ИЗМЕРЕНИЕ НЕЙТРОННОГО ВЫХОДА МЕТОДОМ АКТИВАЦИИ ИНДИЯ НА УСТАНОВКЕ «ИСКРА-5»

<u>И. П. Елин</u>, Н. В. Жидков, Н. А. Суслов, Г. В. Тачаев

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Введение

Одним из важнейших параметров, характеризующих проведенный эксперимент по исследованию работы термоядерных мишеней по проблеме инерциального термоядерного синтеза (ИТС) на лазерных установках, является нейтронный выход. Развитие методик его измерения – важная задача для исследования. Особенно актуально это сейчас, когда на базе РФЯЦ-ВНИИЭФ создается лазерная установка нового поколения, которая потребует целый спектр различных методик по измерению нейтронного выхода.

В настоящее время на установке «Искра-5» [1] применяются следующие методики регистрации нейтронного выхода: метод затянутой регистрации; метод прямой активации меди 14 МэВ нейтронами; метод активации индия тепловыми нейтронами, основанный на реакции ¹¹⁵In(n, β , γ)¹¹⁶Sn, регистрирующий замедленные нейтроны; время пролетная методика регистрации нейтронов сцинтилляционными датчиками.

Так как на установке проводилась серия экспериментов с мишенями с обратной короной (MOK) [2, 3] где требуется регистрация ДД-нейтронов, разрабатывалась и применялась методика прямой активации индия ДД-нейтронами 115 In(n,n') 115m In. Значительное преимущество методов прямой активации различных материалов заключается в том, что при известном сечении активации и геометрических характеристиках облучаемого образца не требуется проводить калибровку метода на системах генерации нейтронов, а достаточно откалибровать аппаратуру регистрации вторичных излучений активированного образца, что относительно просто делается с помощью промышленно выпускаемых эталонных источников излучений.

Методика прямой активации успешно применяется на установке NIF в Ливерморе в составе комплексов DIM-NAD и SNOUT-NAD для определения нейтронного выхода как в экспериментах с ДД-топливом, так и в экспериментах с ДТ-топливом [4].

Основная цель описанной здесь работы – подготовка, проведение экспериментов по отработке и использованию этой методики на установке «Искра-5» в опытах с мишенями типа МОК, а также обработка результатов. Необходимо было оценить возможности методики, ее чувствительность и саму возможность ее применения на установке, после чего разработать конкретный вариант ее применения и откалибровать получаемую систему регистрации. После проведения эксперимента следовало обработать результаты и сделать выводы о точности и перспективах применения методики, как на существующих, так и на строящейся лазерных термоядерных установках.

Описание методики измерения и ее применение на установке

В данной работе разрабатывалась и применялась методика активации индия по реакции ¹¹⁵In(n, n')^{115m}In в экспериментах с мишенями МОК на установке Искра-5. В реакции синтеза дейтериевой плазмы в мишени образуется моноэнергетический поток нейтронов с энергией 2,45 МэВ.

В ходе реакции неупругого рассеяния с их участием $^{115}In(n,\ n')^{115m}In$ в индии образуется изомер с периодом полураспада $T_{1/2}=4.49$ ч. Распад изомера до ^{115}In сопровождается испусканием гамма квантов с энергией 336 кэВ и ветвлением распада 45,8 % [5, 6].

Суть методики заключается в следующем: образец индия подставляется под поток нейтронов, после эксперимента измеряется его наведенная активность на гамма-спектрометре по регистрации гамма-квантов с энергией 336 кэВ, а затем вычисляется нейтронный выход из мишени.

В ходе расчетов возможно выделить так называемый калибровочный фактор – величину, учитывающую все необходимые фундаментальные поправки. Необходимая калибровка с целью определения данного фактора может быть произведена с использованием образцовых спектрометрических гамма-источников.

Заранее очевидно, что для достижения максимальной чувствительности методики необходимо подвести образец как можно ближе к мишени, при этом максимально увеличив площадь его облучения. Эти параметры в совокупности ограничены необходимостью не создавать помех для иного применяемого на камере оборудования, а также не перекрывать лазерные пучки, идущие в мишень. Кроме того, близкое расположение позволяет избежать рассеяния нейтронов на материалах камеры по пути к образцу индия.

Методика применялась в двух различных сериях экспериментов с мишенями МОК. Из них первая серия двенадцатиканальных опытов на основной камере с ожидаемым выходом нейтронов порядка 1–3·10⁸ н/имп и вторая серия двухканальных опытов на малой камере с ожидаемым выходом $1{-}5{\cdot}10^7\,{\rm h}/{\rm им\,n}.$

После облучения индий помещался в германиевый полупроводниковый гамма-детектор для измерения наведенной активности по площади пика соответствующей гамма-линии. Измерения проводились с периодом 1 час в течение 12 часов, после чего возможно определить нейтронный выход мишени.

Оценка ожидаемых результатов в измерении нейтронного выхода

Концентрация атомов 115 изотопа индия в образце:

$$n = \frac{\rho N_a \in A}{A_W} = 0,0365 \cdot 10^{24} \frac{1}{\text{cm}^3},$$
 (1)

где $\rho = 7,31$ г/см³ – плотность индия; $N_a = 6,02 \times \times 10^{23}$ 1/моль – число Авогадро; $\epsilon_A = 0,9572$ – содержание ¹¹⁵ In в природном индии; $A_W = 115$ – атомная масса.

Поток нейтронов на единицу площади:

$$\varphi = \frac{Y}{(t_0 4\pi d^2)},\tag{2}$$

где d — расстояние между источником и образцом; Y — выход нейтронов; t_0 — время облучения. Активность:

$$A = n\sigma(E)\varphi \in_B \left(1 - e^{-\lambda t_0}\right) V e^{-\lambda t} =$$
$$= \frac{MN_a \in_A \lambda t_0 \sigma(E)\varphi \in_B e^{-\lambda t_0}}{A_W}, \qquad (3)$$

где ϵ_B – ветвление распада; M – масса образца в граммах.

Так как время облучения мало $(1 - e^{-\lambda t_0}) = \lambda t_0$.

Скорость счета на детекторе:

$$V_{\text{счета}} = A \in_D \in_S, \tag{4}$$

где ϵ_D – эффективность детектора, ϵ_S – самопоглощение в образце.

Количество зафиксированных отсчетов на 336 кэВ от In115m:

$$(C - B) = \int_{t_1}^{t_2} v_{\text{cuera}} dt =$$

$$= \int_{t_1}^{t_2} \epsilon_D \epsilon_S \frac{MN_a \epsilon_A \lambda t_0 \sigma(E) \varphi \epsilon_B e^{-\lambda t_0}}{A_W} dt =$$

$$= \frac{\epsilon_D \epsilon_S MN_a \epsilon_A \lambda t_0 \sigma(E) \varphi \epsilon_B \left(e^{-\lambda t_0} - e^{-\lambda t_1} \right)}{\lambda A_W} =$$

$$= \frac{\epsilon_D \epsilon_S MN_a \epsilon_A \sigma(E) Y \epsilon_B \left(e^{-\lambda t_1} - e^{-\lambda t_2} \right)}{4\pi d^2 A_W}, \quad (5)$$

где *С* – площадь пика с фоном, *В* – площадь фона.

Калибровочный фактор в экспериментальных величинах:

$$F = \frac{(C-B)t_0 4\pi d^2 \lambda}{YM\Big[\Big(1-e^{-\lambda t_0}\Big)\Big(e^{-\lambda t_1}-e^{-\lambda t_2}\Big)\Big]} = \frac{(C-B)4\pi d^2}{YM\Big(e^{-\lambda t_1}-e^{-\lambda t_2}\Big)}.$$
(6)

Калибровочный фактор в теоретических величинах:

$$F = \frac{\epsilon_A \epsilon_D \epsilon_S \epsilon_B \sigma(E) N_a}{A_W}.$$
 (7)

Конечная формула для нейтронного выхода:

$$Y = \frac{(C-B)}{a_{\varphi} \in_D \in_S n\sigma(E) \in_B V\left(e^{-\lambda t_1} - e^{-\lambda t_2}\right)}.$$
 (8)

Погрешность:

$$\Delta Y = \frac{\Delta(C-B)}{a_{\varphi} \in_D \in_S n\sigma(E) \in_B V \left(e^{-\lambda t_1} - e^{-\lambda t_2}\right)}.$$
 (9)

D

Экспериментально определяемая активность (11):

$$(C-B) = \int_{t_1}^{t_2} v_{\text{cyera}} dt = \in_D \in_S \int_{t_1}^{t_2} A(t) dt = \in_D \in_S A_{\text{cp}}(t_2 - t_1);$$
(10)

$$A_{\rm cp} = \frac{C - B}{\epsilon_S \epsilon_D (t_2 - t_1)}.$$
 (11)

Погрешность:

$$\Delta A_{\rm cp} = \frac{\Delta (C - B)}{\epsilon_S \epsilon_D (t_2 - t_1)}.$$
 (12)

Коэффициент самопоглощения находился по приближенной формуле для ближней геометрии цилиндра [7]:

$$\epsilon_S = 1/CF(AT); \tag{13}$$

$$CF(AT) = \frac{-\ln\left(T^k\right)}{\left(1 - T^k\right)},\tag{14}$$

где k – коэффициент приближения, в данном случае k = 0, 8.

$$T = e^{-\mu_l x} = e^{-\mu_m \rho x},$$
 (15)

где µ_m — массовый коэффициент пропускания; р — плотность вещества; *х* — линейное расстояние, про-ходимое гамма-квантами.

Эффективность спектрометра зависит от спектра излучения образца и взаимной геометрии его и детектора. Наиболее распространенным способом определения эффективности детектора является экспериментальная калибровка с использованием калиброванных источников.

Калибровка гамма-спектрометра

Следующим этапом работы стали измерения эффективности детектора с использованием калиброванного источника гамма-квантов. Характеристики источника приведены в табл. 1.

Таблица 1

Таблица 2

Характеристики калиброванного источника гамма-квантов для проведения калибровки спектрометра

Основной радионуклид	Барий - 133	
Активность радионуклида в источнике, согласно паспорту на 01 ноября 2007 го- да, кБк	48,99	
Погрешность, % (P = 0,95)	2	
Период полураспада, суток	3862	
Активность радионуклида в источнике на текущее время, кБк	27,8±0,6	

Барий был выбран в связи с тем, что у него имеется линия на энергии E = 356 кэВ, что весьма близко к энергии линии индия, измеряемой в экспериментах (E = 336 кэВ). Были проведены одиночные измерения на расстояниях 0, 5 и 10 см от детектора, каждое в течение 30 минут живого времени.

Результаты измерений

Расстояние от детектора до образца <i>l</i> , см	Эффективность детектора, согласно статье [4], є _D	Эффективность детектора по результатам измерений, є _D
0	0,091	$0,093{\pm}0,002$
5	0,012	$0,0146{\pm}0,0008$
10	0,0048	$0,0052{\pm}0,0002$

Как видно из табл. 2, в самом важном для нас случае расстояния до детектора 0 см, эффективность совпадает в пределах погрешности. Погрешность можно объяснить различием в организации экспериментов и неучтенных факторах, не описывающихся в статье. При дальнейших расчетах используются значения эффективности детектора, полученные в ходе экспериментальной калибровки.

Подготовка и проведение 12-канальных опытов

Первой запланированной серией экспериментов, в которой предполагалось применения методики, являлась серия 12-канальных опытов на основной камере установки Искра-5 с мишенями типа МОК. Основным вопросом по организации установки образца на подходящее расстояние являлся выбор крепления.

Крепление представляло собой специальную штангу, ранее использовавшуюся для размещения трековых детекторов в непосредственной близости от мишени. Капсула для детектора была адаптирована под индиевый образец.

Конструкция штанги позволяет изъять капсулу с образцом из пространства камеры сразу после эксперимента, не дожидаясь напуска воздуха в пространство камеры. Это позволяет сократить время простоя перед началом измерения гамма-активности образца с 2-3 часов до 10 минут, что является значимой величиной, учитывая период полураспада ^{115m}In, равный 4,49 ч. Крепление позволило установить образец достаточно близко к мишени, на расстояние $d = 3.5 \pm 0.1$ см от нее. Из минусов крепления стоит назвать малый размер капсулы, в которую устанавливался образец индия, что ограничивает его эффективную площадь и объем. Для избегания деформации и плавления материала рассеянным излучением, загрязнения продуктами реакции, индий покрыт алюминиевой фольгой толщиной 105 микрон.

Основные данные по образцу для первой серии экспериментов представлены в табл. 3.

Таблица 3

T	r					~
	I D D D M D T D I I	U VO	ngiata	NHOTH		nnnaatta
		ила	υακιυ		יואחו	oonasna
_						

Наименование параметра	Значение параметра
Объем, <i>V</i> , см ³	$1,16\pm0,10$
Форма	Цилиндр
Эффективная площадь, $S_{\text{пов,}} \mathrm{cm}^2$	$0,79{\pm}0,06$
Расстояние до мишени, <i>R</i> , см	3,5±0,1
Масса, <i>М</i> , г	$8,5{\pm}0,7$
Содержание ¹¹⁵ In	0,9572

Всего было проведено 6 полноценных измерений, результаты которых представлены в табл. 4. Здесь In 1 – методика измерения нейтронного выхода, основанная на реакции ¹¹⁵In(n, β , γ)¹¹⁶Sn; M3P – метод затянутой регистрации; ВПМ – времяпролетная методика регистрации нейтронов сцинтилляционными датчиками; In 2 – исследуемая методика.

Таблица 4

№ опыта	E _{sum} , Дж	In 1*	M3P*	ВΠМ*	In 2	
1	1700	$(2,7\pm0,3)\times10^8$	$(2,1\pm0,5)\times10^8$	$(3,0\pm0,6)\times10^8$	$(1,7\pm0,6)\times10^8$	
2	1650	$(1,1\pm0,6)\times10^7$	$(3,0\pm1,3)\times10^7$	$(5,0\pm3,6)\times10^7$	$(4\pm 4) \times 10^7$	
3	2400	$(1,5\pm0,2)\times10^8$	$(0,9\pm0,3)\times10^8$	$(1,1\pm0,2)\times10^8$	$(1,0\pm0,4)\times10^8$	
4	2000	$(1,0\pm0,2)\times10^8$	$(1,8\pm0,5)\times10^8$	$(1,0\pm0,2)\times10^8$	$(7\pm4) \times 10^{7}$	
5	1900	$(3,1\pm0,8)\times10^7$	$(3,0\pm1,3)\times10^7$	$(3,5\pm1,1)\times10^7$	$(4\pm 4) \times 10^7$	
6	2200	$(7,5\pm1,3)\times10^7$	$(8,2\pm2,6)\times10^7$	$(7,3\pm1,4)\times10^7$	$(4\pm 4) \times 10^7$	
 приведенные для сравнения диагностики описаны в [8] 						

Нейтронный выход в 12-канальных опытах

График падения активности для опыта 1 представлен на рис. 1.

Рис. 1. Активность изомера в индиевом образце после эксперимента № 1

Постоянная распада для кривой аппроксимации, построенной по экспериментальным точкам, составляет $\lambda_{annp.} = (5, 1\pm 1, 5) \times 10^{-5}$, а для изомера ^{115m}In $\lambda_{изом. In} =$ = $4,3 \times 10^{-5}$ [5]. Таким образом, падение активности образца, облученного в эксперименте, соответствует по скорости распаду изомера ^{115m}In.

Минимальная измеряемая активность на установке [9]:

$$A_{\min} = \frac{1 + 2\delta\sqrt{n_{\Phi}T}}{\delta^2 \in S \in D}, \qquad (16)$$

где $T = t_{\phi} + t$ – общее время измерения; $n_{\phi} = B/3600$ – скорость счета фона; δ – задаваемая относительная погрешность измерения (0,5).

Найдя активность для всех периодов измерений, можно, сопоставив, определить минимальный измеримый выход нейтронов в применяемой для 12-канальных опытов геометрии $Y = 1,4 \times 10^8$ н/имп.

Два опыта не дали измеримого нейтронного выхода, из остальных шести лишь в двух выход нейтронов превысил порог минимально измеримого с учетом погрешностей.

Подготовка и проведение 2-канальных опытов

Для применения методики в двухканальных опытах на малой камере была полностью переработана геометрия образца с целью увеличения площади облучения, так как ожидаемые потоки нейтронов составляли порядка 10⁷ н/имп. Образец представлял собой цилиндр диаметром 5 см и толщиной 1 см, который размещался на расстоянии 1–1,5 см от мишени. Основные характеристики образца перечислены в табл. 5.

Таблица 5

Нейтронный выход в 2-канальных опытах

Наименование параметра	Значение параметра		
Объем, <i>V</i> , см ³	20,6±1,7		
Форма	Цилиндр		
Эффективная площадь, $S_{\text{пов,}}$ см 2	19,6±1,6		
Расстояние до мишени, <i>R</i> , см	(1-1,5)±0,1		
Масса, М, г	151±12		
Содержание ¹¹⁵ In	0,9572		

Для новой геометрии потребовалась коррекция формул.

Нейтронный выход:

$$Y = \frac{(C-B)}{a_{\varphi} \in_D \in_S n\sigma(E) \in_B V\left(e^{-\lambda t_1} - e^{-\lambda t_2}\right)}, \quad (17)$$

$$a\varphi = \frac{R(R-l)}{2R^2\pi r^2},\tag{18}$$

где r — радиус образца; l — расстояние от источника до образца; R — расстояние от источника до края образца.

Активность:

$$A = n\sigma(E)a_0 Y \in_B \lambda V e^{-\lambda t}$$
(19)

Результаты применения методики в двухканальных опытах приведены в табл. 6.

Погрешности приведены в рамках 1 .

Значительное повышение точности результата демонстрирует нам широкую вариативность диапазона применения методики, имеющую в основном геометрические ограничения. Пример графика активности образца для опыта 9 приведен на рис. 2.

Параметры и характеристики образца для двухканальных опытов

№ опыта	E _{sum} , Дж	In 1*	M3P*	ВПМ*	In 2	δ(In 2)	
1	450	$(4,0\pm0,9)\times10^7$	$(3,9\pm1,6)\times10^{7}$	$(3,9\pm1,2)\times10^{7}$	(9±2)×10 ⁶	0,22	
2	650	$(2,0\pm0,7)\times10^7$	$(1,5\pm1,2)\times10^{7}$	_	$(7,8\pm1,2)\times10^{6}$	0,15	
3	800	$(6,3\pm1,1)\times10^{7}$	$(2,8\pm1,2)\times10^{7}$	$(5,0\pm1,3)\times10^{7}$	$(2,5\pm0,4)\times10^{7}$	0,16	
4	400	$(2,0\pm0,6)\times10^7$	(5±3)×10 ⁶	$(2,4\pm0,8)\times10^{7}$	(5,0±1,3)*10 ⁶	0,26	
5	1000	$(1,0\pm0,2)\times10^{8}$	$(6,0\pm0,8) \times 10^7$	$(7,0\pm1,5)\times10^{7}$	$(6,6\pm0,6)*10^7$	0,09	
* — приведенные для сравнения диагностики описаны в [8]							
* – приведенные для сравнения диагностики описаны в [8]							

Рис. 2. Активность изомера в индиевом образце после эксперимента № 9

Минимальный измеримый выход нейтронов в применяемой для 2-канальных опытов геометрии $Y = 3 \times 10^6$ н/имп.

Заключение

Предлагаемая методика нахождения нейтронного выхода имеет значительные перспективы по применению, как на существующих установках ИТС, так и на потенциально более мощных. Проведенная работа по разработке и применению методики дала следующие итоги.

1. Исследование вопросов применения методики в условиях малого выхода нейтронов показало, что необходимо принять все меры для достижения достаточной чувствительности. Необходима разработка специального крепления, либо иной способ быстрого извлечения образца из камеры установки. В случае выхода нейтронов более 10¹² нейтронов на импульс индиевый образец может быть установлен снаружи камеры, что значительно упрощает доступ и работу с ним. Варианты с креплением в колодце внутри камеры и снаружи камеры применены на установке NIF в рамках комплексов измерительных приборов WELL-NAD, DIM-NAD, SNOUT-NAD.

2. Проведенные оценки показали, что в имеющихся условиях чувствительность методики составляет порядка 10^8 нейтронов на импульс с относительной погрешностью около 0,5. Расчет показывает, что выход нейтронов больше 10^9 может быть измерен с относительной погрешностью не более 0,15.

3. Вариативность способов установки и размеров образца позволяет использовать методику для боль-

шого спектра показателей нейтронного выхода, в том числе и на мощных установках нового поколения. Имеется возможность использовать другие материалы для измерения нейтронного выхода от ДТ-плазмы.

4. Калибровка методики сводится к калибровке аппаратуры регистрации вторичных излучений активированного образца с помощью промышленно выпускаемых эталонных источников излучений. Это исключает необходимость использования калиброванного источника нейтронов.

5. Чувствительность к энергетическому спектру нейтронов позволяет исследовать параметры сжатой плазмы и, в частности, колебания параметра сжатия топлива $\langle \rho R \rangle$ в экспериментах по лазерному термоядерному синтезу при использовании активационных индикаторов из различных материалов.

6. Методика позволяет восстановить пространственное распределение потока нейтронов после эксперимента за счет установки активируемых образцов в различных точках в камере и вне нее.

Литература

1. Анненков В. И., Багрецов В. А., Безуглов В. Г. и др. Импульсный лазер мощностью 120 ТВт «Искра-5» // Квантовая электроника. 1991. Т. 18, № 5. С. 536–537. 2. Бессараб А. В., Долголева Г. В., Зарецкий А. И. и др. Исследование термоядерной лазерной плазмы в мишенях с обращенной короной // Доклады АН СССР. 1985. Т. 282. С. 857–861.

3. Результаты первых экспериментов с термоядерными мишенями на мощной лазерной установке «Искра-5» // Журнал экспериментальной и теоретической физики. 1992. Т. 102. № 6(12).

4. Bleuel D. L., Yeamans C. B., Bernstein L. A. et al. Neutron activation diagnostics at the National Ignition Facility // Rev. Sci. Instrum. 2012. 83. 10D313.

5. Маслов И. А., Лукницкий В. А. Справочник по нейтронному активационному анализу. Ленинград: Наука, 1971.

6. Cooper G. W., Ruiz C. L. NIF total neutron yield diagnostic // Rev. Sci. Instrum. 2001. Vol. 72. P. 814.

7. Райли Д., Энсслин Н., Смит Х., мл. Пассивный неразрушающий анализ ядерных материалов. М.: Наука, 2007

8. Абзаев Ф. М., Бессараб А. В., Кириллов Г. А. Методы и аппаратура для диагностики плазмы на установке «Искра-5» // ВАНТ. Сер. Математическое моделирование физических процессов. 1992. Вып. 4. С. 68–73.

9. Дементьев В. А.. Измерение малых активностей радиоактивных препаратов. М: Атомиздат, 1967.