

Figure 6. Photos of flows of various powder materials

The work was carried out with financial at financial support of the fundamental research program of Presidium of RAS No. $I.13\Pi$ "The physics of high energy densities" and RFBR project No. 16-29-01030.

References

- 1. *Gerasimov S.I., Faikov Yu.I., Holin S.A.* The cumulative light sources // Sarov: FSUE RFNC VNIIEF, 2011, P. 327.
- Bulanov S.S. et. all Explosive plasma-vortex optical radiation sources // The Russian Journal of Applied Physics, 2010, T. 80, N. 11, P. 87-95.

ЦИФРОВОЙ ФОТОХРОНОГРАФИЧЕСКИЙ РЕГИСТРАТОР ДЛЯ ИССЛЕДОВАНИЯ БЫСТРОПРОТЕКАЮЩИХ ПРОЦЕССОВ

В.П. Андрианов, Ю. Б. Базаров¹, А.В.Губачёв¹, О.Н. Дулин, А.Е.Елгаёнков¹, В.Г. Каменев, В.М. Кузин, М.С.Литвинова¹, С.А. Лобастов¹, В.Н., Туркин, А.С. Шубин

²ВНИИА, Москва, Россия ¹РФЯЦ – ВНИИЭФ, Саров, Россия

Разработка фотохронографов с зеркальной разверткой активно начала развиваться в 50-х годах 20-го века. Разработано несколько десятков моделей и множество модификаций фотокамер, предназначенных для регистрации различных физических процессов. Традиционно, в фотохронографах в качестве чувствительного элемента используется фотопленка. Современным примером такой модификации является установка скоростная фоторегистрирующая УСФ-2, созданная на базе широко известного фоторегистратора СФР [1].

В настоящее время во многих технических устройствах происходит замена фотоплёнки цифровыми устройствами на базе ПЗС- или КМОП-матриц. Применение цифрового устройства регистрации позволяет сократить время извлечения информации и обработки полученных данных, а также уменьшить погрешность измерений. Известны зарубежные разработки фотохронографов с зеркальной развёрткой и цифровым считывающим устройством. Например, в фоторегистраторе Cordin-131 в плоскости регистрации расположена система зеркал, которые проецируют изображение на последовательность ПЗСматриц [2].

В ФГУП «НИИИТ», а впоследствии в ФГУП «ВНИИА» работы по созданию приборных комплексов на базе фотохронографических регистраторов с зеркальной разверткой и записью информации на ПЗС-матрицу начались более десяти лет назад, когда на базе фотохронографа СФР были разработаны две модели приборных комплексов, в которых вместо фотопленки использовались цифровые регистраторы. В первом комплексе диаметр фоточувствительной области составлял ~20 мм, что позволяло регистрировать быстропротекающие процессы длительностью не более 10 мкс (при скорости развертки 2,25 км/с). Это накладывало ограничения на использование комплексов в ряде экспериментов. Кроме того, фоновая засветка рабочего кадра не могла быть уменьшена до необходимой величины из-за использования электромеханического затвора в фотокамере СФР;

При разработке второго комплекса [3], фоновая засветка была устранена путем установки перед регистратором с ПЗС-матрицей электронно-оптического затвора, который открывался на время длительности управляющего импульса, регулируемой в диапазоне от 2 до 32 мкс с шагом 2 мкс. Размер кадра был увеличен путем использования матрицы большего размера (28×28) *мм* и фокона с большим входным диаметром, равным 80 *мм*.

Однако, в опытах с ярким свечением продуктов взрыва происходила частичная потеря информации вследствие перетекания заряда между соседними ячейками ПЗС-матрицы, а небольшая длина области регистрации в направлении развертки изображений не позволяла регистрировать процессы длительнее 26 мкс (при скорости развертки 2,25 км/с).

Для расширения области применения комплекса требовалось увеличить длину области регистрации, исключить перетекание заряда в опытах с ярким свечением и обеспечить время экспонирования, равное времени формирования полезного сигнала, характеризующего исследуемый процесс.

В настоящее время завершена разработка приборного комплекса ТКПФ269 для цифровой фотохронографической регистрации быстропротекающих процессов, сопровождающихся излучением в оптическом и ближнем инфракрасном диапазонах. Внешний вид комплекса ТКПФ269 приведён на рисунке 1.

Основные технические характеристики комплекса:

число регистрируемых световых импульсов - не менее 2000;

✓ рабочая длина волны - от 0,45 до 0,85 мкм;

✓ диапазон измерения интервалов времени при скорости развертки изображения ~ 3 км/с - от 1 до 100 мкс;

✓ размеры области, регистрирующей изображение исследуемого объекта в устройстве регистрации – (177×40) *мм*;

 ✓ число фоточувствительных элементов рабочей области датчика по горизонтали – 5120 и по вертикали – 3840;

✓ частота следования меток времени – 1; 2,5; 5; 10 МГц;

✓ допускаемая основная абсолютная погрешность измерения интервалов времени в диапазоне от 1 до 60 *мкс* - не более ± 50 *нс* при доверительной вероятности Р=0,95 и скорости развертки изображения по чувствительному элементу регистратора не менее 3 *км/с*;

✓ питание комплекса осуществляется от сети переменного тока напряжением (220 ± 22) В

и частотой (50±5) Гц, потребляемая мощность - не более 900 Вт.

1 - устройство цифровой регистрации; 2 – устройство зеркальной развертки (камера ИМТ);

3 - входной объектив; 4 - управляющий ноутбук; 5 - пульт управления камерами;

6 - блок задержки

Рисунок 1. Внешний вид приборного комплекса ТКПФ269

Конструкция устройства цифровой регистрации представляет собой три склеенных по боковой поверхности фокона, на выходных окнах которых установлены КМОП-матрицы. Каждый из фоконов имеет размер входного окна, равный 60 мм. Склейка фоконов позволила увеличить область регистрации до 177 мм в горизонтальном и 40 мм в вертикальном направлениях. Тем самым, при скорости развертки 2,25 км/с длительность регистрации достигает 78 мкс. Ширина зоны склейки фоконов составляет ~50 мкм, что обеспечивает отсутствие потерь информации при попадании на неё изображения оптического датчика диаметром ~100 мкм и не влияет на погрешность измерения временных интервалов. Конструкция устройства цифровой регистрации схематично представлена на рисунке 2.

Для исключения наложения послесвечения на полезный сигнал в комплексе использованы КМОП-матрицы с функцией электронного затвора, что обеспечивает регулируемую экспозицию с временем накопления не более 100 мкс, что обеспечивает открытие затвора только на время регистрации полезного сигнала и позволяет отказаться от электромагнитного затвора. За счёт этого повышается надежность измерений и исключается потеря информации в случае неполного открытия электромагнитного затвора.

Рисунок 2. Конструкция устройства цифровой регистрации приборного комплекса ТКПФ269

При проведении измерений получают три кадра, сшивка которых в единую панораму осуществляется программно. Для повышения точности КМОП-матрицей регистрируется периодический световой сигнал (метки времени) и световая отметка, задержанная от инициирования процесса на известное время (см. рисунок 3). За счет меток времени погрешность измерения временных интервалов не превышает ±50 *нс* при P=0,95.

	 Световая отметка		
Метки времени	Оптические датчики		•

Рисунок 3. Пример панорамы получаемого изображения

Для сравнения метрологических характеристик цифрового комплекса ТКПФ269 и фоторегистрирующей установки УСФ-2 проводилась регистрация пространственно-временной картины выхода светового излучения из торцов световодов диаметром 1 *мм*, возникающего при срабатывании модельной сборки. Определялась величина интервала времени от момента инициирования исследуемого процесса до выхода детонационной волны на свободную поверхность ВВ. Световоды были установлены в двух вертикальных планках по 8 штук в каждом. Кроме того, в планках устанавливались по два нулевых световода, формирующих вспышку в момент срабатывания электродетонатора (ЭД).

В экспериментах использовался фрагмент детонационного распределителя с 16 инициирующими элементами (ИЭ). Между входными торцами световодов и внутренней поверхностью распределителей обеспечивался гарантированный зазор ~ 2 *мм*.

Конструкция экспериментальной модельной сборки и её общий вид представлены на рисунке 4.

1 – электродетонатор; 2 – подводящий пруток из ВВ; 3 – детонационный распределитель; 4 – диск из пенопласта; 5 – приемник с вклеенными световодами; 6 – планка из пенопласта (1 или 2 шт.); 7 – световод (8 или 16 шт.); 8 – нулевой световод (2 или 4 шт.); 9 – приемник с вклеенными нулевыми световодами; 10 – нулевая шашка; 11 – подставка

Рисунок 4. Конструкция экспериментальной сборки и фотография со стороны планок

Измерения интервалов времени приборным комплексом ТКПФ269 и установкой фоторегистрирующей УСФ-2 проводились в соответствии со схемой, представленной на рисунке 5 (независимо через две амбразуры).

1 - фоторегистратор УСФ-2; 2- приборный комплекс ТКПФ269;

3 – броня каземата с двумя амбразурами; 4 - модельная сборка

Рисунок 5. Схема регистрации параметров срабатывания модельной сборки приборным комплексом ТКПФ269 и установкой фоторегистрирующей УСФ-2

Управление фотокамерами осуществлялось от пульта управления «Экстра». Скорость вращения зеркал в фотокамерах составляла 45000 об/мин, что соответствует скорости линейной развертки изображения по чувствительной поверхности фотоприемного устройства, равной ~2,25 мм/мкс.

На рисунке 6 приведены статические (предварительные) снимки планок со световодами, полученные цифровым фотохронографическим регистратором комплекса ТКПФ269 и

фоторегистратором УСФ-2 (с записью информации на фотопленку).

Рисунок 6. Предварительные снимки планок со световодами и расположенной относительно них отметкой, полученные с помощью комплекса ТКПФ269 и установки УСФ-2

На рисунках 7 и 8 представлены фотохронограммы, полученные цифровым фотохронографическим регистратором комплекса ТКПФ269 и установки УСФ-2.

Направление развертки			
Свечение от нулевых световодов	Свечение продуктов взрыва	Свечение от световодов, матанавании их пол ИЭ	

Рисунок 7. Фотохронограмма, полученная цифровым фотохронографическим регистратором комплекса ТКПФ269

Рисунок 8. Фотохронограмма, полученная установкой УСФ-2

Интервалы времени работы модельной сборки, зарегистрированные фоторегистратором УСФ-2 и цифровым фотохронографическим регистратором комплекса ТКПФ269, рассчитывались с помощью программного обеспечения приборного комплекса (ПО), в соответствии с которым координаты оптических датчиков вычислялись по максимальному значению кода яркости для каждой точки.

В таблице 1 представлены результаты измерения интервалов времени от нулевых меток до момента выхода излучения на торцы световодов, рассчитанные по результатам регистрации с помощью ПО комплекса ТКПФ269. При обработке отмечено, что время срабатывания нулевых отметок отличается на 100 *нс*, в связи с чем обработка осуществлялась по среднему арифметическому значению координат нулевых датчиков.

Таблица 1.

Номер световода	Цифровой фотхронограф Величина измеренного интервала времени от нулевых меток, мкс (обработка по максимуму)	УСФ-2 при обработке ПМО цифрового фотохронографа Величина измеренного интервала времени от от нулевых меток, мкс (обработка по максимуму)
1	35,854	35,841
2	35,823	35,81
3	35,761	35,804
4	35,811	35,795
5	35,875	35,851
6	35,831	35,804
7	35,800	35,79
8	35,807	35,804
9	35,811	35,815
10	35,810	35,82
11	35,753	35,784
12	35,773	35,797
13	35,877	35,887
14	35,835	35,863
15	35,826	35,845
16	35,838	35,863
Тср	35,818	35,823
СКО	0,036	0,031

На рисунке 9 приведена сравнительная диаграмма результатов определения временных интервалов при расчете от нулевых датчиков.

Сравнение результатов, полученных в экспериментах цифровым фотохронографическим регистратором комплекса ТКПФ269 и установкой УСФ-2, после их обработки с помощью ПО

приборного комплекса ТКПФ269 показало, что средняя величина интервалов времени от нулевых датчиков до появления световых импульсов составила:

- 35,818 *мкс* по фотохронограмме цифрового регистратора комплекса ТКПФ269 (при среднем квадратическом отклонении в 0,036 *мкс*);

- 35,823 *мкс* по фотохронограмме установки УСФ-2 (при среднем квадратическом отклонении в 0,031 *мкс*).

Средние величины интервалов времени от нулевых датчиков до появления световых импульсов, полученные цифровым фотохронографическим регистратором комплекса ТКПФ269 и установкой УСФ-2, после их обработки с помощью ПО приборного комплекса ТКПФ269 отличаются на 0,01 мкс.

Рисунок 9. Сравнительная диаграмма результатов определения временных интервалов при расчете от нулевых датчиков

Выводы

1 Разработан приборный комплекс ТКПФ269 для цифровой фотохронографической регистрации быстропротекающих процессов, сопровождающихся излучением в оптическом и ближнем инфракрасном диапазонах, обеспечивающий длительность регистрации до 78 *мкс* при скорости развертки 2,25 *км/с*.

2 Проведение опытной эксплуатации цифрового фотохронографического комплекса ТКПФ269 и установки УСФ-2, показало, что при схожих метрологических характеристиках цифровой комплекс позволяет значительно сократить время извлечения информации и обработки полученных данных.

Список литературы

- 1. Дубовик А. С. // Фотографическая регистрация быстропротекающих процессов // М., Наука, 1975, с. 345.
- 2. United States Patent No.: US 9,020,336 B1, date of patent apr.28, 2015
- 3. О.Н. Дулин, В.М. Кузин, В.Н., Туркин, А.Е.Захаров, Ю.П.Казачков, В.Р.Скегин, Приборный комплекс СКПФ254 цифровой фотохронографической регистрации быстропротекающих процессов. Приборы и техника эксперимента, 2015, №4, с.14