РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КРИВОЙ ПРОПУСКАНИЯ РАЗЛИЧНЫХ МАТЕРИАЛОВ В ПРОТОННОЙ РАДИОГРАФИИ

<u>А. Ю. Архипов</u>, А. В. Богомолов, Е. И. Валекжанина, А. А. Городнов, М. И. Иванов, С. А. Картанов, К. Л. Михайлюков, А. Н. Субботин, М. В. Таценко

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Введение

Высокоэнергетичная протонная радиография является одним из основных методов исследования в области быстропротекающих процессов и высоких плотностей энергии. Метод реализован на протонном радиографическом комплексе ПРГК-100, созданном на базе синхротрона У-70 [1]. Одним из направлений исследований, проводимых на комплексе, является измерение поверхностной и объемной плотностей объектов.

Канал формирования и регистрации протонных изображений комплекса ПРГК-100 состоит из магнитооптической системы, формирующей протонное изображение объектов, и трех пунктов регистрации протонных изображений (ПРПИ-1, 2 и 3), расположенных последовательно друг за другом. В каждом ПРПИ находятся по 16 оптических регистраторов.

Схема постановки радиографических экспериментов на ПРГК-100 представлена на рис. 1. Магнитные линзы 1 формируют пучок протонов с требуемым распределением протонов $N_0(x,y)$ в объектной плоскости квартета магнитных линз 4. Сцинтиллятор 2 конвертирует протонное изображение пучка в оптическое изображение, которое регистрируется цифровым регистратором 3. Магнитный квартет 4 работает по принципу «–1» оптики и переносит распределение протонов $N_0(x,y)$ из плоскости сцинтиллятора 2 в плоскость исследуемого объекта 6. Таким образом, регистрируя изображение пучка на сцинтилляторе 2, мы тем самым регистрируем распределение протонов падающих $N'_{np\Pi}$ на объект.

Протонографическое изображение, регистрируемые комплексом, являются теневыми, т. е. фор-

мируется за счет выбывания частиц из протонного пучка, проходящего через объект и магнитооптическую систему, вследствие ядерного и кулоновского взаимодействия протонов с ядрами вещества объекта. При этом неупругое ядерное взаимодействие приводит к однозначному выбыванию протонов из пучка, поскольку угол и энергия протонов после данного типа взаимодействия не позволяют магнитооптической системе захватить их в режим формирования изображения в фокальной плоскости 10. Протоны, участвующие в упругом ядерном и кулоновском взаимодействии, приобретают углы рассеяния и энергию, позволяющую им, в зависимости от величины акцептанса магнитооптической системы, участвовать в формировании изображения в фокальной плоскости магнитооптических квартетов 5 и 6. Важной особенностью радиографии с применением магнитной оптики является возможность изменять форму кривой пропускания, а, следовательно, и контраст изображения объекта, за счет коллимирования пучка протонов в центре магнитооптических квартетов 5 и 6. Для повышения контраста протонных изображений используются коллиматоры 8 и 17. При попадании на коллиматор, из пучка выбывают протоны, рассеянные в объекте на углы больше заданного. Величина угла отсечки протонов в коллиматоре оптимизируется по критерию максимальной чувствительности к перепаду плотности в данной области исследуемого объекта [2]. Магнитные линзы 5 и 6 формируют протонное изображение объекта в плоскостях сцинтилляторов10 и 14. Регистраторы 9 и 16 фиксируют оптическое изображение объекта $N_{\text{отсчОБ}}$.

Рис. 1. Схема эксперимента на комплексе ПРГК-100: 1 – магнитные линзы перед ПРПИ-1; 2 – сцинтиллятор; 3 – регистратор ПРПИ-1; 4 – магнитные линзы; 5, 6 – магнитные линзы перед системами регистрации ПРПИ-2 и 3; 7 – объект; 8 – коллиматор; 9 – регистратор ПРПИ-2; 10 – сцинтиллятор; 11 – зеркало; 12 – реперные объекты; 13 – зеркало; 14 – сцинтиллятор; 15 – зеркало; 16 – регистратор ПРПИ-3

Для корректной реализации измерений поверхностной и объемной плотностей исследуемых объектов необходимо знать зависимость коэффициента пропускания (кривую пропускания) магнитооптической системы, формирующей протонное изображение, от поверхностной плотности материала, из которого изготовлен исследуемый объект. Данную зависимость удобно измерять, используя в качестве объекта радиографирования многоступенчатые клинья.

Экспериментальное определение зависимости коэффициента пропускания магнитооптической системы от поверхностной плотности материалов

Для экспериментального измерения кривой пропускания проводится протонографирование объектов с известными значениями толщин. В качестве таких объектов использовались клинья с 6 и 9 градациями толщин из следующих материалов: капролон, дюралюминий, медь, сталь, свинец и сплав ВНЖ. Такой набор клиньев позволяет получить кривые пропускания для материалов с малой, средней и высокой плотностью. На рис. 2 представлены схематичные изображения 9-ти и 6-ти секционных клиньев.

Протонное изображение несет в себе информацию не только об исследуемом объекте, но и о распределении протонов в пучке, падающем на объект. На рис. За представлена исходная протонограмма и профиль сигнала, взятый вдоль линии, отмеченной на протонограмме. Очевидно, что форма профиля сигнала сильно зависит от распределения протонов в пучке.

Рис. 2. Схематичное изображение исследуемых клиньев: а – 9-ти секционного, б – 6-ти секционного

Рис. 3. Протонографические изображения клина: а – исходное, б – после коррекции и профили сигнала, взятые вдоль линий, отмеченных на протонограммах

Проведя деление (нормирование) матрицы сигналов изображения объекта на матрицу сигналов изображения падающего на объект пучка, с учетом разницы в чувствительности систем регистрации изображений, получаем величину пропускания магнитооптической системы. Величина сигнала в нормированной протонограмме каждой ступени клина является величиной пропускания магнитооптической системы для данного материала с данными массовыми толщинами. Скорректированная протонограмма и соответвующий профиль сигнала представлены на рис. 36.

Для построения искомой зависимости на нормированном изображении в каждой секции клина выбиралась область, внутри которой определялось среднее значение величины коэффициента пропускания, а также ее среднеквадратичное отклонение. Величина среднеквадратичного отклонения бралась в качестве погрешности измерения. Полученные экспериментальные значения аппроксимируются функцией вида:

$$y = A_0 * e^{-l_\lambda * x}.$$
 (1)

где параметр A — коэффициент пропускания без объекта, l_{λ} — коэффициент ослабления , x — поверхностная плотность.

На рис. 4 представлен сводный график экспериментальных значений коэффициента пропускания в зависимости от поверхностной плотности и аппроксимированные кривые пропускания для всех исследуемых материалов с коллиматором 150 мм. Такой диаметр коллиматора позволяет магнитной системе захватывать и доводить до плоскости регистрации более 95 % протонов, рассеявшихся в результате многократного кулоновского взаимодействия.

Рис. 4. Сводный график кривых пропускания, полученных по экспериментальным данным

На рис. 5 представлены кривые пропускания для алюминия и ВНЖ, полученные при разных коллиматорах.

Из графиков рис. 5 видно, что с уменьшением диаметра коллиматора увеличивается угол наклона кривой пропускания, что увеличивает контраст протонограмм и повышает чувствительность метода к изменению толщин, однако, одновременно снижается статистика протонов в изображении, что приводит к увеличению шума и снижению чувствительности. Таким образом, при выборе коллиматора необходимо оптимизировать его диаметр по максимальному значению величины сигнал/шум в изображении для заданного значения перепада толщин.

Рис. 5. Кривые пропускания, полученные при разных коллиматорах: а – для алюминия, б – для ВНЖ

Аналитический расчет кривой пропускания

Коэффициент пропускания магнитооптической системы определяется тремя физическими процессами, в которых при прохождении через объект участвуют протоны: неупругое ядерное рассеяние, кулоновское рассеяние и упругое рассеяние протонов на ядрах объекта, а также акцептансом магнитной системы. Часто, полагая, что угловая зависимость упругого рассеяния близка к угловому распределению кулоновского рассеяния и находится в его пределах, коэффициент пропускания описывается следующей аналитической функцией:

$$\frac{N}{N_0} = e^{-\frac{\rho l}{\lambda}} \left(1 - e^{-\frac{\theta_{\text{KOAR}}^2}{2\theta_{\text{MKP}}^2}} \right), \tag{2}$$

где N_0 – число частиц в налетающем потоке, N – число частиц, прошедших через слой вещества толщиной l, λ – длина неупругого ядерного взаимодействия (г/см²), ρ – плотность вещества (г/см³), $\theta_{колл}$ – угол обрезки коллиматора, θ_{MKP} – среднеквадратичный угол многократного кулоновского рассеяния, который определяется по формуле (3):

$$\theta_{MKP} = \frac{13,6}{E} \sqrt{\frac{\rho l}{X_0}},\tag{3}$$

где *Е* – энергия протонов, *X*₀ – радиационная длина вещества объекта.

Расчет кривых пропускания с использованием формул (2) и (3) проведен для следующих материалов: алюминий, медь, железо, свинец и вольфрам. На рис. 6 представлен сводный график, полученный с коллиматором 150 мм.

Рис. 6. Сводный график кривых пропускания, полученных аналитически

Для алюминия и вольфрама проведен расчет коэффициентов пропускания с коллиматорами 150, 110, 80 и 50 мм. Результаты расчетов приведены на рис. 7.

б

Поверхностная плотность, г/см

Рис. 7. Кривые пропускания, рассчитанные с разными коллиматорами: а – для алюминия, б – для ВНЖ

Сравнение экспериментальных и расчетных кривых пропускания

На рис. 8 а–8г представлено сравнение кривых пропускания для алюминия, железа, меди, свинца и ВНЖ при коллиматоре диаметром 150 мм. Хорошее согласие аналитических кривых и экспериментальных данных получены для алюминия и меди (рис. 8а и 8в).

0.0

25 50 75 100 125 150 175 200 225 250 275 300

б-железа, в - меди, г - свинца, д - ВНЖ

Разницу в кривых пропускания можно объяснить несколькими факторами. Во-первых, на профиль нормированной протонограммы объекта большое влияние оказывает размытие в сцинтилляторе, обусловленное вторичными частицами, возникающими при взаимодействии протонов с веществом сцинтиллятора, а также перерассеянием света внутри сцинтиллятора. Этот фактор учитывается путем деконволюции протонного изображения с функцией размытия точки (ФРТ), которая определяется экспериментально. При измерении кривых пропускания, описанных выше, протонные изображения регистрировались с применением сцинтиллятора толщиной 5 мм, а для компенсации использовалась ФРТ, экспериментально измеренная для сцинтиллятора толщиной 2 мм [3] Экспериментальных данных по сцинтиллятору толщиной 5 мм на настоящий момент нет. Вероятно, применение при обработке известной ФРТ, полностью не компенсирует завышенный уровень сигнала в области больших толщин и заниженный в области малых толщин. На рис. 9 представлено сравнение аналитических кривых и экспериментальных данных для ВНЖ при разных коллиматорах. Видно, что в районе толщин свыше 150 г/см² отклонение экспериментальных данных от аналитики для коллиматора диаметра 150 мм доходит до 15 %, для коллиматора 80 мм — до 30 %, что является очень существенной величиной.

Рис. 9. Сводный график кривых пропускания для ВНЖ с разными коллиматорами: точки – экспериментальные данные, линии – расчетные кривые

Вторым фактором, вызывающим расхождение экспериментальных и аналитических кривых, является отсутствие учета в аналитической формуле (2) упругого ядерного взаимодействия протонов, которое приводит к увеличению общего угла рассеяния протонов и уменьшению коэффициент пропускания.

Для проверки влияния упругого рассеяния на результаты протонографирования было проведено сравнение экспериментальных кривых пропускания для железа и алюминия с кривыми, полученными путем моделирования методом Монте-Карло с помощью программы Geant4, учитывающего все взаимодействия протонов с веществом, кроме того при моделировании произведен учет магнитной системы протонографического комплекса. Также проведено сравнение с аналитическими расчетами, учитывающими упругое ядерное взаимодействие. Такие расчеты базируются на аппроксимации угла упругого ядерного рассеяния с помощью двух гауссианов с последующей их сверткой с гауссианом, описывающим угол многократного кулоновского рассеяния. Сводный график кривых пропускания с коллиматором 50 мм, полученных разными способами, приведен на рис. 10.

Рис. 10. Сводный график кривых пропускания, полученных разными способами: а – для алюминия, б – для железа

Видно, что наиболее точно экспериментальные данные описываются кривой, учитывающей упругое ядерное рассеяние.

Заключение

В настоящей работе представлены результаты измерений зависимости коэффициента пропускания магнитооптической системы от поверхностной плотности для ряда материалов (капролон, дюралюминий, медь, сталь, свинец и сплав ВНЖ), а также проведено сравнение полученных результатов с расчетами. Хорошее согласие экспериментальных и расчетных кривых получено при коллиматоре максимального диаметра 150 мм для материалов малых и средних плотностей.

Экспериментальные кривые для материалов высокой плотности имеют более существенные отличия от аналитических расчетов, что, вероятнее всего, связано с большим влиянием формы ФРТ на результат эксперимента. При учете упругого ядерного взаимодействия различия между экспериментальными данными и аналитическими уменьшаются. Исследования в данном направлении будут продолжаться.

Литература

1. Андриянов А. И. и др. Ввод в эксплуатацию протонорадиографического комплекса на ускорителе У-70 // Приборы и техника эксперимента. 2016, № 3. С. 61–68.

2. Трутнев Ю. А., Картанов С. А., Таценко М. В. и др. Радиографическая установка ускорителя протонов с энергией 70 ГэВ ГНЦ ИФВЭ // Приборы и техника эксперимента. 2010, № 3. С. 5–12.

3. Пат. № 2529454 РФ, 27.09.2014, МПК G03B42/08. Способ определения экспериментальным путем функции размытия точки (ФРТ) в конвертере для регистрации протонного излучения / Михайлюков К. С., Картанов С. А., Таценко М. В.