Из-за большого значения показателя преломления возникают высокие френелевские потери, которые составляют около 70 %. Для уменьшения потерь пластинка ZnSe ставилась под углом Брюстера 67,7° к оси резонатора.

Энергия импульсов лазерного излучения измерялась с помощью Ophir Nova II с чувствительным элементом PE9-C и ИМО-2M, временная форма импульса регистрировалась быстродействующим pin-диодом и цифровым осциллографом Tektronix TDS2012.

Рис. 4. Спектр пропускания плоскопараллельной пластинки ZnSe:Fe²⁺

3. Режим свободной генерации

Для определения сечения на лазерном переходе ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ в ионах Ho³⁺ и внутрирезонаторных потерь в лазере были измерены энергетические зависимости YSGG:Cr³⁺Yb³⁺Ho³⁺ лазера с различными выходными зеркалами в режиме свободной генерации (рис. 5). Максимальная энергия импульсов трехмикронной лазерной генерации составили 120 мДж для зеркала с $R_{2,8-2,95 \text{ мкм}} = 76 \%$ и электрической энергией на лампу накачки 67 Дж. Максимальный КПД лазера при этом составили

0,19 %. По энергетическим зависимостям (рис. 5) были определены пороги генерации лазера $E_{\text{пор}}$ и дифференциальный КПД $\eta_{\text{лиф}}$ для разных выходных зеркал (таблица).

Пороговая энергия накачки E_{nop} связана с коэффициентом внутрирезонаторных оптических потерь χ и коэффициентом отражения выходного зеркала R следующим соотношением [10]:

$$\chi - \ln(R) = 2 \cdot k \cdot E_{\pi \circ n} \tag{1}$$

где *k* – коэффициент, связанный с коэффициентом усиления слабого сигнала g выражением:

$$g_0 = \frac{\sigma_{\text{reh}} \cdot \tau \cdot \eta_{\mu} \cdot E_{\text{nop}} \cdot \lambda}{h \cdot c \cdot V \cdot \tau_{\mu}} = \frac{k \cdot E_{\text{nop}}}{l}$$
(2)

Здесь h – постоянная Планка, V – объем активной среды, l – длина активной среды, τ – время жизни лазерного уровня, $\tau_{\rm H}$ – длительность импульса накачки, $\eta_{\rm H}$ – эффективность накачки. Эффективность накачки $\eta_{\rm H}$ может быть вычислена при известных значениях дифференциального КПД $\eta_{\rm диф}$ и коэффициента оптических потерь χ как [10]:

$$\eta_{H} = \eta_{\mu\mu\phi} \cdot \sqrt{R} \frac{\chi - \ln R}{2 \cdot (1 - R)}$$
(3)

На рис. 6 представлена экспериментальная зависимость $-\ln(R)$ от E_{nop} для исследованного лазера. Видно, что экспериментальные точки хорошо описываются линейной зависимостью. Из выражения (1) видно, что экстраполяция линейной зависимости $-\ln(R)$ до значения $E_{nop} = 0$ дает значение коэффициента внутрирезонаторных потерь χ , а наклон этой зависимости дает значение коэффициента k, которые для нашего эксперимента составили $\gamma = 0.37$ и k = 0.026.

Определение порога генерации и значения дифференциального КПД для различных выходных зеркал

$R_{\text{вых}}, \%$	Епор, Дж	$\eta_{{ m ди} \phi}$
58,41	34	$3 \cdot 10^{-3}$
68	31	$2,14 \cdot 10^{-3}$
76,34	22	$2,25 \cdot 10^{-3}$
96,73	15	$1 \cdot 10^{-3}$

Зная величину дифференциального КПД $\eta_{\mu\mu\phi}$ (таблица), время жизни верхнего лазерного уровня $\tau = 470$ мкс мы определили эффективное сечение лазерного перехода σ_{ren} , которое составило $(3,4 \pm 1,5) \ 10^{-20} \text{ см}^2$.

Рис. 5. Зависимость энергии генерации от энергии накачки при ламповом возбуждении при различных коэффициентах отражения выходного зеркала

Рис. 6. Экспериментальное определение коэффициента внутрирезонаторных оптических потерь χ и коэффициента усиления k

Спектр люминесценции ионов Ho^{3+} в кристалле YSGG на переходе ${}^{5}\text{I}_{6} \rightarrow {}^{5}\text{I}_{7}$ уширен за счет Штарковского расщепления уровней на подуровни в кристаллическом поле. На рис. 7 представлены спектры генерации в режиме свободной генерации при различных выходных зеркалах и энергии накачки E = 40 Дж. Из рисунка видно, что лазерная генерация в трехмикронном диапазоне может наблюдаться на 4-х длинах волн 2,86 мкм, 2,91 мкм, 2,95 мкм и 2,99 мкм, что согласуется с работой [11]. Использование дихроичных выходных зеркал приводит к спектральной селекции линий генерации.

Рис. 7. Спектры генерации лазера на кристалле YSGG:Cr³⁺Yb³⁺Ho³⁺ в режиме свободной генерации с разными выходными зеркалами

4. Режим пассивной модуляции добротности

Установка пластинки из кристалла ZnSe:Fe²⁺ перед выходным зеркалом приводила к работе YSGG:Cr³⁺Yb³⁺Ho³⁺ лазера в режиме модулированной добротности. Как было отмечено ранее для уменьшения Френелевских потерь пассивный лазерный затвор устанавливался под углом Брюстера к оси резонатора. Это приводило к получению поляризованного излучения на выходе лазера и соответственно уменьшению выходной энергии примерно в два раза. На рис. 8 представлены энергетические зависимости YSGG:Cr³⁺Yb³⁺Ho³⁺ лазера с выходным зеркалом $R_{2,8-3,0 \text{ мкм}} = 31-76 \%$ от

энергии накачки в режиме свободной генерации и неполяризованного излучения на выходе (1) и для режима модулированной добротности и поляризованного излучения (2). Видно, что при переходе к режиму модулированной добротности порог лазерной генерации повышался с 26 Дж до 38 Дж. В диапазоне энергий накачки от 40,5 до 47 Дж наблюдался моноимпульсный режим генерации с энергией в импульсе около 4,5 мДж на длине волны 2,99 мкм. При этом энергия генерации лазера оставалась практически постоянной. При дальнейшем повышении энергии накачки наблюдалось характерная ступенчатая зависимость, которая свидетельствовала о двух и трех импульсной лазерной генерации.

Рис. 8. Зависимость энергии импульсов генерации лазера на кристалле YSGG:Cr³⁺Yb³⁺Ho³⁺ от энергии лампы накачки в режиме свободной генерации (1) и при пассивной модуляции добротности на кристалле ZnSe:Fe²⁺ (2)

На рис. 9 показана осциллограмма лазерного импульса в режиме модулированной добротности. Видно, что длительность импульса лазерной генерации составила 60 нс, что дает пиковую мощность трехмикронного излучения порядка 75 кВт.

Рис. 9. Осциллограмма импульса лазерной генерации на кристалле YSGG:Cr³⁺Yb³⁺Ho³⁺ с пассивным лазерным затвором на кристалле ZnSe:Fe²⁺

5. Заключение

В данной работе была исследована генерация лазера на трехмикронном самоограниченном переходе ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ в ионах Ho³⁺ на кристалле YSGG:Cr³⁺Yb³⁺Ho³⁺ с ламповой накачкой в режиме сво-

бодной генерации и модулированной добротности. Экспериментально определено эффективное сечение лазерной генерации, которые составило $(3,4\pm1,5)\cdot10^{-20}$ см². Создан наносекундный лазер на длине волны 2,99 мкм на кристалле YSGG:Cr³⁺Yb³⁺Ho³⁺ с ламповой накачкой и пассивным лазерным затвором на кристалле ZnSe:Fe²⁺. Получен моноимпульс лазерного излучения с длительностью 60 нс и энергией 4,5 мДж и пиковой мощностью до 75 кВт.

6. Благодарности

Авторы благодарят Гаврищука Е.М. (ИХВВ РАН) за предоставление кристалла ZnSe:Fe²⁺. Авторы выражают благодарность Российскому фонду фундаментальных исследований (грант № 15-02-05932) за частичную финансовую поддержку данной работы.

Список литературы

1. Умысков А. Ф., Заварцев Ю. Д., Загуменный А. И., Осико В. В., Студеникин П. А. Квантовая Электроника, 1996. 23, 791-792.

2. Денисов А. Л., Загуменный А. И., Лутц Г. Б., Осико В. В., Семенков С. Г., Умысов А.Ф. // Квантовая электроника, 1992. 19, 842-844.

3. Yu.D. Zavartsev, A.I. Zagumennyi, V.V. Osiko, P.A. Studenikin, I.A. Shcherbakov, A.F. Umyskov In: Proc. ASSL'96 (USA, 1996, p.C106).

4. Заварцев Ю. Д., Осико В. В., Семенков С. Г., Студеникин П. А, Умысков А.Ф. // Квантовая электроника, 1993. 20, 366-370.

5. Заварцев Ю. Д., Загуменный А. И., Кулецкий Л. А., Лукашев А. В., Пашинин П. П., Студеникин П. А., Щербаков И. А., Умысков А. Ф. // Квантовая электроника, 1999. 27, 13-15.

6. Gordienko V. M., Potemkin F. V., Pushkin A. V., Sirotkin A. A., and Firsov V. V. // J. Russ. Laser Res., 2015. 36, 570.

7. Mirov S., Fedorov V., Moskalev I., Martyshkin D., Kim C. // Laser & Photon. Rev. 2010. 4, 21.

8. Воронов А. А., Козловский В. И., Коростелин Ю. В., Ландман А. И., Подмарьков Ю. П., Полушкин В. Г., Фролов М. П. // Квантовая электроника, 2006. 36, 1-2.

9. http://www.tydexoptics.com/pdf/ru/CVD-ZnSe.pdf.

10. Koechner W. Solid-State Laser Engineering, Springer Series in Optical Sciences, 2006.

11. Умысков А.Ф., Заварцев Ю. Д., Загуменный А. И., Осико В. В., Студеникин П. А. // Квантовая Электроника, 1996. 23, 579-580.