КОЛИЧЕСТВЕННЫЙ РЕНТГЕНОФАЗОВЫЙ АНАЛИЗ НЕСТЕХИОМЕТРИЧЕСКОГО ДЕЙТЕРИДА ТИТАНА В ОБЛАСТИ СОСУЩЕСТВОВАНИЯ АЛЬФА-, ДЕЛЬТА-И ГАММА-ФАЗ

<u>Д. В. Чулков</u>, А. Ю. Постников, А. С. Мирясов, В. Н. Голубева, И. М. Миронова

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Представлены результаты количественного рентгенофазового анализа (КРФА) порошковых образцов нестехиометрического дейтерида титана с атомным отношением D/Ti от 0,05 до 1,43. Анализ проводился методом Ритвельда в программе Jana2006. Определен состав δ-фазы нестехиометрического дейтерида титана (сосуществующей с α- и γ-фазами), соответствующий атомному отношению D/Ti равному 1,51, что согласуется с результатом нейтронодифракционного исследования X. Нумакуры, М. Койвы, X. Асано и Ф. Изуми (H. Numakura, M. Koiwa, H. Asano, F. Izumi).

Введение

При атомном отношении D/Ti равном 1,5 [1] при комнатной температуре и давлении менее 0,1 МПа обнаруживается фазовый переход из однофазной области δ -фазы в область сосуществования α -, δ и метастабильной γ -фаз (см. рис. 1). В данной области фазовый состав нестехиометрического дейтерида титана определяется предысторией получения образца, т.е. химическим составом исходного материала и экспериментальными режимами изготовления. В соответствии с общепринятыми представлениями α фаза представляет собой твердый раствор дейтерия в гексагональной решетке титана, δ – дейтерид с ГЦК решеткой; γ – метастабильный дейтерид (атомное отношение D/Ti=1:1) с тетрагональной решеткой (с/a \approx 1,09) [2].

Рис. 1. Фазовая диаграмма системы титан-водород (0,1 МПа) [1]

При формировании неравновесного состояния определение содержания дейтерия не позволяет однозначно установить фазовый состав нестехиометрического дейтерида, используя диаграмму фазового состояния титан-водород. Получение информации о количественном фазовом составе данного материала представляет особый исследовательский интерес, поскольку позволит более глубоко понимать процессы гидрирования и дегидрирования, изучать фазовые переходы и влияние экспериментальных режимов получения на структуру нестехиометрического дейтерида титана.

Специфичность области сосуществования α-, δи γ-фаз обусловлена тем, что в состав каждой фазы входят как титан, так и дейтерий. Данное обстоятельство ограничивает возможности методов объемного химического анализа для достоверного определения содержания фаз. Для решения данной задачи возможно использовать прямой метод – КРФА, который основан на анализе дифрактограммы, полученной при регистрации рентгеновского излучения, упруго рассеянного от образца, в зависимости от дифракционного угла.

На сегодняшний день одним из самых эффективных методов КРФА многофазных порошковых образцов является метод Ритвельда [3, 4]. Данный метод позволяет строго учесть (или уточнить) большинство факторов, которые влияют на формирование дифрактограммы. Однако, высокая подверженность КРФА влиянию систематических ошибок приводит к необходимости сопоставления полученных данных с результатами объемного химического анализа для оценки точности определения содержания фаз [5].

В настоящей работе представлены экспериментальные данные, полученные при совместном анализе результатов КРФА и волюмометрического метода определения содержания дейтерия в образцах нестехиометрического дейтерида титана с атомным отношением D/Ti от 0,05 до 1,52. КРФА проводили методом Ритвельда в программе Jana2006 [6].

Приготовление образцов

Исследованию подвергались порошковые образцы нестехиометрического дейтерида титана с атомным отношением D/Ti от 0,05 до 1,52, полученные неполным обезгаживанием порошка дейтерида титана TiD_{1.96} фракции менее 100 мкм на вакуумной установке типа Сивертса при температуре печи 900-940 К. Перед обезгаживанием образцы выдерживали в течение 1,5 ч при температуре 500 К для удаления адсорбированных газов и влаги. После обезгаживания образцы охлаждали программноуправляемо со скоростью 5 К/мин до 473К и затем печь отключали. Получение образца TiD_{0.05} (вследствие спекания в процессе обезгаживания) сопровождалось измельчением в шаровой мельнице в течение нескольких часов и последующим просевом порошка через сито с размером ячейки в свету 40 мкм. В полученных образцах содержание изотопов водорода определяли волюмометрическим методом путем сплавления с медью при температуре 1173 К и последующим определением объема выделившегося газа.

Дифракционный эксперимент и пробоподготовка

Регистрацию дифрактограмм проводили на порошковом дифрактометре ДРОН-7 (АО НПП «Буревестник», г. Санкт-Петербург) в геометрии на отражение Брэгга–Брентано Θ –2 Θ с использованием дублетного рентгеновского СиКа излучения. В качестве счетчика рентгеновских квантов использовали микростриповый позиционно-чувствительный детектор Муthen 1К (1280 стрипов, ширина стрипа – 50 мкм) [7]. При регистрации дифрактограмм использовали 600 центральных стрипов Муthen 1К. Угловая апертура одного стрипа соответствовала 0,014°. Угол расхождения первичного пучка соответствовал ~1°; щель Соллера – 1,5°. На дифрагированном пучке устанавливали щель Соллера – 2,5° и бета-фильтр из Ni фольги.

Полученные образцы (за исключением TiD_{0,05}) истирали пестиком в агатовой ступке в среде этилового спирта в течение 5 минут. Увеличение времени истирания не допускалось, поскольку приводило к уширению рефлексов и уменьшению отношения пик/фон (вследствие частичной аморфизации пробы). Полученную суспензию закладывали в углубление кюветы для съемки и разравнивали для формирования гладкой поверхности. Толщина образцов была больше 20 мкм для формирования насыщенного слоя (3/2 µ, где µ – эффективный линейный коэффициент поглощения образца) [8, с. 37]. После высыхания образцы закрепляли вертикально на держателе гониометра и проводили измерение.

Основные теоретические аспекты метода Ритвельда применительно к задаче количественного рентгенофазового анализа

Метод Ритвельда является задачей оптимизации и основан на минимизации функционала отклонения Ф с целью достижения наилучшего приближения теории с экспериментом [8, с. 85–89]:

$$\Phi = \sum_{s=1}^{N} w_s \left(I_s^{\exp} - I_s^{theor} \right)^2, \tag{1}$$

где *s* – номер точки на экспериментальной дифрактограмме; *N* – число точек на экспериментальной дифрактограмме; $w_s = \frac{1}{\sigma_s^2}$ – статистический вес в точке *s*; σ_s^2 – дисперсия измеренной интенсивности в

точке *s*; I_s^{exp} и I_s^{theor} – экспериментальная и теоретически рассчитанная интенсивности в точке *s*.

При моделировании экспериментальных дифрактограмм методом Ритвельда в работе использовали программу Jana2006. В качестве метода оптимизации использовали алгоритм Марквардта (Marquardt).

Общее выражение для угловой зависимости интенсивности в теоретической модели представляется как [8, с. 85]:

$$I^{theor}(2\theta) = B(2\theta) + k \sum_{hkl} p_{hkl} \times |F_{hkl}|^2 \times LPG \times T_{hkl} \times P_{hkl}(2\theta_{hkl} - 2\theta), \quad (2)$$

где $I^{theor}(2\theta)$ – теоретически рассчитанная интенсивность в точке; $B(2\theta)$ – фоновая интенсивность в точке; k – общий множитель; hkl – индексы кристаллографической плоскости (индексы Миллера); p_{hkl} – фактор повторяемости; $|F_{hkl}|^2$ – квадрат модуля структурной амплитуды; LPG – член, учитывающий влияние оптической геометрии эксперимента; T_{hkl} – текстурный фактор (при необходимости); $P_{hkl}(2\theta_{hkl} - 2\theta)$ – профильная функция.

В качестве профильной аналитической функции $P_{hkl}(2\theta_{hkl} - 2\theta)$ использовали функцию псевдо-Войгта (pseudo-Voigt), представляющую собой суперпозицию функций Гаусса и Лоренца [8, с. 60–61]. Зависимость полной ширины на половине высоты рефлексов от дифракционного угла θ описывали модифицированной функцией Томпсона–Кокса–Хастингса (Thompson–Cox–Hastings) [8, с. 111]. Для описания анизотропии уширения рефлексов (для α - и δ фаз при их значительном содержании в образцах) использовали модель Стефенса (Stephens) [9].

Для уточнения ожидаемых угловых позиций рефлексов $2\theta_{hkl}$ использовали модель систематической ошибки – сдвиг образца ($\Delta 2\theta \sim \cos\theta$) [8, с. 54]. Фон описывали полиномиальной функцией Лежандра в комбинации с фоном ручного управления (опция «manual background» в Jana2006).

Массовые доли *w_i* фаз определяли по формуле [8, с. 81]:

$$w_i = Z_i M_i V_i \times k_i / \sum_{i=1}^l Z_i M_i V_i \times k_i, \qquad (3)$$

где l – число фаз i в образце; Z_i – число формульных единиц в ячейке для фазы i; M_i – относительная

молекулярная масса формульной единицы для фазы i; V_i – объем элементарной ячейки для фазы i; k_i – общий множитель фазы i.

Следует отметить, что в методе Ритвельда содержание рентгеноаморфных компонентов не учитывается, т. е.

$$\sum_{i=1}^{l} w_i = 1.$$
 (4)

Моделирование дифрактограмм образцов нестехиометрического дейтерида титана методом Ритвельда

Для расчета структурных амплитуд F_{hkl} [8, с. 81] использовали структурные модели α -, δ - и γ -фаз, представленные в табл. 1 [1, 10, 11, 12]. При моделировании экспериментальных дифрактограмм использовали структурные параметры фаз в соответствии с табл. 2.

Для описания асимметрии рефлексов в малоугловой области дифракционных углов предварительно проводили моделирование дифрактограммы стандарта инструментального профиля NIST SRM660b (порошка LaB₆) [8, с. 104; 13], уточняя параметры коррекции на расхождение (опция «correction by divergence» в Jana2006) с учетом H/L=S/L, два параметра функции Томпсона–Кокса–Хастингса и сдвиг образца. Регистрацию дифрактограмм исследуемых образцов и стандарта проводили в идентичных экспериментальных условиях.

По результатам моделирования дифрактограмм образцов были уточнены общий множитель k, 4 коэффициента полиномиальной функции Лежандра в комбинации с фоном ручного управления (опция «manual background» в Jana2006), параметры профильных функций, параметры элементарных ячеек, сдвиг образца и массовые доли фаз. Структурные параметры фаз, представленные в табл. 1 и 2, не уточняли. Параметры асимметрии фиксировали на значениях, уточненных для гексаборида лантана.

В результате уточнения параметры массовых долей α -, δ - и γ - фаз достигли заданной сходимости (изменение параметра/стандартное отклонение $\leq 0,01$). Высокой корреляции (с коэффициентом корреляции больше 0,7) данных параметров между собой и с другими параметрами модели выявлено не было. На рис. 2 представлен результат моделирования дифрактограммы образца TiD_{1,04}. Незначительные аберрации счета импульсов на кривой разности теоретической и экспериментальной дифрактограмм показывают хорошее согласование теории с экспериментом [14].

Теоретическая модель представлена сплошной линией, экспериментальная – точками. Снизу приведена кривая разности между экспериментальной и теоретической дифрактограммами.

Таблица 1

Фаза	Атом	Координаты атома, отн. ед.			Параметр атомного	Заселенность позиции, отн. ед.
		x	У	z	смещения U, $Å^2$	(B Jana2006)
α- титан	Ti	0,33	0,67	0,25	0,008184*	0,083
б-дейтерид титана	Ti	0	0	0	0,007219	0,021
	Н	0,25	0,25	0,25	0,013425	0,031
ү-дейтерид титана	Ti	0,25	0,25	0,25	0,005**	0,50
	Н	0	0	0,50	0,01**	0,25
	Н	0	0	0	0,01**	0,25

Структурные модели α-, δ- и γ-фаз нестехиометрического дейтерида титана

* – параметр атомного смещения уточняли для образа TiD_{0.05};

** – параметры установлены на физически правдоподобных значениях

Таблица 2

0	C 1		U
	\mathbf{M}	HACTAVIAMATOUHACKOFO	TAUTANUTS TUTSUS
	$D \cup U^{-}, U^{-} \cap V^{-} \cup U^{-}$	HUCIUANONULIDNAUUKOLO	лонторила титапа
			A

Фаза	Пространственная группа симметрии	Брутто-формула	ПЭЯ, Å [10]	Число формульных единиц
α-титан	P63/mmc	Ti	a=2,95 b=4,686	2
б-дейтерид титана	Fm3m	TiD _{1,5}	a=4,395(2)	4
ү-дейтерид титана	P42/n	TiD	a=4,199(3) c=4,576(2)	4

Рис. 2. Результат моделирования методом Ритвельда дифрактограммы образца $TiD_{1,04}$ (*GOF* = 1,30; R_{wp} = 1,74 %; 32 параметра, 21 – уточнен).

Влияние систематических ошибок на результаты КРФА

Основными факторами, влияющими на точность результатов КРФА, являются эффект микроабсорбции и статистика зерен. Микроабсорбция заключается в избирательном поглощении рентгеновского излучения зернами образца и описывается теорией Бриндлея [14]. Для учета данного эффекта применяют коррекцию:

$$\tau_i = \frac{1}{V_i} \int\limits_0^{V_i} e^{-(\mu_i - \overline{\mu})r_i} dV, \qquad (5)$$

где τ – фактор абсорбции на частице фазы *i*; V_i – эффективный объем зерна фазы *i*; μ_i – линейный коэффициент поглощения фазы *i*; μ – средний линейный коэффициент твердой субстанции образца; r_i – эффективный размер зерна фазы *i*.

Особенностью системы титан-водород является незначительное различие линейных коэффициентов поглощения α -, δ - и γ -фаз. При использовании СиКа излучения для α -Ті линейный коэффициент поглощения составляет 86,9 мм⁻¹, для δ -TiD_{1,5} – 74,9 мм⁻¹, для γ -TiD – 78,8 мм⁻¹. Таким образом, эффект микроабсорбции не должен значимо проявляться в случае, если размеры зерен фаз незначительно отличаются друг от друга.

Условие достаточной статистики зерен в облучаемом объеме определяется как [14]: $r_i \mu_i < 1. \tag{6}$

Для соблюдения (6) эффективный размер зерен α-, δ- и γ-фаз должен быть меньше 13,4, 11,5 и 12,7 мкм соответственно.

Нестехиометрический дейтерид титана является гетерогенной системой, в которой каждая частица порошка представлена сосуществующими α-, δ- и у-фазами. Определить размер зерен каждой из фаз является практически невозможным. Единственной альтернативой является определение размеров частиц. К примеру, для образца TiD_{1.04} медианный диаметр частиц D₅₀, определенный методом лазерной дифракции, составил 24,6 мкм, а $D_{90} - 70,5$ мкм. После 5 мин истирания в этиловом спирте $D_{50} - 9,6$ мкм, D₉₀ – 30,5 мкм. В результате присутствие крупных частиц в образце после измельчения способствовало систематическим флуктуациям количества зерен в облучаемом объеме образца при очередной пробоподготовке, что отражалось на увеличении погрешностей определения массового содержания фаз. В частности, по результатам анализа трех различных проб от каждого образца для α- и δ-фаз погрешность варьировалась от 0,04 до 0,8 мас.%, для у-фазы – от 0,005 до 0,05 мас.%.

Анализ экспериментальных результатов

В результате проведения экспериментальных работ на вакуумной установке было получено 8 образцов нестехиометрического дейтерида титана с атомным отношением D/Ti от 0,05 до 1,52. Удельное газосодержание определяли волюмометрическим методом с относительной погрешностью 1,8 % (P = 0,95). Из каждого образца нестехиометрического дейтерида титана было изготовлено по три пробы для регистрации дифрактограмм в области дифракционных углов от 30 до 150° 20 с высокой статистикой счета импульсов.

Во всех образцах идентифицированы α- и δ-фазы, а также метастабильная γ-фаза с содержанием от 0,03 до 0,53 мас.%. Рефлексов других фаз не выявлено. КРФА проводили для 20 исследуемых образцов моделированием дифрактограмм методом Ритвельда.

В результате анализа полученных экспериментальных данных была обнаружена зависимость массового содержания δ -фазы от газосодержания в образцах нестехиометрического дейтерида титана (см. рис. 3,а). Аппроксимация линейной функцией с коэффициентом корреляции *R* равным 0,9998 показало высокую корреляцию наблюдаемых параметров¹. Однако, выявленная статистическая связь не характеризовала точность определения массового содержания δ -фазы в исследуемых образцах. С этой целью была рассмотрена зависимость массового содержания α -фазы от атомного отношения D/Ti (см. рис. 3,б). Данная зависимость также была аппроксимирована линейной функцией.

Экстраполируя линию регрессии на рис. 3,6 к оси абсцисс и учитывая погрешности аппроксимации, получили значение атомного отношения D/Ti равное 1,54±0,02 (P = 0.95), характеризующее фазовый переход нестехиометрического дейтерида титана из однофазной области δ -фазы в область сосуществования α -, δ - и γ -фаз. Анализ дифрактограммы, зарегистрированной от образца с атомным отношением D/Ti равным 1,52 показал, что α -фаза представлена

одиночным рефлексом с интенсивностью 0,5 отн. %. Это означает, что массовое содержание α-фазы в данном образце очень низкое, т. е. атомное отношение D/Ti равное 1,52 достаточно близко, но немного ниже действительного значения, характеризующего фазовый переход.

С учетом того, что химический состав у-фазы соответствует TiD [11] и полагая, что состав б-фазы соответствует TiD_{1.54}, оценили количество дейтерия, растворенного в α-фазе во всех исследуемых образцах, используя результаты КРФА. На рис. 4 представлена зависимость параметров а и с элементарной ячейки α-Ті от расчетного содержания дейтерия в α-Ті. Как показывают расчеты, в α-фазе одного из образцов растворяется большее количество дейтерия по сравнению с остальными, что подтверждается значимым увеличением параметров элементарной ячейки. При этом среднее значение атомного отношения D/Ті в остальных образцах соответствует 0,078±0,056 (P = 0.95). Данное значение согласуется с зависимостью на рис. 3,б. Так, с учетом погрешности аппроксимации при массовом содержании α-Ті равном 100 % атомное отношение D/Ti составляет 0.047 ± 0.003 (P = 0.95). Таким образом, зависимость на рис. 3,6 свидетельствует об отсутствии явного влияния систематических ошибок на результаты КРФА.

В общем, линейная корреляция массового содержания δ -фазы и газосодержания образцов (см. рис. 3,а) обусловлена тем, что основная часть дейтерия в образцах нестехиометрического дейтерида титана содержится именно в δ -фазе, состав которой в области сосуществования α -, δ - и γ -фаз не изменяется и соответствует TiD_{~1,5}. Тогда как, линейная зависимость массового содержания α -фазы от газосодержания (см. рис. 3,6) следует из уравнения (4) и низкого содержания γ -фазы во всех исследуемых образцах (от 0,03 до 0,53 мас.%).

¹ В работе аппроксимацию линейными функциями проводили с использованием метода взвешенных наименьших квадратов. При этом в качестве весов использовали значения обратные дисперсиям соответствующих параметров.

Рис. 3. Изменение массового содержания α- и δ-фаз в нестехиометрическом дейтериде титана в области сосуществования α-, δ- и γ-фаз: а - δ-фаза, б - α-фаза

внутри экспериментальных точек (~0,001 Å).

Рис. 4. Изменение параметров элементарных ячеек альфа-Ті в зависимости от атомного отношения D/Ti в α-Ti в образцах с атомным отношением D/Ti от 0,05 до 1,43

Определение состава δ-фазы, сосуществующей с α- и γ-фазами

Полученные нами экспериментальные данные показали, что содержание дейтерия в α -Ti во всех образцах имеет завышенное значение по сравнению с данными, представленными в обзоре Левковича [2]. В частности, в данном обзоре отмечается, что при комнатной температуре в α -фазе растворяется 0,12 ат.% водорода, т. е. H/Ti=0,0012. Наблюдаемое завышенное содержание дейтерия в α -фазе (в среднем 7,2 ат.%) является причиной формирования неравновесных состояний в образцах нестехиометрического дейтерида титана.

В общем, избыточное количество дейтерия, растворенное в α-фазе, и присутствие метастабильной у-фазы могут приводить к смещению результатов КРФА по сравнению с равновесным состоянием. В действительности, дейтерий в α-фазе может взаимодействовать с титаном из α- или γ-фазы с образованием δ-дейтерида титана. Поэтому, при переходе системы к равновесному состоянию массовое содержание б-дейтерида титана должно увеличиваться, а α-фазы – уменьшаться по сравнению с результатами количественного анализа, полученными для неравновесных образцов. Чтобы оценить влияние данного эффекта были проведены расчеты массового содержания α-фазы в приближении того, что при достижении равновесия в α-Ті останется 0,12 ат.% дейтерия. В результате была получена зависимость, представленная на рис. 5. Экстраполируя линию регрессии к оси абсцисс и учитывая погрешности аппроксимации, получили значение атомного отношения D/Ti равное 1.51 ± 0.02 (P = 0.95).

В работе [1] представлены данные о результатах нейтронодифракционного исследования нестехиометрического дейтерида титана. Авторы работы исследовали два образца с атомным отношением D/Ti равным 0,82 и 1,5. С использованием метода Ритвельда в ходе моделирования нейтронных дифрактограмм они уточнили вероятность заселенности атома дейтерия в δ -фазе, сосуществующей с α - и γ -фазами, и в результате установили ее химический состав одинаковый для обоих исследуемых образцов, соответствующий TiD_{1.5}.

Выводы

Проведен КРФА методом Ритвельда в программе Jana2006 образцов нестехиометрического дейтерида титана с атомным отношением D/Ti от 0,05 до 1,43. Достигнуто хорошее согласование теоретических моделей с экспериментальными дифрактограммами.

Обнаружена линейная корреляция (R=0,9998) массового содержания δ -фазы (и α -фазы) от содержания дейтерия в порошке нестехиометрического дейтерида титана в области сосуществования α , δ - и γ -фаз. Показано, что одним из эффектов смещения результатов КРФА от линейной зависимости является формирование неравновесного состояния образцов, тогда как влияние систематических ошибок (микроабсорбции и статистики частиц) незначительно.

Рис. 5. Изменение массового содержания α-фазы в приближении равновесного состояния нестехиометрического дейтерида титана в области сосуществования α- и δ-фаз

Определен состав δ -фазы нестехиометрического дейтерида титана (сосуществующей с α - и γ -фазами), соответствующий атомному отношению D/Ti равному 1,51.

Авторы доклада выражают благодарность Е. Н. Вертей за проведение дисперсионного анализа образцов нестехиометрического дейтерида титана методом лазерной дифракции.

Литература

1. Numakura H., Koiwa M., Asano H., Izumi F. Neutron diffraction study of the metastable γ titanium deuteride // Acta Metallurgica. 1988. Vol. 36, No 8. P. 2267–2273.

2. Lewkowicz I. Titanium-hydrogen. Chapter 6 // Solid State Phenomena. 1996. Vol. 49–50. P. 239–280.

3. Rietveld H. M. A profile refinement method for nuclear and magnetic structures //Journal of Applied Crystallography. 1969. Vol. 2. P. 65.

4. Young R. A. The Rietveld Method – New York: International Union of Crystallography Oxford University Press, 1996.

5. Madsen I. C., Scarlett N. V. Y. Quantitative Phase Analysis. Chapter 11. Powder Diffraction Theory and Practice – UK: The Royal Society of Chemistry. 2008. P. 315.

6. Petricek V., Dusek M., Palatinus L. JANA [Электронный ресурс] – Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic. 2001 – URL: http://jana.fzu.cz (дата обращения 05.05.2017).

7. Bergamaschi A., Cervellino A., Dinapoli R. et al. The MYTHEN detector for X-ray powder diffraction

experiments at the Swiss Light Source // Journal of Synchrotron Radiation. 2010. Vol. 17. P.653–668.

8. Чижов П., Левин Э., Митяев А., Тимофеев А. Приборы и методы рентгеновской и электронной дифракции. Учебное пособие – Московский физико-технический институт, Можайский полиграфический комбинат оформление, 2011.

9. Stephens P. W. Phenomenological model of anisotropic peak broadening in powder diffraction // Journal of Applied Crystallography.1999. Vol. 32. P. 281–289.

10. Murray–Rust P., Day N.; Chateigner D., Chen X., Ciriotti. M et al. Crystallography Open Database (COD). Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers [Электронный ресурс] – Research Council of Lithuani. 2010 – URL: http://www.crystallography. net/cod/9008517.html (дата обращения 14.05.2017).

11. Numakura H., Koiwa M., Asano H., Murata H., Izumi F. X-ray diffraction study on the formation of γ titanium deuteride // Scripta Metallurgica. 1986. Vol. 20. P. 213–216.

12. Numakura H., Koiwa M. Hydride precipitation in titanium // Acta Metallurgica. 1984. Vol. 32. № 10. P. 1799–1807.

13. Cline J. P., Black D., Windover D., Henins A. Certificate. Standard reference material 660b. Line position and line shape standard for powder diffraction – U.S.: National Institute of Standards and Technology, Gaithersburg. 2010.

14. Toby B. H. R factors in Rietveld analysis: How good is good enought? // Powder Diffraction. 2006. Vol. 21, № 1. P. 67–70.

15. Brindley G. V. The effect of grain or particle size on x-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by x-ray methods // Philosophical Magazine. 1945. Vol. 36. P. 347–369.