ФОРМИРОВАНИЕ ИМПУЛЬСА ДЕЛЕНИЙ НА МГНОВЕННЫХ НЕЙТРОНАХ РЕАКТОРА БР-1М В УСЛОВИЯХ ВЫСОКОЙ СТАРТОВОЙ МОЩНОСТИ

А. С. Кошелев, В. Х. Хоружий

ФГУП «РФЯЦ-ВНИИЭФ» 607188, г. Саров Нижегородской обл., просп. Мира, 37

Представлены результаты расчетного моделирования формирования импульсов на мгновенных нейтронах реактора БР-1М с существенно инерционным гашением реактивности в режиме генерирования с инициирующего (стартового) уровня мощности в активной зоне ~2·10²⁰ дел. АЗ/с. Результаты расчета сравниваются с экспериментальными данными, полученными в совместных пусках реактора БР-1М и ускорителя ЛИУ-30.

Ключевые слова: peaktop БР-1М, импульс делений на мгновенных нейтронах, стартовая мощность, параметры импульса делений.

SHAPING OF FISSION PULSES ON PROMPT NEUTRONS OF BR-1M REACTOR UNDER HIGH INITIAL POWER / A. S. KOSHELEV, V. Kh. KHORUZHY // There are presented the results of calculated simulation of shaping pulses on prompt neutrons of BR-1M reactor with essentially inertial reactivity quenching in the mode of generation from the initiating (starting) level of power in the core $\sim 2 \cdot 10^{20}$ core fissions/s. The results of calculations are compared to the experimental data obtained in joint start-ups of BR-1M reactor and LIU-30 accelerator.

Key words: reactor BR-1M, fission pulse on prompt neutrons, initial power, fission pulse parameters.

Несмотря на обширную библиографию как расчетных, так и экспериментальных публикаций, посвященных вопросам работы импульсных реакторных установок совместно с мощными ускорителями электронов [1], отдельные, значимые в аспекте практической реализации особенности формирования мощных импульсов делений с использованием мощных инициирующих источников остаются явно недостаточно конкретизированными в плане расчетно-прогнозируемых ожиданий.

Динамика увеличения выходных параметров излучений ускорителя ЛИУ-30, определяющих их эффективность формирования всплеска мощности делений в активной зоне (А3) реактора БР-1М в процессе комплексной работы установок [2, 3], очевидным образом свидетельствует о целесообразности детализации расчетного рассмотрения ожидаемых параметров импульсов делений реактора в режиме их генерирования с высокого инициирующего (стартового) уровня мощности делений.

В практике расчета параметров импульсов делений реакторов на быстрых нейтронах давно и успешно находит применение расчетно-теоретическая модель, используемые уравнения кинетики реактора в которой, ориентированные на наличие внешнего (привнесенного извне) источника делений Q(t), сформулированы в работе [4], а жесткоустойчивые методы их решения – в работе [5].

Для учета влияния защитной бетонной оболочки реакторных помещений, к которым относится и зал совместной работы ускорителя и реактора, хорошо зарекомендовали себя методы расчета, конкретизированные в работе [6].

Существенно инерционное гашение реактивности реактора описывается с помощью характерных для импульсных реакторов с металлической активной зоной уравнений [7]:

$$\begin{split} \rho(t) &= \rho_0 - \sum_{\omega} a_{\omega} v_{\omega}(t) - \Delta \rho(t), \\ \frac{1}{\omega^2} \frac{d^2 v_{\omega}}{dt^2} + v_{\omega} = Y(t), \quad Y(t) = \int_{t_0}^t dt' P(t'), \\ \Delta \rho(t) &= c \left(t - t_{\text{пик}} - \Delta \right)^2 \text{ при } t \ge t_{\text{пик}} + \Delta. \end{split}$$

Здесь ρ_0 – стартовая реактивность реактора; P(t) – скорость делений в реакторе; Y(t) – энерговыделение в реакторе к моменту времени t; $v_{00}(t)$ –

условные смещения в единицах энерговыделения, соответствующие частотам колебаний элементов активной зоны ω , а a_{ω} – коэффициенты гашения реактивности, оцененные с помощью теории возмущений. Член $\Delta \rho(t)$ приближенно описывает сброс реактивности после импульса делений.

После действия кратковременного (полуширина ~25 нс) инициирующего импульса в реакторе возникает начальная мощность $P_0 \sim Q_0/\Lambda$, где $\Lambda \sim 10^{-8}$ с – время генерации реактора, а $Q_0 = = \int dt Q(t)$ – эффективное число первичных делений, вызванных источником.

Численные значения ρ_0 определялись на основе рассмотрения процесса формирования импульсов реактора с полным числом делений в АЗ за импульс $2,1\cdot10^{17}, 2,3\cdot10^{17}, 2,5\cdot10^{17}$ и $2,7\cdot10^{17}$. Выбор соответствующих ρ_0 , обеспечивающих реализацию указанных энерговыделений при генерировании импульса на мгновенных нейтронах (ИМН) реактора БР-1М, осуществлялся на основании табличного представления соответствующих функциональных зависимостей, включенных в эксплуатационные документы на реактор. Использованная выборка табулированных данных представлена в табл. 1.

С учетом выбранных границ интервала изменения полного энерговыделения *Y* интервал изменения $\Delta \rho_{\rm MK} = \rho_0 - \beta_{\rm 3\phi}$ выделен в границах от 0,072 $\beta_{\rm 3\phi}$ до 0,086 $\beta_{\rm 3\phi}$. В табл. 1 включены также соответствующие ИМН с конкретным $\Delta \rho_{\rm MK}$ значения полуширины импульса Θ и асимптотического периода разгона реактора τ .

С целью обеспечения возможности перехода от дискретного отображения параметров *Y*, Θ и τ в зависимости от $\Delta \rho_{MK}$ к непрерывному определены следующие аппроксиманты функционалов $Y(\Delta \rho_{MK})$, $\Theta(\Delta \rho_{MK})$ и $\tau(\Delta \rho_{MK})$:

$$Y = 952,38\Delta\rho_{\rm MK}^2 - 88,452\Delta\rho_{\rm MK} + 3,0114$$
(1)

в границах отклонений для табулированных значений от -0,08 % до +0,16 %;

$$\Theta = 5506\Delta\rho_{\rm MK}^2 - 1265, 8\Delta\rho_{\rm MK} + 94,705 \tag{2}$$

в границах отклонений для табулированных значений от -0,11 % до +0,12 %;

$$\tau = 35565\Delta\rho_{\rm MK}^2 - 6499, 7\Delta\rho_{\rm MK} + 365, 48 \tag{3}$$

в границах отклонений для табулированных значений от -0,32 % до +0,16 %.

С использованием соотношения (1) для расчетной процедуры выбраны значения $\Delta \rho_{\rm MK}$, равные 0,075 ($Y = 2,110 \cdot 10^{17}$ дел. АЗ), 0,078 ($Y = 2,296 \cdot 10^{17}$ дел. АЗ), 0,081 ($Y = 2,500 \cdot 10^{17}$ дел. АЗ) и 0,084 ($Y = 2,721 \cdot 10^{17}$ дел. АЗ).

Для полуширины Θ по соотношению (2) для выбранных значений $\Delta \rho_{\rm MK}$, имеем, соответственно, 78,1; 74,8; 72,4 и 70,4 мкс, а для асимптотического периода τ по соотношению (3) – 30,7; 29,5; 28,3 и 27,2 мкс.

В конфигурации взаиморасположения A3 реактора БР-1М и мишенного блока ЛИУ-30 с расстоянием центра A3 от центральной оси ускорителя L = 20 см и равновысотном расположении центров A3 и мишенного блока (2,2 м от уровня пола) осуществлен развернутый расчет формируемого в A3 реактора источника делений (в используемой терминологии P_0). Результирующий итог – $P_0 = 5,91 \cdot 10^{19}$ дел. A3/c.

Для позиции L = 0 (центр A3 реактора на центральной осевой ускорителя) развернутый расчет P_0 не производился. В результате оценки по геометрическому фактору ожидаемое значение P_0 получено в интервале от $1,2 \cdot 10^{20}$ до $2,4 \cdot 10^{20}$ дел. АЗ/с.

В рамках целевого интереса был выполнен следующий объем расчетов:

– полноформатный расчет для $\rho_0 = \beta_{3\phi} + \Delta \rho_{MK} =$ = 1,075 $\beta_{3\phi}$ и каждого из четырех значений P_0 , принятых равными 5,00·10¹²; 5,91·10¹⁹; 1,18·10²⁰ и 2,36·10²⁰ дел. АЗ/с;

Таблица 1

$\Delta \rho_{\rm mk}, \beta_{\rm bp}$	<i>Ү</i> , дел. АЗ	Θ, мкс	τ, мкс	$\Delta \rho, \beta_{\scriptscriptstyle 9 \varphi}$	<i>Ү</i> , дел.АЗ	Θ, мкс	τ, мкс
0,072 0,074 0,076 0,078	1,94+17 2,05+17 2,17+17 2,30+17	82,0 79,0 77,0 75,0	32,1 31,2 30,3 29,5	0,080 0,082 0,084 0,086	2,43+17 2,57+17 2,72+17 2,88+17	73,0 71,7 70,5 69,5	28,7 27,9 27,2 26,6

Выборка эксплуатационно-регламентированных прогнозных параметров ИМН БР-1М

– полноформатный расчет для $\rho_0 = \beta_{3\phi} + \Delta \rho_{MK} =$ = 1,078 $\beta_{3\phi}$ и каждого из четырех значений P_0 , принятых равными 5,00·10¹²; 5,91·10¹⁹; 1,18·10²⁰ и 2,36·10²⁰ дел. АЗ/с;

– полноформатный расчет для $\,\rho_0\,=\beta_{\scriptscriptstyle 3\varphi}+\Delta\rho_{\scriptscriptstyle MK}=$ = 1,081 $\beta_{3\phi}$ и каждого из четырех значений P_0 , принятых равными 5,00·10¹²; 5,91·10¹⁹; 1,18·10²⁰ и 2,36·10²⁰ дел. АЗ/с;

1,18+20

2,36+20

1,168

2,815+17

1,290

– полноформатный расчет для $\rho_0 = \beta_{9\phi} + \Delta \rho_{MK} =$ = 1,084 $\beta_{3\phi}$ и каждого из четырех значений P_0 , принятых равными 5,00·10¹²; 5,91·10¹⁹; 1,18·10²⁰ и 2,36·10²⁰ дел. АЗ/с.

Генеральная выборка полученных результатов расчета в количественном выражении представлена в табл. 2.

Таблица 2

119,9

100,6

1,105

31,03

1.102

кţ	оитичностьк	о при их генера в абсолю	ировании с изб тном и относ	бранных стари ительном фор	повых мощн эматах	остей деле	ний
$ ho_0$, $eta_{ ho \varphi}$	<i>P</i> ₀ , дел. АЗ/с	Y _{1min} , <u>дел. АЗ</u> отн. ед.	<i>Y</i> , <u>дел. АЗ</u> отн. ед.	Р _{пик} , <u>дел. АЗ/с</u> отн. ед.	Θ, мкс отн. ед.	τ, мкс	$\Delta T_{\text{старт}}^{\text{пик}}$, мкс
1,075	5,00+12	$\frac{1,649+17}{1,000}$	$\frac{1,850+17}{1,000}$	$\frac{1,746 + 21}{1,000}$	$\frac{84,1}{1,000}$	$\frac{32,03}{1,000}$	661,5
	5,91+19	$\frac{1,835+17}{1,113}$	$\frac{2,032+17}{1,098}$	$\frac{2,084+21}{1,194}$	$\frac{79,0}{0,939}$	$\frac{35,61}{1,112}$	144,1
	1,18+20	$\frac{1,989+17}{1,206}$	$\frac{2,182+17}{1,179}$	$\frac{2,362+21}{1,353}$	$\frac{75,8}{0,901}$	$\frac{35,97}{1,123}$	123,3
	2,36+20	$\frac{2,240+17}{1,358}$	$\frac{2,429+17}{1,313}$	$\frac{2,831+21}{1,621}$	$\frac{71,9}{0,855}$	$\frac{35,93}{1,122}$	102,8
1,078	5,00+12	$\frac{1,811+17}{1,000}$	$\frac{2,010+17}{1,000}$	$\frac{2,018+21}{1,000}$	$\frac{80,0}{1,000}$	$\frac{30,66}{1,000}$	638,7
	5,91+19	$\frac{2,004+17}{1,107}$	$\frac{2,198+17}{1,094}$	$\frac{2,374+21}{1,176}$	$\frac{75,6}{0,945}$	$\frac{34,59}{1,128}$	141,0
	1,18+20	$\frac{2,161+17}{1,193}$	$\frac{2,352+17}{1,170}$	$\frac{2,670+21}{1,323}$	$\frac{72,8}{0,910}$	$\frac{34,36}{1.121}$	121,9
	2,36+20	$\frac{2,416+17}{1,334}$	$\frac{2,603+17}{1,295}$	$\frac{3,163+21}{1,567}$	$\frac{69,3}{0,866}$	$\frac{34,21}{1,116}$	102,9
	5,00+12	$\frac{1,975+17}{1,000}$	$\frac{2,181+17}{1,000}$	$\frac{2,316+21}{1,000}$	$\frac{76,3}{1,000}$	$\frac{29,39}{1,000}$	616,3
1 081	5,91+19	$\frac{2,183+17}{1,100}$	$\frac{2,375+17}{1,089}$	$\frac{2,697+21}{1,165}$	$\frac{72,5}{0,950}$	$\frac{32,70}{1,113}$	139,9
1,081	1,18+20	$\frac{2,344+17}{1,181}$	$\frac{2,533+17}{1,161}$	$\frac{3,008+21}{1,299}$	$\frac{70,1}{0,919}$	$\frac{32,74}{1,114}$	121,1
	2,36+20	$\frac{2,605+17}{1,312}$	$\frac{2,790+17}{1,279}$	$\frac{3,529+21}{1,524}$	$\frac{66,8}{0,875}$	$\frac{32,80}{1,116}$	101,5
	5,00+12	$\frac{2,183+17}{1,000}$	$\frac{2,376+17}{1,000}$	$\frac{2,670+21}{1.000}$	$\frac{72,8}{1,000}$	$\frac{28,15}{1.000}$	596,0
1.084	5,91+19	$\frac{2,385+17}{1,093}$	$\frac{2,575+17}{1,084}$	$\frac{3,076+21}{1,152}$	$\frac{69,4}{0,953}$	$\frac{31,03}{1,102}$	137,7
1,084	1.10.20	2,550+17	2,737+17	3,406+21	67,2	31,11	110.0

Избранные расчетные параметры импульсов делений для избранных переходов над запаздывающей

1,276

3,951+21

1,480

0,923

64,3

0,883

1,152

2,997 + 17

1,261

В дополнение к основным параметрам импульса делений, учитываемых на стадии подготовки к генерированию ИМН БР-1М, в табл. 2 включены важные в прикладном аспекте данные по энерговыделению собственно в импульсе реактора (до первого минимума в реализуемой форме импульса, Y_{1min}) и интервал между пиками импульса ЛИУ и пиком импульса реактора, обозначаемый далее по тексту как $\Delta T_{старт}^{пик}$. Графические отображения расчетных данных для функциональных зависимостей мощности реактора в процессе развития ИМН P(t) и $P(\rho)$ (от времени и от реализованной текущей реактивности) представлены на рис. 1, 3, 5, 7 и 2, 4, 6, 8, соответственно.

Рис. 1. Мощность в ИМН реактора БР-1М как функция времени в зависимости от уровня стартовой мощности при генерировании с реактивности 1,075 $\beta_{3\phi}$; P_0 принято равным 5,00·10¹² (1); 5,98·10¹⁹ (2); 1,18·10²⁰ (3); 2,36·10²⁰ (4) дел. АЗ/с

Рис. 2. Мощность в ИМН реактора БР-1М как функция текущей реактивности в зависимости от уровня стартовой мощности при генерировании с реактивности 1,075 $\beta_{3\phi}$; P_0 принято равным 5,00·10¹² (1); 5,98·10¹⁹ (2); 1,18·10²⁰ (3); 2,36·10²⁰ (4) дел. АЗ/с

Рис. 3. Мощность в ИМН реактора БР-1М как функция времени в зависимости от уровня стартовой мощности при генерировании с реактивности 1,078 $\beta_{3\phi}$; P_0 принято равным 5,00·10¹² (1); 5,98·10¹⁹ (2); 1,18·10²⁰ (3); 2,36·10²⁰ (4) дел. АЗ/с

Рис. 4. Мощность в ИМН реактора БР-1М как функция текущей реактивности в зависимости от уровня стартовой мощности при генерировании с реактивности 1,078 $\beta_{3\phi}$; P_0 принято равным 5,00·10¹² (1); 5,98·10¹⁹ (2); 1,18·10²⁰ (3); 2,36·10²⁰ (4) дел. АЗ/с

Для большей визуальной наглядности в графических представлениях $P(\rho)$ использован обратный отсчет численных значений реактивности ρ – от максимума вводимой реактивности ρ_0 в сторону ее уменьшения в процессе развития импульса делений с графическим ограничением по достижении первого минимального значения мощности, следующего за ее максимумом в пике импульса, после которого формируется колебательный характер изменения реактивности в процессе, в целом, системного ее уменьшения.

Анализ данных табл. 2 показывает:

– для всех ρ_0 и $P_0 = 5,00 \cdot 10^{12}$ дел. АЗ/с имеет место традиционный характер развития ИМН с асимптотическим периодом τ в интервале времени не менее 15 τ ;

– для всех ρ_0 и P_0 от 5,91·10¹⁹ дел. АЗ/с и более имеет место выраженное увеличение энергетических параметров $Y_{1\min}$ и Y; для ИМН с планируемым переходом 1,084 $\beta_{3\phi}$ и энерговыделением 2,7·10¹⁷ дел. АЗ (верхняя граница планирования энерговыделения для ИМН БР-1М) прогнозируемый рост $Y_{1\min}$ составляет 1,29 раза, а Y - 1,26 раза; для рассмотренной выборки данных относительное возрастание параметров $Y_{1\min}$ и Y более выражено для ИМН с меньшим ρ_0 ;

 – рост энергетических параметров с увеличением стартовой мощности вызывает заметное уменьшение полуширины импульса Ө, не превышающее, однако, 10 %;

– при P_0 от 5,91·10¹⁹ дел. АЗ/с и более область асимптотического периода разгона реактора практически отсутствует; приведенные значения τ определены на участке длительностью ~0,5 τ с момента расчетного старта реактора;

Рис. 5. Мощность в ИМН реактора БР-1М как функция времени в зависимости от уровня стартовой мощности при генерировании с реактивности $1,081\beta_{3\phi}$; P_0 принято равным $5,00\cdot10^{12}$ (1); $5,98\cdot10^{19}$ (2); $1,18\cdot10^{20}$ (3); $2,36\cdot10^{20}$ (4) дел. АЗ/с

Рис. 6. Мощность в ИМН реактора БР-1М как функция текущей реактивности в зависимости от уровня стартовой мощности при генерировании с реактивности 1,081 $\beta_{3\phi}$; P_0 принято равным 5,00·10¹² (1); 5,98·10¹⁹ (2); 1,18·10²⁰ (3); 2,36·10²⁰ (4) дел. АЗ/с

Рис. 7. Мощность в ИМН реактора БР-1М как функция времени в зависимости от уровня стартовой мощности при генерировании с реактивности 1,084 $\beta_{3\phi}$; P_0 принято равным 5,00·10¹² (1); 5,98·10¹⁹ (2); 1,18·10²⁰ (3); 2,36·10²⁰ (4) дел. АЗ/с

Рис. 8. Мощность в ИМН реактора БР-1М как функция текущей реактивности в зависимости от уровня стартовой мощности при генерировании с реактивности 1,084 $\beta_{3\phi}$; P_0 принято равным 5,00·10¹² (1); 5,98·10¹⁹ (2); 1,18·10²⁰ (3); 2,36·10²⁰ (4) дел. АЗ/с

– для всех ρ_0 и P_0 от 5,91·10¹⁹ дел. АЗ/с значительно (в несколько раз) сокращается интервал между моментом инициирования импульса делений и достижением пика его мощности; в рассмотренных условиях генерирования ИМН реактора БР-1М при инициировании его импульсом ускорителя ЛИУ-30 следует констатировать невозможность регулируемого варьирования интер-

вала времени между импульсом ускорителя и пиком импульса реактора длительностью большей, чем $\Delta T_{\rm старт}^{\rm пик}$.

В практике комплексной работы ядерно-физических установок ЛИУ-30 и БР-1М режим генерирования импульсов деления реактора с высокой начальной мощности, формируемой ускорителем ЛИУ-30, фактически только начинает использоваться. Для проведения сравнения полученных расчетных данных с экспериментальным аналогом удалось выделить три ИМН БР-1М, осуществленных в требуемом режиме генерирования совместно с ЛИУ-30. Планируемые, фактически реализованные и следующие из расчетного прогноза с использованием рассмотренного выше формализма энергетические и временные параметры ИМН № 41, 79 и 80 представлены в табл. 3.

Численные значения для реактивности $\Delta \rho_{\rm MK}$ приведены с сохранением формата ее определения в рамках эксплуатационного формализма. Численные значения штатного прогноза величин *Y*, Θ и τ определены по представленным ранее по тексту статьи соотношениям (1), (2), (3), соответственно.

Фактически реализованные численные значения таких параметров ИМН, как $Y_{1\min}$, $P_{пик}$, Θ , τ и $\Delta T_{\text{старт}}^{\text{пик}}$, определены по показаниям штатного регистратора формы импульса (РФИ) с вакуумированной камерой типа КНК-15 в борном чехле. Использовалось значение эффективности регистрационного тракта РФИ $\varepsilon = 1,39 \cdot 10^{-23}$ Кл/дел. АЗ.

Для определения реализованных значений энерговыделения за ИМН У использованы показания штатных никелевых мониторов внешнего расположения и аттестованная связь этих показаний с энерговыделением в АЗ реактора БР-1М.

В качестве исходных параметров $\rho_0 = \beta_{3\phi} + \Delta \rho_{MK}$ и P_0 для расчета, представленных в разделе «Расчетный прогноз» табл. З энергетических и временных параметров ИМН, использовались соответствующие значения $\Delta \rho_{MK}$ и P_0 из раздела «Фактически получено» табл. З. Для визуальной оценки уровня сопоставимости реальной и расчетной форм ИМН № 41, 79 и 80 на рис. 9–11 представлены графические отображения попарно совмещенных данных эксперимента и расчета, соответственно.

Из табл. З для параметра *Y* имеем следующее рассогласование значений штатного прогноза и фактически полученных:

– в ИМН № 41 фактически полученное энерговыделение в 1,045 раза больше штатно ожидаемого (превышение штатного прогноза на 4,5 %);

– в ИМН № 79 фактически полученное энерговыделение в 1,23 раза больше штатно ожидаемого (превышение штатного прогноза на ~23 %);

– в ИМН № 80 фактически полученное энерговыделение в 1,23 раза больше штатно ожидаемого (превышение штатного прогноза на ~23 %).

Для рассогласования фактически полученных значений *Y* и соответствующих им данных расчетного прогноза имеем:

– в ИМН № 41 расчетное энерговыделение в 0,908 раза меньше фактически полученного (различие на 9,2 %);

Таблица З

ИМН №	Δρ _{мк} , β _{эφ}	<i>P</i> ₀ , дел. А3/с	<i>Y</i> _{1min} , дел. АЗ	<i>Ү</i> , дел. АЗ	<i>Р</i> _{пик} , дел. АЗ/с	Θ, мкс	τ, мкс	$\Delta T_{\text{старт}}^{\text{пик}}$, мкс	
Штатный прогноз									
41 79 80	0,08081 0,08011 0,07575			2,487+17 2,438+17 2,155+17		72,5 73,0 77,2	28,4 28,6 30,4		
	Фактически получено								
41 79 80	0,08081 0,08011 0,07575	5,80+19 2,35+20 2,56+20	2,264+17 2,455+17 2,164+17	2,598+17 2,994+17 2,647+17	2,807+21 3,171+21 2,638+21	71,9 69,8 74,2	28,7 31,0 35,0	135,4 99,9 100,1	
Расчетный прогноз									
41 79 80	0,08081 0,08011 0,07575	5,80+19 2,35+20 2,56+20	2,166+17 2,543+17 2,313+17	2,358+17 2,729+17 2,501+17	2,664+21 3,407+21 2,969+21	72,8 67,6 70,9	30,5 32,1 34,1	139,5 102,8 101,2	

Параметры импульсов делений БР-1М, полученные при инициировании от ЛИУ-30

– в ИМН № 79 расчетное энерговыделение в 0,911 раза меньше фактически полученного (различие на 8,6 %);

– в ИМН № 80 расчетное энерговыделение в 0,945 раза меньше фактически полученного (различие на 5,5 %).

При очевидно выраженном значимом превышении фактически полученных значений Y над штатно прогнозируемыми имеющую место рассогласованность фактических и расчетных данных для Y можно рассматривать как системное смещение на ~5 % с вариативностью на уровне среднего ±4 %. В целом результаты сопоставления фактически полученных и установленных с привлечением предложенной расчетно-теоретической модели одноименных параметров ИМН, представленных в табл. 3 и на рис. 9–11, свидетельствуют, на наш взгляд, о приемлемом в аспекте практического применения уровне прогнозирования энергетических и временных параметров импульсов делений в режиме их генерирования с высокого уровня инициирующей (стартовой) мощности при использовании развитого расчетного подхода.

Рис. 9. Экспериментальная (белым) и расчетная (черным, $\rho = 1,08081\beta_{3\phi}$, $P_0 = 5,80 \cdot 10^{19}$ дел. АЗ/с) мощности реактора БР-1М в ИМН № 41

Рис. 10. Экспериментальная (белым) и расчетная (черным, ρ = 1,08011β_{эф}, P₀ = 2,35·10²⁰ дел. А3/с) мощности реактора БР-1М в ИМН № 79

Рис. 11. Экспериментальная (белым) и расчетная (черным, ρ = 1,07575β_{эф}, P₀ = 2,56·10²⁰ дел. АЗ/с) мощности реактора БР-1М в ИМН № 80

В заключение авторы выражают благодарность специалистам группы эксплуатации реактора БР-1М, в первую очередь, специалистам по выводу реактора на требуемые физические параметры и определению этих параметров Мочкаеву М. В. и Арапову А. В., за доброжелательное отношение и помощь в получении экспериментальных данных в формате, необходимом для определения уровня сопоставимости результатов расчета и эксперимента.

Список литературы

1. Колесов В. Ф. Апериодические импульсные реакторы: Монография в двух томах. – Саров: РФЯЦ-ВНИИЭФ, 2007. Т. 1.

2. Завьялов Н. В., Гордеев В. С., Савченко В. А. и др. Моделирующие и облучательные комплексы и установки РФЯЦ-ВНИИЭФ // 65 лет ВНИИЭФ. Физика и техника высоких плотностей энергий. – Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2011, вып. 1, с. 165–191.

3. Колесов В. Ф., Кувшинов М. И., Воронцов С. В. и др. Критические стенды и импульсные реакторы РФЯЦ-ВНИИЭФ // 65 лет ВНИИЭФ. Физика и техника высоких плотностей энергий. – Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2011, вып. 1, с. 136–164.

4. Хоружий В. Х. Уравнения кинетики реактора и бустера в терминах интенсивности делений // ВАНТ. Сер. Физика ядерных реакторов, 2010, № 2, с. 14–16.

5. Хоружий В. Х., Кошелев А. С., Колесов В. Ф. Интегрирование уравнений кинетики импульсного реактора на быстрых нейтронах жестко-устойчивыми методами Гира // ВАНТ. Сер. Физика ядерных реакторов, 1989, № 1, с. 8–14.

6. Хоружий В. Х., Колесов В. Ф. К расчету полей отраженных нейтронов и нейтронов утечки с помощью методов инвариантного погружения и сложения // ВАНТ. Сер. Импульсные реакторы и простые критические сборки, 1987, № 1, с. 3–11.

7. Колесов В. Ф. Апериодические импульсные реакторы: Монография в двух томах. – Саров: РФЯЦ-ВНИИЭФ, 2007. Т. 2.

Контактная информация -

Кошелев Александр Сергеевич, ведущий научный сотрудник ИЯРФ, РФЯЦ-ВНИИЭФ,

тел.: (831 30) 3-06-87

Статья поступила в редакцию 17.06.2013.

Вопросы атомной науки и техники. Сер. Физика ядерных реакторов, 2013, вып. 3, с. 102–111.