ОЦЕНКА СЕЧЕНИЙ ОБРАЗОВАНИЯ РАДИОАКТИВНЫХ ЯДЕР 10 Ве ПРИ ВЗАИМОДЕЙСТВИИ ДЕЙТРОНОВ С 9 Ве

EVALUATION OF CROSS SECTION OF ¹⁰Be RADIOACTIVE NUCLEI PRODUCTION AT DEUTERON INTERACTIONS WITH ⁹Be

Л. Н. Генералов, С. М. Селянкина, С. М. Таова, В. А. Жеребцов L. N. Generalov, S. M. Selyankina, S. M. Taova, V. A. Zherebtsov

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Russian Federal Nuclear Center – All-Russia Research Institute of Experimental Physics

Проведение работ обусловлено необходимостью уточнения оцененных значений сечений ${}^9\mathrm{Be}(\mathrm{d,x})^{10}\mathrm{Be}$, представленных в международной библиотеке оценённых данных TENDL (версия 2014 г.) [1]. Оценка выполнена на основании экспериментальных данных [2], [3], которые формально различаются в 1.8 раза, а на самом деле, хорошо согласуются. В работе [2], относящейся к 1955 г., сечения измерены радиохимическим методом по регистрации β -частиц распада ядер ${}^{10}\mathrm{Be}$. При обработке результатов измерений авторы [2] использовали значение периода полураспада ${}^{10}\mathrm{Be}$, равное $2.7 \cdot 10^6$ лет, а его современное значение — $1.51 \cdot 10^6$ лет [4]. Использование современного значения периода полураспада приводит к уменьшению значений сечений [2] в 1.8 раза. В [3] сечения образования ${}^{10}\mathrm{Be}$ получены суммированием измеренных парциальных сечений ${}^{9}\mathrm{Be}(\mathrm{d},\mathrm{p_i}){}^{10}\mathrm{Be}^*(\mathrm{E_i})$: суммирование ведется до первого ядерно-нестабильного уровня 7,371 МэВ [5]. Такие же данные имеются для энергии дейтронов 11.8 МэВ [6]. Настоящая оценка выполнена с использованием математического аппарата электронной библиотеки SaBa [7].

The carrying out of works is conditioned by the necessity of refining evaluated values of ${}^9\text{Be}(d,x)^{10}\text{Be}$ cross-sections presented in international library of evaluated data TENDL (version of 2014) [1]. The evaluation is fulfilled on the base of experimental data [2], [3], that formally differ by a factor of 1.8, while in reality they agree quite well. In paper [2] referring to 1955 the cross-sections were measured with the use of radiochemical method by registering β -particles of ${}^{10}\text{Be}$ nuclei decay. When processing the results of measurements the authors [2] took advantage of the value of the ${}^{10}\text{Be}$ half-life period equal to $2.7 \cdot 10^6$ years, while its present value is $1.51 \cdot 10^6$ years [4]. The use of the present half-life value leads to decrease of cross-section values [2] by a factor of 1.8. In paper [3] the cross-sections of ${}^{10}\text{Be}$ production are found by summation of the measured partial cross-sections ${}^9\text{Be}(d,p_i)^{10}\text{Be}^*(E_i)$: the summation is carried out till the first unstable level 7.371 MeV [5]. The same data are available for the energy of deuterons equal to 11.8 MeV [6]. The present evaluation is fulfilled with the use of software of electron library SaBa [7].

Введение

Одна из потребностей в ядерных данных по реакциям на бериллии вытекает из задач прогнозирования радиоактивности термоядерных установок. Проведенные расчеты по образованию радиоактивных ядер ¹⁰Ве в бланкете NET-TYPE CTR [8] показали, что накопление этих ядер возникает в основном из реакций 10 B(n,p) 10 Be_{gs} и 9 Be(d,p) 10 Be. Для протекания последней реакции быстрые дей-

троны рождаются из нейтронных реакций. Следует отметить, что мы здесь и далее используем равнозначные обозначения 10 Be_{gs} и 10 Be.

Настоящая работа обусловлена тем, что в международной библиотеке оцененных данных TENDL (версия 2014 г. [1]) представлена ошибочная оценка сечений реакции ${}^{9}\text{Be}(d,x){}^{10}\text{Be}_{gs}$. В этой библиотеке оценка выполнена с помощью программного кода TALYS [9] на основании экспериментальных данных [2, 3], которые формально

Таблица 1

различаются в 2 раза, а на самом деле хорошо согласуются между собой. В работе [2], выполненной в 1955 г., сечения измерены радиохимическим методом по регистрации β-частиц распада ядер 10 Ве_{σs}. При обработке результатов измерений авторы [2] использовали значение периода полураспада 10 Ве_{gs}, равное $2.7 \cdot 10^6$ лет, а его современное значение $(1.51 \pm 0.06) \cdot 10^6$ лет [4]. Использование современного значения периода полураспада понижает данные [2] в 1.788 раза. Аналогичная ситуация [10 и ссылки в ней] наблюдается для реакций ${}^{10}\mathrm{Be}(\mathrm{d,p}){}^{11}\mathrm{Be}, {}^{10}\mathrm{Be}(\mathrm{d,\alpha}){}^{8}\mathrm{Li}$ и ${}^{10}\mathrm{Be}(\mathrm{p,\gamma}){}^{11}\mathrm{B}.$ Для абсолютизации сечений этих реакций толщины мишеней определялись с помощью измерения активности β -частиц распада ядер $^{10}{\rm Be}_{\rm gs}$, при этом период полураспада ядер 10Ве принимался равным $2.7 \cdot 10^6$ лет.

В [3] сечения образования $^{10}{\rm Be_{gs}}$ получены суммированием измеренных парциальных сечений реакций $^{9}{\rm Be}({\rm d},p_i)^{10}{\rm Be}^*(E_i)$: суммирование ведется до первого ядерно-нестабильного уровня 7,371 МэВ [11]. Такие же данные имеются и при энергии дейтронов 11.8 МэВ [12].

Экспериментальные сечения реакции ${}^{9}\text{Be}(d,x)^{10}\text{Be}_{gs}$

Впервые сечения реакции ${}^9{\rm Be}({\rm d},{\rm x})^{10}{\rm Be}_{\rm gs}$ были измерены в [2]: использовался метод регистрации

радиоактивных ядер 10 Be, накопленных в облученной бериллиевой мишени, из которой эти ядра переносились в счетчик Гейгера для регистрации β -частиц их распада. По активности β -частиц определялось количество ядер 10 Be $_{\rm gs}$, образованных в облученной мишени. Данные в этой работе получены в интервале энергий дейтронов от 1 до $22~{\rm M}{
m 9B}$.

Сечения реакции ${}^{9}\text{Be}(d,x){}^{10}\text{Be}_{gs}$ с высокой точностью можно определить (табл. 1) из суммы сечений $\sigma_{\Sigma pi}$ реакций ${}^{9}\text{Be}(d,p_0){}^{10}\text{Be}_{gs}$, ${}^{9}\text{Be}(d,p_1){}^{10}\text{Be}^*(3.368)$, ${}^{9}\text{Be}(d,p_2){}^{10}\text{Be}^*(5.958)$, ${}^{9}\text{Be}(d,p_3){}^{10}\text{Be}^*(5.9599)$, ${}^{9}\text{Be}(d,p_4){}^{10}\text{Be}^*(6.1793)$, ${}^{9}\text{Be}(d,p_5){}^{10}\text{Be}^*(6.2633)$. Так как уровни ${}^{10}\text{Be}$, лежащие по энергии выше 5 уровня, — ядернонестабильны, то реакции с их возбуждением вносят малый вклад в образование ${}^{10}\text{Be}_{gs}$.

Этим методом были получены сечения в [3] при E_d = 5–11 МэВ и в [12] при E_d = 11,8 МэВ (табл. 2). В указанных работах по регистрации протонов были измерены дифференциальные сечения (угловые распределения) реакций ${}^9\text{Be}(d,p_0){}^{10}\text{Be}_{\text{gs}}$. ${}^9\text{Be}(d,p_1){}^{10}\text{Be}^*(3.368), }^9\text{Be}(d,p_{2+3}){}^{10}\text{Be}^*(5.958+5.9599), }^9\text{Be}(d,p_{4+5}){}^{10}\text{Be}^*(6.1793+6.2633). Из полученных дифференциальных сечений определялись интегральные сечения этих реакций, в сумме составляющие сечение реакции <math>{}^9\text{Be}(d,x){}^{10}\text{Be}_{\text{gs}}$.

Уровни ¹⁰Ве [11], заселяемые в реакциях ⁹Ве(d,p_i)

Номер уровня ¹⁰ Ве	Энергия уровня, МэВ	J^{π} ;T	τ _{1/2} или Γ (кэВ)	Тип распада ¹⁰ Ве	<i>Q</i> , МэВ	Порог реакции, МэВ
0 или gs	0	0+; 1	1.51·10 ⁶ лет	β-	4.587	
1	3.368	2 ⁺ ;1	180 фс	γ	1.319	
2	5.958	2 ⁺ ;1	$\tau_{\rm m} < 80 \varphi c$	γ	-1.371	1.675
3	5.9599	1-; 1		γ	-1.373	1.678
4	6.1793	0 ⁺ ;1	1.1 пс	γ	-1.591	1.947
5	6.2633	2 ⁻ ; 1		γ	-1.676	2.051
6	7.371	3 ⁻ ; 1	15.7 кэВ	n	-2.784	3.409

Таблица 2 Сечения образования ядер $^{10}{\rm Be}_{\rm gs}$ при взаимодействии дейтрона с $^{9}{\rm Be}$ [3,12]

E_d , МэВ	$\sigma_{\Sigma m pi}$, мб	случайная погрешность, мб	E_d , МэВ	$\sigma_{\Sigma m pi}$, мб	случайная погрешность, мб
5.0	151	2	8.0	97.9	1.5
5.5	142	2	9.0	84.4	1.5
6.0	128	2	10.5	78.0	2.3
6.5	124	2	11.0	68.4	2.3
7.0	118	2	11.8 [12]	67.1	6.4*
7.5	107.2	1.5			

^{* –} полная погрешность, систематическая погрешность данных [6] - 3 %.

Таблица 3 Сечения реакций ${}^9\mathrm{Be}(\mathrm{d},\mathrm{p}_0){}^{10}\mathrm{Be}_{\mathrm{gs}}$ и ${}^9\mathrm{Be}(\mathrm{d},\mathrm{p}_1){}^{10}\mathrm{Be}^*(3.368)$ при $E_d < 1,7$ МэВ

E_d , МэВ	σ _{dp0} , мб	Полная погрешность $\sigma_{\rm dp0}$, мб	σ _{dpl} , мб	Полная погрешность	$\sigma_{dp0^+}\sigma_{dp1}, \ ext{m} \delta$	Полная погрешность $\sigma_{dp0} + \sigma_{dp1}$, мб	Ссылка
0.1034	0.0018	1.4·10-4	0.00535	4·10 ⁻⁴	0.00715	4.23792·10 ⁻⁴	
0.123	0.00795	4.8·10 ⁻⁴	0.0106	9.10-4	0.01855	0.00102	
0.1425	0.0233	0.0014	0.0382	0.0024	0.0615	0.00278	[13]
0.1504	0.0332	5.10-4	0.0484	6.10-4	0.0816	$7.81025 \cdot 10^{-4}$	
0.162	0.0472	0.003	0.0767	0.005	0.1239	0.00583	
0.19	0.22	0.11	0.275	0.13	0.495	0.17029	[14]
0.9	13.6	0.2	15.2	0.5	28.8	0.53852	<u> </u>
1	14	0.2	17.8	0.5	31.8	0.53852	
1.1	13.2	0.2	18.5	0.6	31.7	0.63246	
1.2	13.4	0.4	19.8	0.6	33.2	0.72111	[15]
1.3	14.2	0.2	22.6	0.7	36.8	0.72801	
1.4	15.2	0.4	24.6	0.7	39.8	0.80623	
1.5	14.5	0.6	28	0.8	42.5	1	
1.6	15.2	0.4	33.7	1	48.9	1.07703	
0.359	1.77	0.5	1.64	0.2	3.41	0.53852	
0.463	4.2	0.13	3.334	0.37	7.534	0.39217	
0.567	6.8	0.2	6.09	0.65	12.89	0.68007	
0.708	9.73	0.3	8.32	0.71	18.05	0.77078	
0.718	9.93	0.3	7.17	0.75	17.1	0.80777	
0.728	10.1	0.3	9.18	0.78	19.28	0.8357	[1 4]
0.739	10.1	0.3	9.59	0.81	19.69	0.86377	[16]
0.749	9.9	0.3	9.85	0.85	19.75	0.90139	
0.758	9.71	0.3	9.4	0.84	19.11	0.89196	
0.769	9.71	0.3	9.78	0.85	19.49	0.90139	
0.778	9.95	0.3	10.2	0.84	20.15	0.89196	
0.789	10.4	0.3	10.6	0.83	21	0.88255	
0.8	10.8	0.3	11.5	0.83	22.3	0.8825	

Как было отмечено, основная причина систематического завышения данных [2] связана с использованием в этой работе неверного значения периода полураспада $^{10}{
m Be}_{
m gs}$. По этой причине результаты [2] завышены в $K(T_{1/2})=1,788$ раза. Однако и после учета этого фактора получаем, что результаты первой серии измерений [2] будут завышены в $(1,08\pm0,04)$, а второй серии – в $(1,13\pm0,03)$ раза по сравнению с данными [3], то есть в среднем завышение исправленных данных [2] по сравнению с данными [3] составит (1.11 ± 0.03) раза. Если же при $E_d = 11.8$ МэВ сравнить исправленное значение сечения [2] с величиной [12], то завышение исправленного сечения [2] составит (1.19±0.11) раза. Таким образом, исправленные данные [2] остаются завышенными отноданных [3, 12] В среднем $K_S = (1,15\pm0,04)$ раза. В этой связи отметим, что возможно и современное значение периода полураспада 10 Ве $(1,51\pm0,06)\cdot10^6$ лет [4] завышено. Для

настоящей оценки данные [2] были снижены в $K(T_{1/2}) \cdot K_S = 2,056$ раза.

При энергиях дейтронов ниже величины порогов реакций ${}^9\mathrm{Be}(\mathrm{d},\mathrm{p}_{2+3})^{10}\mathrm{Be}^*(5.958+5.9599)$ и ${}^9\mathrm{Be}(\mathrm{d},\mathrm{p}_{4+5})^{10}\mathrm{Be}^*(6.1793+6.2633)$ сечение реакции ${}^9\mathrm{Be}(\mathrm{d},\mathrm{x})^{10}\mathrm{Be}_{\mathrm{gs}}$ равно сумме сечений реакций ${}^9\mathrm{Be}(\mathrm{d},\mathrm{p}_0)^{10}\mathrm{Be}_{\mathrm{gs}}$ и ${}^9\mathrm{Be}(\mathrm{d},\mathrm{p}_1)^{10}\mathrm{Be}^*(3.368)$. Наш анализ существующих экспериментальных данных в этой области энергии можно найти в [3], где также приведены результаты наших измерений в интервале от 3 до 11 МэВ. Для оценки сечений ${}^9\mathrm{Be}(\mathrm{d},\mathrm{x})^{10}\mathrm{Be}_{\mathrm{gs}}$ в этом энергетическом диапазоне использовались данные анализа из работы [3] (табл. 3).

Оценка полных сечений реакций в библиотеке SABA

В библиотеке SaBa экспериментальные и оцененные данные представлены в виде полных сечений реакций и астрофизических S-факторов. Для

проведения оценки экспериментальные значения сечений реакций σ преобразуются в астрофизические факторы

$$S(E_{\text{IIM}}) = \sigma(E_{\text{IIM}}) E_{\text{IIM}} \exp\left(\sqrt{\frac{E_g}{E_{\text{IIM}}}}\right),$$
 (1)

где $E_{\rm цм}$ — энергия в системе центра масс во входном канале, E_g — энергия Гамова, определяемая как

$$\sqrt{E_g} = 0.98948z_1z_2\sqrt{\frac{m_1m_2}{m_1 + m_2}},$$
 (2)

 z_1 , z_2 — заряды налетающей частицы и ядра мишени, m_1 , m_2 — массы налетающей частицы и ядра мишени в а.е.м.

Оцененная кривая в библиотеке в общем случае является суммой гладкой и резонансной частей:

$$f = S_p(E) + R_l(E). (3)$$

Описание резонансной части с числом пиков n и фоном степени p проводится на основе выражения Брейта — Вигнера:

$$R_{l}(E) = \sum_{i=0}^{n_{l}-1} \frac{H_{i}(\Gamma_{i}/2)^{2}}{(E-E_{i})^{2} + (\Gamma_{i}/2)^{2}} + \delta_{l} \sum_{j=0}^{p_{l}} a_{j}(E-x_{0})^{j}, (4)$$

где H_i — высота пика; E_i — положение пика; Γ_i — ширина на полувысоте; δ_l = 0 или 1, в зависимости от того, учитывается или нет фон резонансной области в окончательном приближении; x_0 — начало интервала, подогнанного данным R_l .

Нерезонансные части оцениваемой кривой проводятся с использованием полиномиального описания кубическими сплайнами, которые определены на сетке узлов $\{x_0 < x_1 < ... x_{n-1} < x_n\}$. В общем виде гладкая часть выражается как

$$S_p(E) = \sum_{i=0}^{p} a_i (E - x_0)^i$$
 (5)

где a_i — коэффициент сплайна; x_0 — левая граница интервала, на котором определены приближаемые данные.

Приближающая кривая строится путем поиска оптимального набора параметров сплайна — количества узлов, их энергий, дефектов, величины систематической ошибки данных. Оцененная кривая астрофизического S-фактора определяется путем минимизации величины χ^2 :

$$\chi^2 = \frac{\sum_{i=1}^{N_d} \left(\frac{S_i - f(E_i)}{\sigma_i} \right)^2}{N_d - N_p}, \tag{6}$$

где $\{E_i, S_i, \sigma_i\}$ — точка экспериментальных данных с полной ошибкой σ_i , N_d — число этих точек, N_p — число подгоняемых параметров.

Оцененные значения астрофизического S-фактора в SaBa хранятся в виде набора коэффициентов сплайна. При просмотре данных, записанных в библиотеку, происходит восстановление оцененной кривой по ее коэффициентам.

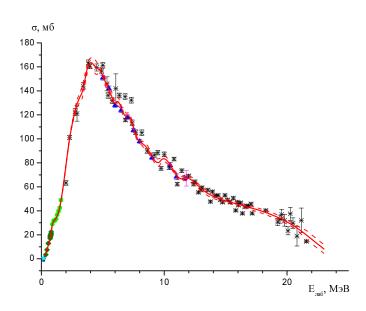


Рис. 1. Оценённые значения полных сечений реакции 9 Be(d,x) 10 Be. * − [2], • − [15], • − [3], • − [16], • − [13], * − [14], − оценённая кривая

На рис. 1 представлены оцененные значения полных сечений реакции взаимодействия дейтронов с ядрами ⁹Ве с образованием ядра ¹⁰Ве, полученные в настоящей работе. Для проведения оценки были использованы два типа подгонки, имеющиеся в SaBa — сплайнами и резонансами. Результирующие резонансные параметры представлены в табл. 4, параметры фонового полинома указаны в табл. 5. Коэффициенты аппроксимирующего сплайна оцененных значений *S*-фактора реакции ⁹Ве(d,x)¹⁰Ве приведены в табл. 6.

Таблица 4 Значения резонансных параметров оцененной кривой *S*-фактора реакции ⁹Be(d,x)¹⁰Be

Номер пика	Е, МэВ	Г, МэВ	Н, мб∙МэВ	
1	$5,9198 \cdot 10^{-1}$	$5,7938 \cdot 10^{-2}$	$1,2988 \cdot 10^{-3}$	

Таблица 5 Значения коэффициентов полинома, описывающего фон резонансной области

Степень		Коэффициенты полинома					
поли-	${E}_0$	\mathbf{A}_0	Α.	Aa			
нома		7 10	7 1	112			
2	$4.9386 \cdot 10^{-1}$	$6.9993 \cdot 10^3$	$-2.8623 \cdot 10^2$	-5.7607			

Последняя строка в табл. 6 содержит лишь значение энергии конечного узла сплайна. Это – правая граница интервала определения сплайна. После нее осуществляется переход к экстраполяционным формулам. В настоящей работе для получения продолжений оцененной кривой в область низких (менее 0.08451 МэВ) и высоких (более 17.62186 МэВ) энергий использовались полиномы первой степени. Полином первой степени представляет собой прямую линию с сохранением угла наклона, определенного ходом кривой в предыду-

Таблица 6 Значения коэффициентов сплайна оцененной кривой S-фактора реакции ${}^9\mathrm{Be}(\mathrm{d,x}){}^{10}\mathrm{Be}$

	T T	l		T			
Энергия узла	Дефект	Коэффициенты сплайна					
сплайна, МэВ	Дефект	C_0	C_1	C_2	C_3		
0.08451	1	$1.27268 \cdot 10^4$	-1.33096·10 ⁴	-8.99256·10 ⁴	$1.31766 \cdot 10^5$		
0.65580	1	$3.42056 \cdot 10^2$	$1.29559 \cdot 10^4$	$1.35902 \cdot 10^5$	$-3.30705 \cdot 10^6$		
0.69714	2	$8.76286 \cdot 10^2$	$7.23542 \cdot 10^3$	-1.79572·10 ⁵	$5.50384 \cdot 10^5$		
0.83248	2	$-6.92294 \cdot 10^{1}$	$-1.11274 \cdot 10^4$	$2.25507 \cdot 10^4$	$-1.05022 \cdot 10^4$		
1.67882	1	$2.99370 \cdot 10^2$	$4.47582 \cdot 10^3$	$-4.11460 \cdot 10^3$	$1.18356 \cdot 10^3$		
2.64833	2	$1.84977 \cdot 10^3$	$-1.65022 \cdot 10^2$	$1.09227 \cdot 10^4$	-1.43690·10 ⁴		
3.05768	1	$2.62688 \cdot 10^3$	$1.55409 \cdot 10^3$	$-6.72310 \cdot 10^3$	$5.11423 \cdot 10^3$		
3.74710	2	$2.17865 \cdot 10^3$	$-4.23539 \cdot 10^2$	$-2.79540 \cdot 10^3$	$2.12838 \cdot 10^3$		
4.50117	2	$1.18236 \cdot 10^3$	$-1.00870 \cdot 10^3$	$-4.64849 \cdot 10^3$	$9.87924 \cdot 10^3$		
4.97515	2	$7.11907 \cdot 10^2$	$1.24308 \cdot 10^3$	$-7.09866 \cdot 10^3$	$6.54405 \cdot 10^3$		
5.66458	2	$3.39288 \cdot 10^2$	$7.86439 \cdot 10^2$	$-3.89105 \cdot 10^3$	$1.20623 \cdot 10^3$		
6.11702	2	$1.03180 \cdot 10^{1}$	$-1.99373 \cdot 10^3$	$3.17278 \cdot 10^3$	$-1.73088 \cdot 10^3$		
6.95726	1	$-4.51684 \cdot 10^2$	$-3.27963 \cdot 10^2$	$-1.19029 \cdot 10^3$	$1.38997 \cdot 10^3$		
7.92677	2	$-6.21788 \cdot 10^2$	$1.28356 \cdot 10^3$	$-2.36260 \cdot 10^3$	$9.87929 \cdot 10^2$		
9.41335	2	$-6.89257 \cdot 10^2$	$8.08915 \cdot 10^2$	$-1.01520 \cdot 10^3$	$3.62104 \cdot 10^2$		
10.53367	1	$-5.48036 \cdot 10^2$	$-1.02323 \cdot 10^2$	$2.01824 \cdot 10^2$	$-3.53222 \cdot 10^{1}$		
12.19261	1	$-3.23614\cdot10^2$	$2.75675 \cdot 10^2$	$2.60317 \cdot 10^{1}$	-7.31535		
17.62186	0	_	_	_	_		

Таблица 7 Значения коэффициентов сплайна оцененной кривой S-фактора реакции ${}^9\mathrm{Be}(\mathrm{d},\mathrm{x}){}^{10}\mathrm{Be}_{\mathrm{gs}}$ при экстраполяции в область низких и высоких энергий

Направление	Тип полинома,	п полинома, Энергия узла		Коэффициенты сплайна			
экстраполяции	степень	сплайна, МэВ	C_0	\mathbf{C}_1	C_2	C_3	
менее 0.08451 МэВ	1	0.08451	$1.27268 \cdot 10^4$	-1.3310·10 ⁴	0	0	
более 17.62186 МэВ	1	17.62186	$7.69701 \cdot 10^2$	-8.8558·10 ¹	0	0	

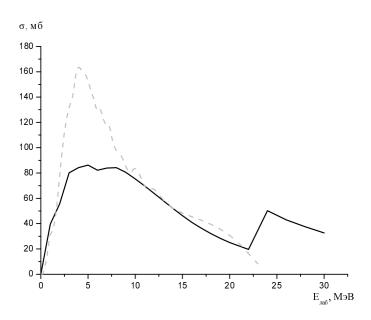


Рис. 2. Сравнение оценённых данных из библиотек SaBa (пунктирная кривая) и TENDL-2014 (сплошная кривая)

щем интервале оценки. Коэффициенты экстраполирующего полинома аппроксимирующей функции S-фактора реакции $^9\mathrm{Be}(\mathrm{d,x})^{10}\mathrm{Be_{gs}}$ указаны в табл. 7.

Как было указано выше, при просмотре данных в библиотеке SaBa происходит восстановление оцененной кривой по ее коэффициентам. С использованием указанных в таблицах 4, 5 коэффициентов по формуле (2) вычисляются значения резонансной части оцененной кривой. Гладкая часть аппроксимирующей функции астрофизического S-фактора вычисляется с применением коэффициентов сплайна (табл. 6 и 7) по следующей формуле:

$$S(E) = C_0 + C_1 h + C_2 h^2 + C_3 h^3, \tag{7}$$

где $h = E - x_0$, E — значение энергии выбранное, x_0 — значение энергии узла сплайна, $x_0 < E < x_{0+1}$, C_i , i = 0, 1, 2, 3 — значения коэффициентов сплайна, соответствующие данному узлу.

Из полученных значений астрофизических S-факторов полное сечение реакции ${}^9\mathrm{Be}(\mathrm{d,x}){}^{10}\mathrm{Be}$ рассчитывается с использованием формулы (1).

Нами было проведено сравнение результатов настоящей работы с данными библиотеки TENDL, версия 2014 г. (программный код TALYS). На рис. 2 представлены зависимости оцененных значений полных сечений реакции ${}^9\text{Be}(\text{d},\text{x}){}^{10}\text{Be}$ от энергии налетающих частиц, полученные нами, и приведенные в библиотеке TENDL.

Из приведенного рис. 2 видно, что значительные расхождения наблюдаются в интервале

энергии 2.5 – 10 МэВ. Максимальное отличие в значениях сечений наблюдается при энергии налетающих частиц около 5 МэВ. Оцененные значения сечений из библиотеки SaBa при этой энергии почти в два раза превышает значения сечений из библиотеки TENDL-2014.

Заключение

Выполнен подробный анализ экспериментальных данных по полным сечениям образования радиоактивных ядер ¹⁰Ве при взаимодействии дейтронов с ⁹Ве. Выполнена перенормировка данных [2], которой объясняется использованием в этой работе неверного значения периода полураспада ¹⁰Ве_{gs}. На основании проведенного анализа и отбора экспериментальных значений в библиотеке SaBa получена оценка полных сечений реакции ⁹Ве(d,x)¹⁰Ве. Сравнение оцененных данных из библиотек SaBa и TENDL-2014 выявило наличие существенных разногласий в представленных значениях сечений.

Список литературы

- 1. Koning A. J., <u>Rochman</u> D., van der Marcket S. C., et al. TENDL-2014: TALYS-based evaluated nuclear data library // <u>ftp://ftp.nrg.eu/pub/www/</u>talys/tendl2014/tendl2014.html.
- 2. Heft R. E., Libby W. F. Absolute cross sections for deuterons on Beryllium. // Physical Review. 1955. Vol. 100. P. 799–813.

3. Генералов Л. Н., Абрамович С. Н., Звенигородский А. Г. Сечения реакций ${}^9\mathrm{Be}(d,\ p_{0,1})$ и ${}^9\mathrm{Be}(d,\ t_0)$ // Известия РАН. Серия Физическая. 2000. Т. 64. С. 440–446.

- 4. Audi G., Bersillon O., Blachot J., et al. The NUBASE evaluation of nuclear and decay properties. // Nuclear Physics. 2003. Vol. A729. P. 3–128.
- 5. Ajzenberg-Selove F. Energy levels of light nuclei.//Nuclear Physics. 1979. Vol. A320. P. 1–224.
- 6. Schmidt-Rohr U., Stock R., Turek P. Die winkelvertellungen der protonen aus den reaktionen ${}^9\mathrm{Be}(d,\ p){}^{10}\mathrm{Be},\ {}^{12}\mathrm{C}\ (d,\ p){}^{13}\mathrm{C},\ {}^{16}\mathrm{O}\ (d,\ p)\ {}^{17}\mathrm{O}\ und\ {}^{40}\mathrm{Ca}\ (d,\ p)\ {}^{41}\mathrm{Ca}\ bei\ 11.8\ MeV.\ //\ Nuclear\ Physics.\ 1964.\ Vol.\ 53.\ P.\ 77–86.$
- 7. Zvenigorodskij A.G., Zherebtsov V. A., Lazarev L. M., et al. The library of evaluated and experimental data on charged particles for fusion application. // Report IAEA-NDS-191, Vienna.1999.

- 8. Beynon T. D., Sim B. S. ¹⁰Be and ¹⁴C production rates in NET-TYPE CTR blankets // Ann. Nucl. Energy. 1990. Vol. 17. No. 5. P. 271.
- 9. Koning A. J., Rochman D. // Nucl. Data Sheets. 2012. V. 113. P. 2841.
- 10. Goosman D. R., Kavanagh R. W. // Phys. Rev. C. 1973. Vol. 7. No.4. P. 1717.
- 11. Ajzenberg-Selove F. // Nucl. Phys. 1979. A320. P. 144.
- 12. Schmidt-Rohr U. et al. // Nucl. Phys. 1964. Vol. 53. P. 77.
- 13. Yan J., Cecil F.E., McNeil J.A., Hofstee M.A., Kunz P.D. // Phys. Rev.C. 1997. Vol. 55. P. 1890.
 - 14. Perchereau J. // Rapport CEA-R-4070. 1971.
- 15. Zwieglinski B. et al. // Nucl. Phys. A. 1975. Vol. 250. P. 93.
- 16. Annegarn J. et al. // Phys. Rev. C. 1974. Vol. 9. P. 419.