ИССЛЕДОВАНИЕ КРИТИЧЕСКИХ ПАРАМЕТРОВ СИСТЕМ ИЗ ВЫСОКООБОГАЩЕННОГО УРАНА И МЕДИ

Л. С. Ершова, А. В. Лукин, Ю. А. Соколов, П. Л. Тупицин, Д. В. Хмельницкий

ФГУП «РФЯЦ-ВНИИТФ», 456770, Снежинск, Челябинская обл., ул. Васильева 13

Представлены результаты критических экспериментов, выполненных на стенде ФКБН-2 для 18 размножающих систем из высокообогащенного урана, меди и полиэтилена. Дано краткое описание критических сборок, их расчетных моделей и результатов расчетов величины $K_{эф}$ по программе ПРИЗМА-Д с нейтронными константами БАС, ENDF BV, ENDF BVI и ENDF BVII.

Ключевые слова: критический эксперимент, размножающая система, критическая сборка, расчетные модели.

RESEARCH OF CRITICAL PARAMETERS OF SYSTEMS MADE OF HIGH-ENRICHED URANIUM AND COPPER/ L. S. YERSHOVA, A. V. LUKIN, YU. A. SOKOLOV, P. L. TUPITSYN, D. V. KHMEL'NITSKII// The report presents results of critical experiments performed on a stand FKBN-2 for 18 multiplying systems made of highenriched uranium, copper and polyethylene. Here are briefly described critical assemblies, their calculation models and results of calculations of K_{ef} value by a program PRIZMA-D with neutron constants BAS, ENDF BV, ENDF BVI and ENDF BVII.

Key words: critical experiment, multiplying system, critical assembly, calculation models.

Введение

При разработке импульсных ядерных реакторов (ИЯР) большое внимание уделяется прогнозированию критмассовых характеристик их активных зон. Для этого используются расчеты эффективного коэффициента размножения нейтронов *К*_{эф} с помощью расчетных программ типа MCNP (США), ПРИЗМА-Д (РФЯЦ-ВНИИТФ), С-95 (РФЯЦ-ВНИИЭФ) и др., основанных на методе Монте-Карло [1-3]. Нейтронные константы в современных расчетных программах в настоящее время тестируются с использованием прецизионных (бенчмарк) измерений на критических стендах. Как известно, медь является одним из наиболее эффективных отражателей нейтронов и применяется в конструкциях ИЯР [4]. В то же время число оцененных критических сборок, содержащих медь, невелико [5]. Целью настоящей работы является представление результатов измерений и расчетов для критических размножающих систем из высокообогащенного урана и меди, выполненных в последнее время в РФЯЦ-ВНИИТФ. Эксперименты проводились на стенде ФКБН-2, расчеты величины $K_{3\phi}$ выполнялись по программе ПРИЗМА-Д с нейтронными константами из библиотек БАС [6], ENDF BV, BVI, BVII [7].

Рассмотрены критические системы цилиндрической формы из высокообогащенного урана с торцевыми отражателями различной толщины из меди и полиэтилена. Эксперименты с этими системами проводились с целью исследования влияния констант меди на точность расчетов нейтронно-физических характеристик размножающих систем, поскольку считается, что величина $K_{3\phi}$ для сборок из высокообогащенного урана без отражателей и замедлителей нейтронов рассчитывается с погрешностью менее 0,5 %, что в большинстве случаев является приемлемым значением.

К особенностям выбранных для исследований восемнадцати сборок можно отнести, во-первых, постепенное, от системы к системе, увеличение влияния меди на перенос нейтронов в системе; вовторых, наличие сильной корреляции между неопределенностями в характеристиках деталей собранных систем – при их сборке, в основном, используются одни и те же детали, различие в деталях минимально, при этом для некоторых систем различие, кроме значения критического зазора, обусловлено лишь добавлением или заменой одного или нескольких медных дисков без переборки остальной системы.

Краткое описание критических систем

Исследуемые размножающие системы (PC) собирались на стенде ФКБН-2 и представляли собой набор дисков из высокообогащенного урана, сверху и снизу которых в виде торцевых отражателей размещались диски из меди суммарной толщиной от 1 до 5 см и полиэтилена толщиной 5 см [4]. Нижняя часть системы (HЧ) собиралась на конусной чашке, закрепленной на штоке, верхняя часть (ВЧ) располагалась на диафрагме, установленной на опорной трубе (рис. 1). Источник нейтронов Ри-Ве находился в центре верхнего диска нижней части РС.

Рис. 1. Схема одной из РС в разрезе: 1 – опорная труба; 2 – опорное кольцо; 3 – диафрагма; 4 – урановые диски; 5 – источник Ри-Ве; 6 – конусная чаша; 7 – шток

Исследовалась зависимость критмассовых характеристик от толщины медного отражателя, установленного с одного или двух торцов РС. Для нескольких РС был рассмотрен дополнительный отражатель из полиэтилена, установленный снаружи медных отражателей. Всего было исследовано 18 критических систем: одна – без отражателя; 9 – с односторонним отражателем, из них 6 – с отражателем из меди, 2 – с отражателем из меди и полиэтилена, 1 – с отражателем из меди и полиэтилена, между которыми установлен слой кадмия; 8 – с двусторонним отражателем, из них 6 – с отражателем из меди, 2 – с отражателем из меди и полиэтилена.

Диски из высокообогащенного урана имеют буртики и проточки (0,2 см × 0,2 см), которые служат для их фиксации относительно друг друга. Центральные отверстия урановых дисков диаметром 3,50 см заполнены кольцевыми (большими) и цилиндрическими (малыми) пробками, за исключением нижнего диска верхней части РС (малая и большая пробки отсутствуют) и верхнего диска нижней части (вместо малой пробки в нем размещается источник нейтронов). Размеры РС измерялись прибором с ценой деления 0,01 см, диаметры всех дисков составили 19,99 см, толщина – около 1 см. Урановые диски имеют покрытие из алюминия. Массы дисков взвешивались на весах с погрешностью 0,4 г.

В табл. 1 приведено краткое описание всех 18 исследованных размножающих систем и определенный по результатам измерений для каждой системы критический зазор. Условное обозначение конфигурации РС в табл. 1 слева направо описывает расположение деталей в системе снизу вверх: число в скобках обозначает величину и положение зазора между НЧ и ВЧ, число перед U – число урановых дисков, для отражателей (медь или полиэтилен) числа указывают их толщину в см. Указание диапазона значений критического зазора соответствует разбросу, полученному при нескольких измерениях.

Таблица 1

Краткое описание конфигурации исследованных РС

№ п/п	PC	Конфигурация РС					
	Без отражателя						
1	270 6U (0,14) 5U						
	Односторонний отражатель						
2	283	6U (0,49) 5U + 1Cu					
3	284	6U (0,73) 5U + 2Cu					
4	285	6U (0,9) 5U + 3Cu					
5	286	6U (1,09) 5U + 5Cu					
6	287	6U (1,19) 5U + 7Cu					
7	288	6U (1,24) 5U + 10Cu					
8	289	6U (1,15) 5U + 3Cu + 5CH ₂					
9	291	$6U(1,2) 5U + 5Cu + 5CH_2$					
10	292	6U (1,19) 5U + 5Cu + 0,11Cd + 5CH ₂					
Двусторонний отражатель							
11	271	1Cu + 5U (0,72) 6U + 1Cu					
12	271-1	1Cu + 5U (0,09÷0,11) 5U + 1Cu					

Окончание табл. 1

№ п/п	PC	Конфигурация РС				
Двусторонний отражатель						
13	272	2Cu + 5U (0,55) 5U + 2Cu				
14	274	3Cu + 5U (0,23) 4U + 3Cu				
15	276	4Cu + 5U (0,46) 4U + 4Cu				
16	278	5Cu + 4U (0,57÷0,605) 5U + 5Cu				
17	279-1	5CH ₂ + 3Cu + 4U (0,07) 4U + 3Cu + + 5CH ₂				
18	280	$\begin{array}{l} 5CH_2 + 5Cu + 4U \ (0,13 \div 0,154) \ 4U + \\ + \ 5Cu + \ 5CH_2 \end{array}$				

Расчетные модели критических систем

При построении расчетных прецизионных моделей исследуемых РС использовались следующие приближения.

1. Все урановые диски рассматривались в виде двух цилиндрических областей (верхней и нижней) радиусом 9,995 см с учетом отверстий в дисках с отсутствующими пробками и буртиками на крайних дисках. Высота верхней и нижней частей определялась суммарной толщиной урановых дисков.

2. Отражатель из меди задавался цилиндром радиусом 9,995 см и высотой, равной суммарной высоте медных дисков, каждый из которых имеет толщину 1,00 см вследствие очень хорошего качества их изготовления. Отражатель из полиэтилена задавался в виде одного диска радиусом 9,995 см: толщина диска в нижней части PC равна 5,0 см, плотность полиэтилена составила 0,915 г/см³, толщина диска в верхней части PC – 4,8 см, плотность полиэтилена – 0,955 г/см³.

3. Высота верхней или нижней частей разных PC, собранных из одного набора дисков, принималась одинаковой с погрешностью, соответствующей разбросу их значений для этих сборок.

4. Антикоррозионное покрытие из алюминия урановых дисков считалось гомогенно размешанным в делящемся материале. Плотность урана рассчитывалась через суммарную массу дисков с покрытием в верхней и нижней частях и их суммарный объем. Состав вычислялся с учетом суммарной массы алюминиевого покрытия в дисках и состава урана. Плотности отражателей из меди (состав – Cu) и полиэтилена (состав – CH₂) также выбирались исходя из их суммарной массы и размеров в каждой части PC.

5. Из деталей несущей конструкции задавались только те, что расположены вблизи урановых дисков: стальная диафрагма и алюминиевое опорное кольцо. Пренебрегалось конусной подставкой из дюралюминия, стальным поршнем, стальной опорной трубой. Также не учитывались нейтронные детекторы, пол и стены экспериментального зала.

Схема 17 расчетных моделей РС приведена на рис. 2. Расчетная модель системы РС292 отличается от системы, показанной на рис. 2, наличием диска из кадмия плотностью 8,65 г/см³, диаметром 9,8 см, толщиной 0,11 см между медным и полиэтиленовым отражателями. Состав урана приведен в справочнике [5]. Остальные параметры расчетной модели, включая критический зазор между НЧ и ВЧ, толщину слоя и плотность урана в НЧ и ВЧ, толщину слоя и плотность меди в НЧ и ВЧ, для каждой РС указаны в табл. 2.

Рис. 2. Расчетная схема PC с составом по массе, %: 1 – 96,47 Fe, 1,07 Si, 0,97 Mn, 1,0 Cr, 0,31 C, 0,18 Ni, $\rho = 7,54 \text{ г/см}^3$; 2 – 92,15 Al, 4,65 Cu, 1,5 Mg, 0,6 Mn, 0,5 Si, 0,5 Fe, 0,1 Ni, $\rho = 2,78 \text{ г/см}^3$; 3, 4 – U; 5, 7 – Cu (см. табл. 4); 6, 8 – CH₂

№ РС $H_{\kappa p}$, см U Cu U $t_{H q}$, см t_{Cu} , см $t_{B q}$, см $t_{B q}$, см t_{Cu} , см $t_{B q}$, см t_{Cu} $(\rho_U, \Gamma/cm^3)$ $(\rho_{Cu}, \Gamma/cm^3)$ $(\rho_U, \Gamma/cm^3)$ $(\rho_U, \Gamma/cm^3)$ $(\rho_U, \Gamma/cm^3)$ $(\rho_U, \Gamma/cm^3)$	Си t _{Cu} , см _{Cu} , г/см ³)
No PC $H_{\rm kp}$, см $t_{\rm Hy}$, см $t_{\rm Cu}$, см $t_{\rm By}$, см $t_{\rm By}$, см $(\rho_{\rm U}, r/cm^3)$	<i>t</i> _{Cu} , CM _{Cu} , Γ/CM ³)
(р _U , г/см ³) (р _{Cu} , г/см ³) (р _U , г/см ³) (ровить савет	_{Си} , г/см ³)
Без отражателя	_
	_
270 0,14 6,22 \pm 0,01 - 5,00 \pm 0,01	
(18,43) 18,48	
Односторонний отражатель	
283 0,49 1,0	00 (8,86)
284 0,73 2,0	00 (8,85)
285 0,9 3,0	00 (8,86)
286 1,09 5,0	00 (8,86)
	00 (8,86)
288 1,24 (18,43) 18,48 10	,0 (8,86)
289 1,15 3,0	00 (8,86)
291 1,20 5,0	00 (8,86)
292 1,19 5,0	00 (8,86)
Двусторонний отражатель	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00 (8,84)
18,45	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00 (8,84)
272 0,55 (18,38) 2,00 (8,849) 18,41 2,0	00 (8,87)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 (8,86)
276 0,46 4,00 (8.860) 18,46 4,0	00 (8,86)
278 0.59 $5.00(8.862)$ 4.08 ± 0.02 5.0	0 (8 86)
$4,98 \pm 0,02$ 3,0 (0,002) 4,98 $\pm 0,02$ 3,0 (0,002) 4,98 $\pm 0,02$ 3,0	
$7,00 \pm 0,01$ $10,51$ 279-1 0.07 (18.50) 3.00 (8.859) 4.00 + 0.01 3.0	0 (8 86)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.00

Параметры расчетных моделей РС

Оценка погрешности расчетных моделей

Предварительный анализ показал, что основными источниками неопределенностей при описании РС являются погрешности в высоте верхней и нижней частей сборок, критическом зазоре и содержании изотопа²³⁵U. Влиянием остальных погрешностей на точность расчета К_{эф} можно пренебречь: относительная погрешность измерения массы очень мала; относительная погрешность измерения диаметра дисков существенно меньше погрешности в их толщине, при этом размеры каждого диска измерялись независимо, что уменьшает влияние погрешности в диаметре каждого диска на неопределенность К_{эф} всей системы; неопределенности в характеристиках отражателя слабо влияют на критичность системы; влияние отклонения геометрии дисков от правильной цилиндрической формы также мало. Гомогенизация антикоррозийного покрытия, как и пренебрежение зазорами между дисками, дает вклад в $K_{3\phi}$, определяемый разностью двух эффектов: положительным за счет уменьшения утечки нейтронов в пространство между дисками и отрицательным вследствие уменьшения плотности урана. Этот вклад может рассматриваться как величина следующего порядка малости.

При оценке суммарной дисперсии $K_{3\phi}$ все учитываемые погрешности считались независимыми между собой случайными величинами: при измерении размеров – с равномерным распределением (среднеквадратическое отклонение $\sigma = \Delta/\sqrt{3}$, Δ – максимальный разброс от среднего значения или полцены деления измерительного средства), для критического зазора ($\Delta H_{\rm kp} \sim 0.01$ см) и содержания урана-235 – с нормальным распределением с погрешностями, соответствующими 1 σ .

Коэффициенты чувствительности $K_{3\phi}$ к неопределенности величины x_i РС $\frac{\partial K_{3\phi}}{\partial x_i}$ оценивались

с помощью расчетов по программе ПРИЗМА-Д

с нейтронными константами БАС значений К_{эф} для исходного состояния РС и возмущенного состояния с $x_i + \delta x_i$. При варьировании размеров областей с ураном их масса принималась неизменной (соответствующим образом корректировалась плотность), уменьшение процентного содержания ²³⁵U в уране компенсировалось изотопом ²³⁸U. Анализ результатов расчетов показал, что коэффициенты чувствительности разных РС незначительно отличаются, максимальное различие составляет около 20 %. Исключением является величина линейного веса зазора, для которого различие достигает 40 %. Поэтому при оценке суммарной дисперсии величины К_{эф} для исследуемых сборок использовались максимальные значения соответствующих коэффициентов чувствительно-

сти:
$$\frac{\partial K_{9\Phi}}{\partial t_{\rm HY}} \approx \frac{\partial K_{9\Phi}}{\partial t_{\rm BY}} \approx 5 \cdot 10^{-2} \text{ см}^{-1}, \quad \frac{\partial K_{9\Phi}}{\partial \chi_{\rm U-235}} \approx 0,5.$$

Значения $\frac{\partial K_{\mathrm{s}\phi}}{\partial H_{\mathrm{kp}}}$ оценивались отдельно для каждой

размножающей системы.

Суммарная погрешность $\sigma_{K_{3\phi}} =$

$$= \sqrt{\sum_{n=1}^{N} \left(\frac{\partial K_{3\phi}}{\partial x_{in}} \sigma_{x}^{i}\right)^{2}}$$
 величины $K_{3\phi}$ и ее составляю-

щие $\frac{\partial K_{3\phi}}{\partial x_i} \sigma_x^i$ для всех исследуемых РС представлены в табл. 3. Согласно данным табл. 3 погрешность для рассмотренных расчетных бенчмаркмоделей, определяемая как возможное отличие $K_{3\phi}$ от единицы, не превосходит $\Delta K_{3\phi}^{\text{max}} =$

$$=2\sigma_{K_{2}}=2,6\cdot 10^{-3}.$$

Таблица 3

Оценка погрешности	(1 <i>б</i>) в К _{эф} для	расчетных бенчмарк-	моделей РС
· ·			

	Выс	ота НЧ	Выс	ота ВЧ		Крит. за	зор	Содерж	ание ²³⁵ U	
№ PC	σ _{ΗΨ,}	$\frac{\partial K_{\mathrm{b}\phi}}{\partial t_{\mathrm{H}\mathrm{H}}}\sigma_{\mathrm{H}\mathrm{H}}$	σ _{Bų,}	$\frac{\partial K_{\mathrm{b}\varphi}}{\partial t_{\mathrm{B}\mathrm{Y}}}\sigma_{\mathrm{B}\mathrm{Y}}$	$\sigma_{H_{\mathrm{KP}}}$	$\frac{\partial K_{\mathrm{b}\phi}}{\partial H_{\mathrm{kp}}},$	$\frac{\partial K_{3\mathbf{\phi}}}{\partial H_{\mathbf{K}\mathbf{p}}}\sigma_{H_{\mathbf{K}\mathbf{p}}}$	σχ	$\frac{\partial K_{\mathrm{b}\phi}}{\partial \chi_{\mathrm{U-235}}} \sigma_{\chi}$	$\sigma_{K_{2\dot{\Phi}}}$
	CIVI		CIVI		CM	см ⁻¹				
Без отражателя										
270	$6 \cdot 10^{-3}$	$3 \cdot 10^{-4}$	$6 \cdot 10^{-3}$	$3 \cdot 10^{-4}$	0,01	0,054	$5,4.10^{-4}$	$1,0.10^{-3}$	$5 \cdot 10^{-4}$	$8,5 \cdot 10^{-4}$
				Одност	оронни	й отражате	ель		-	
283	$6 \cdot 10^{-3}$	$3 \cdot 10^{-4}$	$6 \cdot 10^{-3}$	$3 \cdot 10^{-4}$	0,01	0,053	5,3.10-4	$1,0.10^{-3}$	$5 \cdot 10^{-4}$	$8,4.10^{-4}$
284						0,048	$4,8.10^{-4}$			$8,1.10^{-4}$
285						0,048	$5,1.10^{-4}$			8,3.10-4
286						0,048	$4,8.10^{-4}$			$8,1.10^{-4}$
287						0,045	$4,5 \cdot 10^{-4}$			8,0.10-4
288						0,044	$4,4.10^{-4}$			$7,9{\cdot}10^{-4}$
289						0,046	4,6.10-4			$8,0.10^{-4}$
291						0,047	$4,7.10^{-4}$			$8,1.10^{-4}$
292						0,043	$4,3.10^{-4}$			$7,8 \cdot 10^{-4}$
	-			Двусто	ронний	отражат	ель		-	
271	$1,5 \cdot 10^{-2}$	$7,5 \cdot 10^{-4}$	0,012	$6 \cdot 10^{-4}$	0,01	0,052	$5,2.10^{-4}$	$1,0.10^{-3}$	$5 \cdot 10^{-4}$	$1,2.10^{-3}$
271-1			0,015	$7,5 \cdot 10^{-4}$		0,063	6,3.10-4			$1,3.10^{-3}$
272						0,052	$5,2.10^{-4}$			$1,3.10^{-3}$
274			$6 \cdot 10^{-3}$	3.10^{-4}		0,063	$6,3 \cdot 10^{-4}$			$1,1.10^{-3}$
276						0,061	$6,1 \cdot 10^{-4}$			$1,1.10^{-3}$
278	$6 \cdot 10^{-3}$	$3 \cdot 10^{-4}$	0,012	$6 \cdot 10^{-4}$		0,058	5,8.10-4			$1,0.10^{-3}$
279-1			$6 \cdot 10^{-3}$	$3 \cdot 10^{-4}$		0,065	$6,5 \cdot 10^{-4}$			$0,9 \cdot 10^{-3}$
280						0,071	$7,1.10^{-4}$			$1,0.10^{-3}$

Результаты расчетов К_{эф}

Для всех 18 исследованных критических систем были проведены расчеты значения $K_{3\phi}$ для построенных бенчмарк-моделей (табл. 2). Расчеты проводились по программе ПРИЗМА-Д с несколькими библиотеками нейтронных констант: БАС; библиотек, построенных на основе файлов ENDF BV, ENDF BVI и ENDF BVII. Результаты расчетов представлены в табл. 4. В третьей колонке табл. 4 для каждой критической системы указана погрешность бенчмарк-модели $2\sigma_{Kab}$.

По результатам расчетов можно сделать следующие выводы:

1. Для «голой» сборки из высокообогащенного урана значение $K_{3\phi}$, рассчитанное с библиотекой ENDF BVII, совпадает в пределах погрешности расчетной модели с экспериментом, остальные библиотеки нейтронных констант занижают значения $K_{3\phi}$: БАС на $\delta K_{3\phi} = 0,1...0,4$ %; ENDF BV/VI на $\delta K_{3\phi} = 0,15...0,5$ %.

2. Для систем с торцевым односторонним отражателем из меди с ростом его толщины значе-

ния $K_{3\phi}$, рассчитанные с константами БАС, возрастают на 0,05–0,22 %, что компенсирует занижение расчетных данных по отношению к экспериментальным: их различие не превосходит $3\sigma_{K_{3\phi}}$. Для

остальных констант увеличение толщины меди практически не влияет на расхождение расчетных и экспериментальных данных: для констант ENDF BV расчетные значения $K_{3\phi}$ несколько ниже (на 0,1–0,15 %), чем для «голой» урановой сборки, и ниже результатов измерений на 0,23–0,66 %; для констант ENDF BVI результаты расчетов $K_{3\phi}$ несколько больше (на 0,03–0,06 %) значения для PC270, но ниже данных экспериментов на 0,1–0,5 %; для констант ENDF BVII расчетные значения $K_{3\phi}$, как и для «голой» системы, в пределах погрешности совпадают с экспериментальными.

3. При переходе к системам с двусторонним отражателем для всех библиотек констант увеличение толщины меди проявляется более отчетливо: превышение $K_{3\phi}$ по сравнению с «голой» сборкой достигает для констант БАС 0,6 %, ENDF BVI – 0,36 %, ENDF BVII – 0,34 %, для ENDF BV наблюдается уменьшение до 0,44 %.

Таблица 4

Mo DC	Формуна	+25.	$K_{ m och}$ (1 σ \leq 0,01 %)						
Jinā LC	Формула	<u>т20к_{эф}</u>	БАС	ENDFB VI	ENDFB VII	ENDF BV			
Без отражателя									
PC270	6U + 5U	$\pm 0,0018$	0,9975	0,9966	1,0008	0,9967			
Односторонний отражатель									
PC283	6U + 5U + 1Cu	$\pm 0,0018$	0,9980	0,9970	1,0011	0,9959			
PC284	6U + 5U + 2Cu	$\pm 0,0018$	0,9983	0,9970	1,0011	0,9955			
PC285	6U + 5U + 3Cu	$\pm 0,0018$	0,9988	0,9969	1,0009	0,9952			
PC286	6U + 5U + 5Cu	$\pm 0,0018$	0,9992	0,9972	1,0012	0,9953			
PC287	6U + 5U + 7Cu	±0,0017	0,9993	0,9972	1,0010	0,9952			
PC288	6U + 5U + 10Cu	±0,0017	0,9997	0,9972	1,0014	0,9955			
PC289	6U + 5U + 3Cu + 4,8CH2	±0,0017	0,9977	0,9972	1,0011	0,9948			
PC291	6U + 5U + 5Cu + 4,8CH2	±0,0017	0,9982	0,9969	1,0009	0,9949			
PC292	6U + 5U + 5Cu + + 0,11Cd + 4,8CH2	±0,0017	0,9984	0,9970	1,0011	0,9952			
		Двусторон	ний отражате	ель					
PC271	1Cu + 5U + 6U + 1Cu	±0,0025	0,9981	0,9969	1,0010	0,9950			
PC271-1	1Cu + 5U + 5U + 1Cu	±0,0027	0,9970	0,9959	0,9999	0,9935			
PC272	2Cu + 5U + 5U + 2Cu	±0,0027	0,9987	0,9966	1,0007	0,9934			
PC274	3Cu + 5U + 4U + 3Cu	±0,0024	1,0008	0,9982	1,0024	0,9940			
PC276	4Cu + 5U + 4U + 4Cu	±0,0024	1,0002	0,9970	1,0011	0,9923			
PC278	5Cu + 4U + 5U + 5Cu	±0,0022	1,0037	1,0002	1,0042	0,9954			
PC279-1	5CH2 + 3Cu + 4U + 4U + + 3Cu + 4,8CH2	±0,0020	0,9998	0,9994	1,0036	0,9938			
PC280	5CH2 + 5Cu + 4U +4U + + 5Cu + 4,8CH2	±0,0020	1,0036	1,0010	1,0050	0,9950			

Результаты расчетов К_{эф} для критических систем

4. Все использованные системы нейтронных констант достаточно хорошо передают вклад в $K_{3\phi}$ полиэтиленового отражателя. Для критических систем с односторонним отражателем различие в расчетных значениях $K_{3\phi}$ для констант ENDF BV/VI/VII при наличии полиэтилена (PC289, PC291) и без него (PC285, PC286) всего 0,01–0,04 %, что существенно меньше погрешности, связанной с определением критического зазора $2 \cdot \frac{\partial K_{3\phi}}{\partial H_{\rm kp}} \cdot \delta H_{\rm kp} \approx 0,1$ %. Для констант БАС вклад

полиэтилена для этих же систем занижает результаты расчетов $K_{3\phi}$ на ~0,1 %, что соответствует уровню погрешности, связанной с определением критического зазора и являющейся некоррелированной составляющей погрешности для систем с односторонним отражателем.

Для систем с двусторонним отражателем выделить расчетный вклад полиэтилена сложнее, так как сборки содержат разное число урановых дисков и имеют большую погрешность бенчмаркмодели. Однако можно заметить, что отличие расчетных значений $K_{3\phi}$ от единицы для сборок при наличии полиэтилена (РС279-1 и РС280) и без него (РС274, РС278) для библиотеки ENDF BVII увеличивается на 0,12–0,18 % и изменяется в пределах ±0,1 % для констант БАС, ENDF BV/VI, что по величине соответствует составляющей погрешности, связанной с определением критического зазора.

5. Для критических систем с односторонним отражателем с увеличением толщины медного отражателя при использовании нейтронных констант БАС и ENDF BV увеличивается различие между расчетными значениями $K_{3\phi}$ и значением этой величины для «голой» сборки (рис. 3). Для констант ENDF BV это различие не превосходит некоррелированной составляющей погрешности $K_{3\phi}$, связанной с определением критического зазора (остальные некоррелированные погрешности – характеристики деталей из меди пренебрежимо

малы) и равной
$$2\sigma_{H_{\mathrm{kp}}} \sqrt{\left(\frac{\partial K_{9\phi i}}{\partial H}\right)^2 + \left(\frac{\partial K_{9\phi \mathrm{PC270}}}{\partial H}\right)^2} \approx$$

≈ $1,5 \cdot 10^{-3}$, в то время как для констант БАС различие непрерывно увеличивается и достигает $2,2 \cdot 10^{-3}$ при толщине меди 10 см. Для библиотек ENDF BVI/VII превышение $K_{3\phi}$ над его значением для PC270 слабо зависит от толщины медного отражателя и в среднем составляет 0,4–0,6 % для констант ENDF BVI и 0,3–0,4 для констант ENDF BVII.

Рис. 3. Разность $K_{3\phi}$ для РС с односторонним отражателем из меди и $K_{3\phi}$ «голой» сборки в зависимости от толщины отражателя для разных библиотек ядерных данных

Заключение

В данной работе представлены 18 критических размножающих систем из высокообогащенного урана и меди, которые были собраны на стенде ФКБН-2. Для исследованных РС построены расчетные бенчмарк-модели и выполнена оценка их погрешности. Представлены результаты расчетов $K_{эф}$ с использованием библиотек нейтронных констант БАС, ENDF BV, ENDF BVI и ENDF BVII.

Полученные результаты в виде описания критических систем, их расчетных бенчмарк-моделей можно использовать для верификации библиотек нейтронных констант и аттестации программных средств.

Список литературы

1. MCNP – A General Monte Carlo Code for Neutron and Photon Transport. Version 3A. LA-7396-M, Rev. 2 Manual. UC-32 Issued: September 1986.

2. Кандиев Я. З., Зацепин О. В., Михалькова А. Г. и др. Возможности программы ПРИЗМА-Д // Исследования в гигантских импульсах тепловых нейтронов от импульсных реакторов и в ловушках больших ускорителей. – Дубна, 2005, с. 193–201.

3. Кочубей Ю. К., Житкин А. К., Артемьева Е. В. и др. Программа С-95. Современное состояние и возможности // VI Межотраслевая конференция по радиационной стойкости: Сборник докладов (г. Саров, 14–20 октября 2002 г). – Саров: РФЯЦ-ВНИИЭФ. 2003. С. 100–104.

4. Леваков Б. Г., Лукин А. В., Магда Э. П., Погребов И. С., Снопков А. А., Терехин В. А. Импульсные ядерные реакторы РФЯЦ-ВНИИТФ. – Снежинск: Изд-во РФЯЦ-ВНИИТФ, 2002.

5. International Handbook of Evaluation Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, 2012.

6. Куропатенко Э. С., Огибин В. Н., Орлов А. И. и др. Библиотека нейтронных констант БАС-78 для расчетов методом Монте-Карло // Тезисы докладов 3-й Всесоюзной научной конференции по защите от ионизирующих излучений ядерно-технических установок. – Тбилиси, 1981, с. 59.

7. ENDF-102. Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6. Ed. V. McLane. BNL-NCS-44945-01/04-Rev., 2001.

Контактная информация -

Соколов Юрий Александрович, начальник лаборатории НТО-5 РФЯЦ-ВНИИТФ, тел. (35146) 51149

Статья поступила в редакцию 11.07.2014.

Вопросы атомной науки и техники. Сер. Физика ядерных реакторов, 2014, вып. 3, с. 34–41.