ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЛАЗЕРНОГО КИЛЬВАТЕРНОГО УСКОРЕНИЯ ЭЛЕКТРОНОВ В ВОДОРОДНОЙ ПЛАЗМЕ

Н. А. Андреюк, Н. П. Пятаков, Б. П. Якутов

ФГУП «РФЯЦ-ВНИИЭФ» г. Саров Нижегородской обл.

Введение

В последние несколько десятилетий широко изучаются возможности лазерно-плазменного ускорения электронов, предложенного в 1979 г. [1]. В таких ускорителях фемтосекундный лазерный импульс, распространяясь в плазме докритической плотности, возбуждает продольную волну плотности заряда, идущую вслед за ним. В этой волне, которую обычно называют кильватерной, создаётся продольное электрическое поле величиной 10⁹–10¹⁰ В/см, что в тысячи раз превышает ускоряющие поля на современных линейных ускорителях. Электроны плазмы захватываются продольным электрическим полем кильватерной волны и ускоряются от мегавольтных до гигавольтных энергий, в зависимости от параметров эксперимента (длины плазмы, интенсивности лазерного импульса и др.). В настоящее время на ускорителях такого типа электроны ускорены до энергии 7,8 ГэВ [2].

Основным методом теоретического исследования лазерно-плазменного ускорения является численное моделирование, основанное на методе «частиц в ячейках» (particle-in-cell, PIC). Численное моделирование в PIC-кодах проводится на основе хорошо известной физической модели полностью ионизированной бесстолкновительной плазмы, которая включает в себя релятивистские кинетические уравнения Власова для функций распределения ионов и электронов, а также уравнения Максвелла для электромагнитного поля.

Обычно, чтобы увеличить энергию ускоренных электронов в режиме кильватерного ускорения используют достаточно разреженную плазму, имеющую плотность $10^{17}-10^{18}$ см⁻³ и длину в несколько сантиметров. В таком случае, при достаточно мощном драйвере энергия ускоренных электронов достигает значений в несколько ГэВ. Однако, зачастую в современных научных и технических приложениях бывает необходим компактный и относительно недорогой источник электронов диапазона в десятки МэВ. Для этих целей был проведён эксперимент, описанный в работе [3]. В нём ускорялись электроны в плазме водорода лазерным импульсом энергией в 40 мДж в режиме SM-LWFA (self-modulated laser wakefield acceleration). Плотность плазмы имела гауссов профиль с максимумом – $4,2 \times 10^{20}$ см⁻³, и длиной на полувысоте от максимума ≈ 250 мкм. В настоящей работе представлен анализ результатов 3D численного моделирования ускорения электронов в плазменной кильватерной волне для параметров эксперимента, описанного в статье [3]. Моделирование проводилось при помощи релятивистского параллельного кода PLASMA-3P, разработанного во ВНИИЭФ [4]. В докладе представлено сравнение расчётных результатов с результатами эксперимента, показаны характерные особенности данного режима ускорения, в частности – самофокусировка и самомодуляция лазерного импульса.

1. Возбуждение кильватерной волны лазерным импульсом. Основные особенности режима кильватерного ускорения электронов

Кильватерная волна возбуждается в плазме под воздействием ультракороткого, мощного (порядка 10¹⁸–10²⁰ Вт\см²) лазерного излучения, либо пучка высокоэнергетичных электронов. Она представляет собой череду сгущений и разрежений электронной плотности, следующей за «драйвером» (лазерным импульсом или электронным сгустком). На рис. 1 схематично изображен первый период плазменной кильватерной волны. Электроны обозначены маленькими кружками, ионы – большими со знаком «плюс». Лазерный импульс распространяется справа налево и отмечен большой стрелкой. Изогнутыми стрелками показано направление разлёта электронов.

Рис. 1. Схема ускорения электронов в плазменной кильватерной волне. На рисунке большой стрелкой отмечен передний фронт лазерного импульса, маленькими кружками показаны электроны плазмы, большими со знаком «плюс» – ионы

Как видно из рисунка, распространяясь в плазме докритической плотности, лазерный импульс вытесняет электроны из области взаимодействия излучения с плазмой за счёт действия пондеромоторной силы $\overrightarrow{F_p} \sim -\overrightarrow{\nabla I}$. Положительно заряженные ионы остаются при этом практически неподвижны. Таким образом, позади лазерного импульса образуется зона избыточного положительного заряда, которая в свою очередь, начинает притягивать электроны обратно. Вследствие чего, в плазме возбуждаются колебания плотности электронов, следующие за лазерным импульсом. Эта плазменная волна, которую еще называют кильватерной, совершает колебания с плазменной частотой $\omega_{pl} = \left(4\pi n_e e^2/m_e\right)^{1/2} \omega_{pl} = \left(4\pi n_e e^2/m_e\right)^{1/2}$, где n_e – начальная плотность электронов плазмы, e – заряд, m_e – масса электрона и распространяется с фазовой скоростью равной групповой скорости лазерного импульса:

$$\upsilon_{ph} = \upsilon_g \approx c \sqrt{\left(1 - \omega_p^2 / \omega_0^2\right)} \tag{1}$$

где c – скорость света, ω_0 – несущая частота лазерного импульса. В область избыточного положительного заряда, вследствие самоинжекции, могут попасть фоновые электроны плазмы и под действием продольного ускоряющего поля набрать энергию от сотен до нескольких тысяч МэВ. При этом, находясь в ускоряющей фазе, электроны постоянно набирают скорость, стремясь к скорости света $\upsilon_e \rightarrow c$. В результате, электроны могут обогнать плазменную волну и перейти в область с тормозящим продольным электрическим полем. Длину участка плазмы, где происходит только ускорение электронов, принято называть длиной дефазировки – l_d . Если считать, что электрон в плазменной волне движется со скоростью света, то длина дефазировки равна [5]:

$$I_{d} = \frac{\lambda_{pl}}{2(c - \upsilon_{ph})} c \approx \frac{\omega_{0}^{2}}{\omega_{pl}^{2}} \lambda_{pl}$$
(2)

где λ_{pl} – длина одного периода плазменной волны. Таким образом, максимальное приращение энергии, которое могут набрать электроны, ускоряясь в кильватерной волне равно [1]:

$$W_{Max} = qE_l l_d \approx qE_l \frac{\omega_0^2}{\omega_{pl}^2} \lambda_{pl}$$
(3)

где q – заряд электрона, E_l – среднее значение продольного ускоряющего поля. Выражение (3) хорошо лишь для приблизительной оценки, так как в нём не учитываются нелинейные эффекты, возникающие при кильватерном ускорении, например, самофокусировка лазерного импульса. Данные эффекты приводят к изменению амплитуды ускоряющего поля и длины дефазировки. Также выражение (3) соответствует случаю, когда $L_l \leq \lambda_p/2$, где L_l – пространственная длина лазерного импульса, λ_n – плазменная длина волны.

2. Постановка задачи и метод расчёта

Для моделирования процесса ускорения электронов кильватерной волной чаще всего используют PIC-коды (Particle-In-Cell) – математические программы, моделирующие взаимодействие лазерного излучения с бесстолкновительной плазмой путём решения системы уравнений Максвелла-Власова методом «частиц-в-ячейке». В настоящей работе численное моделирование проводилось при помощи трёхмерного релятивистского параллельного PIC-кода PLASMA-3P, разработанного во ВНИИЭФ. Численное моделирование в этом коде проводится на основе хорошо известной физической модели полностью ионизированной бесстолкновительной плазмы, которая включает в себя релятивистские кинетические уравнения Власова для функций распределения ионов и электронов, а также уравнения Максвелла для электромагнитного поля. Численный алгоритм на каждом шаге по времени содержит три этапа вычислений: решение уравнений Максвелла при заданной плотности тока; расчет изменения распределения ионов и электронов в фазовом пространстве под действием электромагнитного поля с использованием метода частиц в ячейках; определение плотности тока по известным распределениям в фазовом пространстве ионов и электронов [4]. Расчёты проводились в трехмерной постановке. Начальные параметры лазерного импульса, плазмы задавались такими же как и в эксперименте [3]. Расчётная область, плазменная мишень и система координат, принятая при моделировании, схематически показана на рис. 2:

Размеры расчётной области X×Y×Z: 530×40×40 мкм Размеры плазмы X×Y×Z: 400×40×40 мкм

Рис. 2. Расчётная область для численного моделирования лазерно-плазменного ускорения электронов

Из рисунка видно, что лазерный импульс распространялся в отрицательном направлении оси X. Размеры расчётной области были — $530 \times 40 \times 40$ мкм вдоль осей $X \times Y \times Z$. Плазма водорода имела размеры $400 \times 40 \times 40$ мкм по осям $X \times Y \times Z$. Плотность плазмы была неоднородной, гауссо-

вой формы, с максимумом $n_0 = 4,2 \times 10^{20} \text{ см}^{-3} \approx 0,241 \times n_{crit}$, где $n_{crit} = m_e \omega_0^2 / (4\pi e^2)$ – критическая плотность электронов плазмы, равная $1,74 \times 10^{21} \text{ см}^{-3}$ для длины волны лазерного излучения $\lambda = 0,8$ мкм (e – заряд электрона, m_e – масса электрона, ω_0 – лазерная частота). Соответствующее выражение для профиля плотности – $N_e(x) = n_0 \cdot \exp(-(l - X \text{ мкм})^2 / d^2)$ при $0 \le X \le 400$, где l = 200 мкм – центр области, d = 150 мкм. Распределение плотности электронов показано на рис. 3:

Рис. 3. Начальный профиль плотности электронов плазмы в направлении оси X. Максимум плотности $n_0 = 4.2 \times 10^{20}$ см⁻³, ширина на полувысоте от максимума ≈ 250 мкм Пунктиром показаны границы расчётной области

Параметры падающего на плазму лазерного импульса были следующими: длина волны излучения $\lambda = 0,8$ мкм, интенсивность лазерного импульса $I = 1 \times 10^{18}$ Вт/см², длительность гауссова лазерного импульса $\tau = 50$ фс на полувысоте от максимума, энергия импульса W = 40 мДж, мощность $P \approx W/\tau = 0,8$ ТВт. Лазерное излучение имело линейную поляризацию и гауссов профиль по времени и пространству. Безразмерная амплитуда импульса была равна $a_0 = e E_0 / (m_e c \omega_0) = 0,68$, где e заряд электрона, m_e – масса электрона, c – скорость света, ω_0 – лазерная частота.

3. Возбуждение кильватерной волны в режиме SM-LWFA. Сравнение с экспериментом

При лазерном кильватерном ускорении в режиме самомодуляции лазерного импульса (SM-LWFA) пространственная длина излучения L_l должна превышать плазменную длину волны $L_l > \lambda_p$, в нашем случае $L_l = 36$ мкм, а $\lambda_p = 2\pi c/\omega_{pl} = 1,6$ мкм ($\omega_{pl} \approx 11,6 \times 10^{14}$ c⁻¹ – плазменная частота). При этом лазерный импульс становится промодулированным в продольном направлении с масштабом, близким к плазменной длине волны. Также, при достижении лазерным импульсом определённого значения мощности – $P_{cr}(GW) = 17, 4n_{crit}/n_e$, называемым критической мощностью [6, 7] в плазме происходит самофокусировка лазерного излучения и амплитуда лазерного поля заметно возрастает. В результате самомодуляции и самофокусировки лазерного импульса происходит генерация плазменной кильватерной волны, в продольном электрическом поле которой ускоряются электроны. На рис. 4 представлена зависимость максимальных значений амплитуды лазерного поля $|E_{yMAX}|$ от времени, полученная в расчёте:

Рис. 4. Зависимость максимальных значений амплитуды лазерного поля $|E_{yMAX}|$ от координаты *ct*, что соответствует различным моментам времени. Излучение входит в плазму в точке *ct* = 400 мкм и выходит в точке *ct* = 0 мкм

Согласно выражению для мощности релятивистской самофокусировки $P_{cr}(GW) = 17, 4n_{crit}/n_e$ в нашем случае на входе в плазму данное значение равно $P_{cr} = 0,4$ ТВт, что заведомо меньше мощности лазерного импульса ($P \approx 0,8$ ТВт), так что процесс самофокусировки наступает практически сразу после входа излучения в плазму. Как видно из рисунка 4 в нашем расчёте максимальная амплитуда лазерного поля равна $E_{yMAX} \approx 1,3 \times 10^{11}$ В/см, что в 4,8 раз больше начальной амплитуды лазерного импульса $E_0 \approx 2,7 \times 10^{11}$ В/см. На рис. 5 и 6 показаны зависимости амплитуды лазерного поля вдоль оси X для двух моментов времени – 210 фс и 460 фс.

Рис. 5. Зависимость амплитуды лазерного поля вдоль оси X для момента времени t = 210 фс, что соответствует начальному моменту входа лазерного излучения в плазму

Рис. 6. Зависимость амплитуды лазерного поля вдоль оси *X* для момента времени t = 460 фс, когда амплитуда лазерного поля достигает своего максимального значения, полученного в расчёте $E_{vMAX} \approx 1.3 \times 10^{11}$ B/cm = $4.8 E_0$

Из рисунков видно, что в плазме из-за процесса самофокусировки происходит заметное увеличение амплитуды лазерного поля и укручение фронта импульса, а также профиль излучения вследствие самомодуляции теряет свою гауссову форму, возникает чередование локальных максимумов и минимумов амплитуды лазерного излучения. На рис. 7 показано значение продольного ускоряющего поля E_x кильватерной волны вдоль оси X, возбуждаемой лазерным импульсом для момента времени 460 фс (соответствующего рис. 6):

Рис. 7. Зависимость продольного ускоряющего поля E_x кильватерной волны вдоль оси X для момента времени t = 460 фс. Более светлым цветом на рисунке показано безразмерное значение плотности электронов

На рис. 7 также более светлым цветом обозначена плотность электронов на оси распространения лазерного импульса (в произвольных единицах) – видно, что электроны вследствие самоинжекции ускоряются полем кильватерной волны. Максимальное значение амплитуды ускоряющего поля для момента времени, показанного на рис. 7, равно $E_x \approx 2,5 \times 10^{10}$ В/см. Оценка максимальной энергии электронов для такого поля, согласно выражению (3) $W_{\text{max}} = qE_x l_d \approx 17$ МэВ, тогда как в нашем расчёте $W_{\text{max}} \approx 11$ МэВ, однако следует учитывать, что выражение (3) даёт приближенную оценку для случая стандартного режима LWFA, когда $L_l \leq \lambda_p/2$, тогда как в режиме SM-LWFA заведомо $L_l > \lambda_p$. Тем не менее оно показывает, что для данной плотности плазмы, длины волны лазерного излучения только за счёт механизма кильватерного ускорения нельзя получить приращение энергии электронов W_{max} свыше ≈ 17 МэВ.

На рис. 8 показано сравнение энергетических спектров электронов, вылетевших из плазмы, нормированные на телесный угол, для PIC-моделирования по коду PLASMA-3P и полученные в эксперименте [3].

Рис. 8. Энергетические спектры электронов, вылетевших из плазмы, нормированные на телесный угол, для PIC-моделирования по коду PLASMA-3P и полученные в эксперименте [3]. Цифрой 1 на рисунке показан спектр из расчёта по коду PLASMA-3P, точками показан результат эксперимента [3], также цифрой 2 обозначен расчёт по коду TurboWave 3D, который также представлен в статье [3]

Из рисунка видно хорошее совпадение расчётных значений по коду PLASMA-3P с экспериментом.

Заключение

При помощи разработанного во ВНИИЭФ параллельного полностью релятивистского кода PLASMA-3P (3D3V), основанного на методе «частиц-в-ячейке», проведено численное моделирование ускорения электронов в режиме SM-LWFA (self-modulated laser wakefield acceleration) в кильватерной волне, возбуждённой в неоднородной плазме водорода лазерным импульсом длительностью 50 фс и интенсивностью 1×10^{18} Вт/см². Начальная плотность электронов имела гауссов профиль с максимумом $n_0 = 4,2 \times 10^{19}$ см⁻³ и длиной на полувысоте от максимума ≈ 250 мкм.

Начальные параметры лазерного импульса, плазмы отвечали условиям эксперимента, описанного в работе [3]. Был проведён анализ результатов численного моделирования, сравнение энергетических спектров ускоренных электронов показало хорошее согласие с экспериментом. Максимальная энергия электронов, полученных в расчёте оказалась равна $W_{\text{max}} \approx 11$ МэВ. В докладе показаны характерные особенности данного режима ускорения, в частности – самофокусировка и самомодуляция лазерного импульса.

Список литературы

1. Tajima T., Dawson J.M. Laser Electron Accelerator // Phys. Rev. Lett. 1979. Vol. 43, N. 4. P. 267-270.

2. Gonsalves A. J., Nakamura K., Daniels J. et. al. / Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide // Phys. Rev. Lett. 2019. Vol. **122**, 084801.

3. Goers A. J., Hine J. A., Feder L. / Multi-MeV electron acceleration by sub-terawatt laser pulses // Phys. Rev. Lett. 2015. Vol. 115 194802.

4. Голубев А. И., Сысоева Т. Г., Якутов Б. П. Генерация ионов в тонких мишенях лазерными импульсами круговой поляризации / Проблемы физики высоких плотностей энергии. Труды международной конференции XII Харитоновские тематические научные чтения // Россия, Саров, 19–23 апреля 2010 г. С. 369–374.

5. Андреев Н. Е., Горбунов Л. М. // Лазерно-плазменное ускорение электронов // УФН, 1999. Т. 169, № 1. С. 53–58.

6. Schmidt G., Horton W. // Comments Plasma Phys. 1985. 9, 85.

7. Литвак А. Г. // ЖЭТФ, 1968. 57, 629.