МАССЫ АДРОНОВ В МОДЕЛИ ВАКУУМНОГО ПУЗЫРЬКА

М. В. Косов

ФГУП ВНИИА, Россия, Москва, Сущевская ул., 22

1. Введение

В работе [1] была предложена SU(3)xSU(6) модель кирального фазового объема CHIPS (Chiral-invariant phase space) для расчета масс адронов, состоящих из легких кварков. Главной задачей работы [1] было продемонстрировать, что температура кирального фазового перехода Т_с, которая использовалась в динамической CHIPS модели [2-6] не противоречит статическим адронным массам и нуклонным структурным функциям [7, 8]. Но в то время как тяжелые кварки были включены моделью CHIPS в структурные функции [7], не было очевидно, что та же критическая температура сможет описать массы адронов, содержащих тяжелые кварки. В этой работе удалось обобщить цвето-электрические и цвето-магнитные сдвиги масс на тяжелые кварки, и универсальный статус критической температуры был подтвержден. Поскольку тяжелые кварки теперь включены в модель, модель не может больше называться киральной. По этой причине она переименована в модель Вакуумного Пузырька (VBM - Vacuum Bubble Model). Вакуумный пузырек имеет воображаемые границы, которые условно разделяют внутренний пертурбативный вакуум и внешний непертурбативный вакуум, который характеризуется температурой фазового перехода Т_с.

Схематически Вакуумный пузырек показан на рис. 1. Валентные кварки 1*S*-адронов сконцентрированы вблизи области асимптотической свободы [9,10], расположенной в центре пузырька и имеющей радиус приблизительно 0,2 фм. Этот радиус соответствует энергии 1 ГэВ, при которой $\alpha_s(m)$ становится малой величиной. Непертурбативный вакуум восстанавливается на радиусе порядка $R = \hbar c / T_c = 1$ фм. Объем между этими двумя радиусами заполнен гипотетическим «виртуальным газом» глюонов и кварк-антикварковых пар с температурой Т_с и может рассматриваться как термостат для локальной внутренней области конфайнмента. Формула для базовых масс, выведенная в [1] для температуры термостата Т_с коротко обсуждается во втором разделе.

Рис. 1. Схематическое изображение Вакуумного Пу-

Непертурбативный вакуум

Рис. 1. Схематическое изображение Вакуумного Пузырька с переходом от «жидкой фазы» непертурбативного вакуума через «газовую фазу» к области асимптотической свободы

Цвето-электрический массовый сдвиг пренебрежимо мал для легких кварков, поскольку их у-функция распространяется далеко за пределы области ассимптотической свободы, и поэтому их цвето-электрический заряд экранируется «виртуальным газом», присутствующим в промежуточной области. В VBM модели цвето-электрическое характеризуется экранирование радиусом $r_{\rho} = \hbar c / \rho = 0.32$ фм, где $\rho = 1.6$ ГеВ⁻¹ – это параметр функции экранировки $S = 1 - e^{-\rho\mu}$. Таким образом, цвето-электрический массовый сдвиг для кварковых пар с малой приведенной массой равен нулю. Для более тяжелых кварков цвето-электрически сдвиг возрастает, поскольку цвето-электрическое взаимодействие втягивает кварки в область асимптотической свободы с глубоким «Кулоновским» взаимодействием, где экранировка уже мала. Сувеличением приведенной массы µ, например для sh кварковой пары (h обозначает c или b кварк), отрицательный цвето-электрический массовый сдвиг медленно растет от нуля, а когда µ достигает большой величины для cc, bc и bb пар, начинает уменьшаться пропорционально он $\alpha_{s}(3\mu_{ii}/2)$, где $\mu_{ii} = m_{i}m_{i}/(m_{i}+m_{i})$ – приведенная масса двух кварков, а коэффициент f = 3/2 - 370параметр модели, позволяющий связать шкалу масс QCD с приведенной массой взаимодействующих кварков. Цвето-магнитное взаимодействие рассчитывается в соответствии с правилом пара-статистики для ориентации спинов, которое позволяет вычислить коэффициенты $a_{ii} = -\langle \lambda_i \lambda_j \rangle \langle s_i, s_j \rangle$ [1]. Для легких кварков цветомагнитное взаимодействие пропорционально цвето-магнитным моментам кварков и, следовательно, обратно пропорционально средним энергиям $\alpha_s(3\mu_{ii}/2)$ двух взаимодействующих кварков $(M_{CM})^{3}/(E_{i}E_{i})$ [1]. Для тяжелых кварков оно обобщается в форме $A_{CM}\alpha_s(3\mu_{ii}/2) (\mu_{ii})^2/(E_iE_i)$, поскольку кварки втягиваются в «кулоновскую» область, где эволюционные радиусы валентных кварков перекрываются. Было найдено, что область конфайнмента $4\pi R^{3}/3$ увеличивается с увеличением числа валентных кварков, и $|\psi_3(0)|^2$ в барионах оказалась на 9 % меньше, чем $|\psi_2(0)|^2$ в мезонах. Величина $|\psi(0)|^2$ является фактором цвето-магнитного взаимодействия. Детально цвето-электрические и цвето-магнитные массовые сдвиги обсуждаются в третьем разделе.

Полученных после подгонки параметров VBM масс сравниваются с экспериментальными значениями масс 1S-адронов. Демонстрируется точность описания масс в несколько МэВ. С использованием найденных параметров сделаны предсказания для масс барионов с двумя и тремя тяжелыми кварками, и VBM предсказания сравниваются с предсказаниями других моделей. Рассчитанные массы измеренных адронов и предсказания для неизмеренных адронов обсуждаются в четвертом разделе.

2. VBM формула для базовых масс

Формула для базовых масс, которая не учитывает цвето-электрические и цвето-магнитные сдвиги масс, была выведена в [1]. Эта масса адрона определяется как среднеквадратичная эффективная масса валентных кварков при температуре T_c :

$$M^{2} = \Sigma m_{i}^{2} + 2\Sigma_{j>i} \left(2T_{c} + x_{i} \right) \left(2T_{c} + x_{j} \right), \qquad (1)$$

где m_i – массы кварков, $x_i = m_i \cdot K_0(m_i \cdot R) / K_1(m_i \cdot R)$, $K_0(x)$ и $K_1(x)$ – функции Макдональда. Для $m_i >> T_c$ можно воспользоваться приближением $x_i = m_i - T_c/2$, что приводит к средней кинетической энергии $3(n-1)T_c/(2n)$ на один кварк, а в пределе $T_c \rightarrow 0$ получается очевидный результат $M = \Sigma m_i$. В ультра-релятивистском пределе ($m_i = 0$) получаем $M = (2n-1)T_c$. Вместо того, чтобы, как в [1], положить $m_u = 0$, в новом описании была выбрана масса *u*-кварка 2,2 МэВ и *d*-кварка 4,7 МэВ из [11], поскольку в первом приближении базовая масса адрона не чувствительна к малой массе легких кварков. Массы *s*, *c* и *b* кварков варьировались как свободные параметры модели.

В [1] отмечалось, что цвето-электрический массовый сдвиг мал и цвето-магнитный массовый сдвиг может быть вычтен для некоторых пар S = 0,1 мезонов и S = 1/2, 3/2 барионов, например $m_{2g} = (m_{\pi} + 3m_{\omega})/4 = 621,5 \text{ M} \cdot \text{B}$ $(T_c = m_{2g}/2\sqrt{2} =$ = 219,7 МэВ) и $m_{3q} = (m_N + m_{\Delta})/2 = 1085,5$ МэВ $(T_c = m_{3q}/2\sqrt{6} = 221,5 \text{ МэВ}).$ Оценка T_c из π/ω и N/Δ пар оказались очень близки. В [1] при описании придавалось большое значение массе пиона. В этом случае оказывается необходимым ввести цвето-электрические массовые сдвиги даже для некоторых адронов, состоящих из легких кварков. При новой аппроксимации веса массы пиона и оцененной массы η_{ss} ($m_{nss} = m_{n'} - (m_n - m)/2$ [1]) были малы из-за возможного смешивания рассчитанной массы пиона с малой массой пиона как Голдстоунского бозона, поэтому оказалось возможным положить все цвето-электрические сдвиги для легких адронов равными нулю. Сокращение цветомагнитных массовых сдвигов возможно для qqq и Qqq барионов (Q = s, c, b, q = u, d) и для всех мезонов. Массы без цвето-магнитного сдвига обычно называются голыми массами. По сравнению с баучитывают зовыми массами они цветоэлектрические сдвиги.

Правила пара-статистики позволяют рассчимассы нуклонов в виде $m_n(\downarrow u \uparrow d \uparrow d) =$ тать $= m_{3a} + 2\Delta_{dd}/3 - 8\Delta_{ud}/3$ и $m_p(\downarrow u \uparrow d \uparrow d) = m_{3a} + m_{3a}$ $+ 2\Delta_{uu}/3 - 8\Delta_{ud}/3$. Та же спиновая структура справедлива для всех S = 1/2 барионов с двумя одинаковыми кварками. Для (*uds*) барионов с S = 1/2только три спиновые конфигурации возможны: $(\downarrow d\uparrow u\uparrow s), (\downarrow u\uparrow d\uparrow s)$ и $(\downarrow s\uparrow u\uparrow d)$. Последняя спиновая конфигурация соответствует Σ^0 бариону, поскольку согласно пара-статистике одинаковые кварки в Σ^+ и Σ^- должны находиться в состоянии S = 1: $\Sigma^{-}(\downarrow s \uparrow d \uparrow d)$ и $\Sigma^{+}(\downarrow s \uparrow u \uparrow u)$. Два S = 0 иd состояния оба возможны для Л барионов, поэтому они должны быть смешаны: $m_{\Lambda}(uds) = (m_{uds} - 4\Delta_{ud}/3 - 4\Delta_{ds}/3 +$ $+2\Delta_{us}/3 + m_{uds} - 4\Delta_{ud}/3 - 4\Delta_{us}/3 + 2\Delta_{ds}/3)/2 =$ $= m_{uds} - 4\Delta_{ud}/3 - \Delta_{ds}/3 - \Delta_{us}/3$, где m_{uds} – это голая масса. Аналогично $m_{\Lambda}(\downarrow q \uparrow q \uparrow Q) = m_{Qqq} - 4\Delta_{qq}/3 - 2\Delta_{qQ}/3,$

 $m_{\Sigma}(\downarrow q \downarrow q \uparrow Q) = m_{Qqq} + 2\Delta_{qq}/3 - 8\Delta_{qQ}/3$ и $m_{\Sigma^*}(\uparrow q \uparrow q \uparrow Q) = m_{Qqq} + 2\Delta_{qq}/3 + 4\Delta_{qQ}/3$. Таким образом, для голой массы получаем $m_{Qqq} = (2m_{\Lambda} + m_{\Sigma} + 3m_{\Sigma^*})/6$. Она отличается от $m_{Qqq} = (m_{\Lambda} + m_{\Sigma} + 2m_{\Sigma^*})/4$, которая была получена для варианта цвето-магнитного сдвига $m_{\Lambda}(\downarrow q \uparrow q \uparrow Q) = m_{Qqq} - 2\Delta_{qq}$ в [1]. Наше новое описание доказывает, что (-2,0,0) гипотеза для m_{Λ} приводит к значительно худшему описанию масс, чем использованная в нашем новом описании (-4/3, -1/3, -1/3) гипотеза.

Для тяжелых Ξ_h барионов возможно три состояния: Ξ_h , Ξ'_h и Ξ^*_h . Спиновая структура $\Xi_h(1/2^+)$ гиперона очень похожа на спиновую структуру $\Lambda/\Sigma(1/2^{\tau})$ барионов с условием соответствия $s \rightarrow h$ и u,d \rightarrow u,d,s, поскольку спиновая структура Ξ'_h бариона аналогична $\Sigma^0(\downarrow d \downarrow u \uparrow s)$: $m_{\Xi'h} = m_{qsh} + 2\Delta_{qs}/3$ - $4\Delta_{ah}/3-4\Delta_{sh}/3$, а структура Ξ_{h} бариона аналогична Λ бариону $m_{\Xi h} = m_{ash} - 4\Delta_{as}/3 - \Delta_{ah}/3 - \Delta_{sh}/3$. Для тяжелых барионов мультиплеты вычисляются по формуле 3x3 = 3+6. Изо-дублет Ξ'_h вместе с Ω_h и Σ_h изо-триплетом образует $(1/2^+)$ -секстет. Поскольку $m_{\Xi^{*h}} = m_{qsh} + 2\Delta_{qs}/3 + 2\Delta_{qh}/3 + 2\Delta_{sh}/3$ для голой массы Ξ_h получаем: $m_{qsh} = (2m_{\Xi h} + m_{\Xi'h} + 3m_{\Xi^*h})/6$. Согласно правилу пара-статистики ss дикварк в Ω_h может быть только в состоянии S = 1, следовательно $m_{\Omega h} = m_{ssh} + 2\Delta_{ss}/3 + 8\Delta_{sh}/3$ и $m_{\Omega^* h} = m_{ssh} + 2\Delta_{ss}/3 + 4\Delta_{sh}/3$, а следовательно *m*_{ssh} голая масса не может быть найдена. Для дважды тяжелых барионов Ξ_{hh}/Ω_{hh} спиновая структура аналогична Ω_h и для m_{hha}/m_{hhs} голые массы также не могут быть найдены.

Для того чтобы показать, что VBM может описать массы всех адронов надо сначала описать голые массы формулой (1) с единым T_c при варьировании масс кварков m_i , и цвето-электрическими сдвигами. Цвето-электрические силы могут быть параметризованы всего лишь четырьмя параметрами E_{hs} , E_{cc} , E_{bc} и E_{bb} . Все остальные цветоэлектрические сдвиги для меньших приведенных масс равны нулю.

 $\alpha_s(m) = 0.464 \cdot (1 + \ln(m))^{-0.8}$, Голые массы различных кварковых наборов показаны на рис. 2. Гистограмма представляет результат VBM расчетов для $T_c = 221,5$ МэВ, $m_u = m_d = 0$, $m_s = 265$ МэВ, $m_c = 1500$ Мэв и $m_b = 4860$ МэВ. То, что расчетные массы для сс, св и вв мезонов идеально совпали, является тривиальным фактом, поскольку для их подгонки использовались три независимых параметра E_{cc} , E_{bc} и E_{bb} . Для остальных 16 масс использовалось только пять подгоночных параметров (Т_с, m_s , m_c , m_b и E_{hs}). Поскольку $\langle \lambda_i \lambda_j \rangle_2$ для мезонов в два раза больше, чем для $\langle \lambda_i \lambda_i \rangle_3$ барионов (в нормировке [1] $\langle \lambda_i \lambda_j \rangle_2 = -16/3$ и $\langle \lambda_i \lambda_j \rangle_3 = -8/3$), кварковые пары в барионе имеют всего половину сдвига E_{hs} . Пока важно подчеркнуть, что рис. 2 доказывает принципиальную возможность адекватного VBM расчета спектра масс всех адронов.

3. Обобщение цвето-электрических и цвето-магнитных массовых сдвигов для тяжелых кварков

Окончательные результаты описания масс адронов будут даны в четвертом разделе, но до этого более подробно надо рассмотреть используемые

Рис. 2. Описание голых масс, с учётом цвето-электрических поправок

цвето-электрические и цвето-магнитные массовые сдвиги. Мы начнем с зависимости параметров E_{hs} , E_{cc} , E_{bc} и E_{bb} , введенных в предыдущем разделе, от приведенной массы взаимодействующих кварков. Для анализа нам нужна функция бегущей константы сильного взаимодействия $\alpha_s(m)$. На рис. 3 показаны данные о $\alpha_s(m)$, взятые из *PDG* [11] и аппроксимированы функцией $\alpha_s(m) = 0,464 \cdot (1 + \ln(m))^{-0.8}$, где *m* в ГэВ. Для того, чтобы избежать расходимостей при расчете масс нами использовалось непрерывное продолжение $\alpha_s(m) = 0,464$ при m < 1.

Рис. 3. Аппроксимация бегущей константы сильного взаимодействия формулой $\alpha_s(m) = 0.464 \cdot (1 + \ln(m))^{-0.8}$

Аналогично квантовой электродинамике в «кулоновской» области энергию связи можно рассчитать в виде $\Delta E_{CE} = \alpha_s(m) \cdot \varepsilon_{ii}$, где ε_{ii} – это релятивистская приведенная энергия. Следуя [1], вместо нерелятивистской приведенной массы мы используем приведенную энергию $\varepsilon_{ii} = E_i E_i / (E_i + E_i)$. Это необходимо для того, чтобы рассчитать цветомагнитные массовые сдвиги и магнитные моменты легких адронов, состоящих из кварков с почти нулевой массой. Средние энергии Е_i рассчитываются в приближении равной кинетической энергии: $E_1 = (M + m_1 - m_2)/2, E_2 = (M + m_2 - m_1)/2$ для мезонов, где М – базовая масса адрона, рассчитанная формуле (1), и $E_1 = (M+2m_1-m_2-m_3)/2$, $E_2 = (M+2m_2-m_1-m_3)$ и $E_3 = (M+2m_3-m_1-m_2)/2$ для барионов. Следует заметить, что для цветоэлектрических сдвигов, которые существенны только для тяжелых кварков, величины приведенной энергии є_{іі} и приведенной массы µ_{іі} практически совпадают. При нашем описании масс мы исприведенную энергию пользуем для цветоэлектрических сдвигов только для однородности цвето-электрических И расчетов для цветомагнитных массовых сдвигов.

Но какую массу *т* надо использовать в $\alpha_{s}(m)$ -при расчетах? Это может быть просто приведенная масса μ , но тогда для сс мезона $\mu = m_c/2$. Для того, чтобы привести ее к m_c , надо использовать определение $m = 2\mu$. Мы обнаружили, что можно достигнуть наилучшего описания, если использовать промежуточное решение $m = 1,5 \cdot \mu$. Так или иначе мы рассматриваем величину f = 3/2 как параметр модели. Другой свободный параметр цвето-электрического сдвига $\rho = 1.6 \ \Gamma \cdot B^{-1}$ уменьшает величину ЕСЕ до нуля при уменьшении до приведенной массы двух нуля кварков: $E_{CE}(\mu) = (1 - e^{-\rho\mu}) \cdot \alpha_s(3\mu/2) \cdot \varepsilon_{ii},$ поскольку согласно *VBM* модели цвето-электрические заряды всех кварковых пар с приведенной массой меньше Т_с экранированы в области кварк-глюонного «виртуального газа». Кварковая пара sh (h – тяжелый кварк с или b) принадлежит переходной области, поскольку его приведенная масса соизмерима с Т_с. Таким образом, параметр р позволяет подстроить величину *E*_{CE} для промежуточной *sh* кварковой пары, которая и не полностью асимптотически свободна и не полностью погружена в широкую промежуточную область «виртуального газа». Похожий параметр будет использован и для расчета цвето-магнитного сдвига *sh* парой.

Как было отмечено в предыдущем разделе, только половина цвето-электрического коэффициента определяет вклад кварковой пары в цветоэлектрический сдвиг массы барионов. Таким образом, кварк-кварковое взаимодействие подразделяется в *VBM* модели на три области: широкая область «виртуального газа» для легких кварков, переходная *sh* область и узкая область «кулоновски» связанных состояний для тяжелых кварков.

Цвето-магнитные взаимодействия различны в тех же трех областях приведенных масс. Главной задачей является параметризация фактора $|\psi(0)|^2$. Как было показано в [12], для пертурбативных взаимодействий (в нашей модели это «кулоновская» область) фактор $|\psi(0)|^2$ пропорционален некоторой степени приведенной массы кварковой пары, а для непертурбативных взаимодействий (в нашей модели область «виртуального газа») фактор $|\psi(0)|^2$ близок к $(\Lambda_{MS})^3$. В работе [12] для однородного в трехмерном пространстве решения была предложена третья степень приведенной массы. В случае адронной струны тяжелых кварков возникает двумерное движение, приводящее ко второй степени приведенной энергии с нормировочным параметром A_{CM} , который по соображениям размерности должен быть порядка Λ_{MS} : $E_{CM} \sim A_{CM} \alpha_s(m) \cdot \varepsilon_{ii}^2 / (E_i E_i)$. Вторая степень была подтверждена нашим описанием масс. Для легких

кварков взаимодействие аналогично квантовой электродинамики $E_{CM} (B_{CM})^3 \cdot \alpha_s(m) / (E_i E_i)$, где согласно [12] фактор В_{СМ} также должен быть порядка Λ_{MS} . Качественно разницу между двумя областями можно понять как следствие конечного QCD радиуса кварка, определяемого кварк-глюонной эволюцией вокруг токового кварка. Для легких кварков расстояние между ними много больше радиуса кварка, и взаимодействие становится подобным квантовой электродинамике. В «кулоновской» области расстояние между кварками становится меньшим, чем радиус кварка, и виртуальные токи вокруг взаимодействующих кварков перекрываются, так меняя закон взаимодействия, что цвето-магнитный сдвиг резко возрастает. В нашем описании вместо Λ_{MS} (или T_c) мы использовали свободный параметр *B_{CM}* (МэВ) для легких кварков и свободный параметр А_{СМ} (МэВ) для тяжелых кварков. Следуя [1], цвето-магнитные моменты были обратно пропорциональны релятивистской энергии Е_i, а не массе токового кварка, которая может быть равна нулю. Другой гипотезой работы [1] было то, что объем области конфайнмента растет с числом валентных кварков *n* пропорционально \sqrt{n} , и поэтому $|\psi(0)|^2 \sim n^{-1/2}$. В нашем новом описании масс мы рассматривали фактор уменьшения $|\psi_n(0)|^2$ как свободный параметр модели r_{23} .

Результирующие формулы для малых приведенных масс кварков:

$$E_{CE}^{(ij)} = 0, \quad E_{CM}^{(ij)} = \left(B_{CM}\right)^3 \cdot a_{ij} \cdot \alpha_s \left(m_{ij}\right) / \left(r \cdot E_i E_j\right)$$
(2)

и для тяжелых кварковых пар:

$$E_{CE}^{(ij)} = \alpha_s^* (m_{ij}) \cdot E_i E_j / (E_i + E_j)$$
$$E_{CM}^{(ij)} = A_{CM} \cdot a_{ij} \cdot \alpha_s (m_{ij}) \cdot \varepsilon_{ij}^2 / (r \cdot E_i E_j), \qquad (3)$$

где для мезонов $m_{ii} = 3\mu_{ii}/2$, и r = 1, а для кварковых пар барионов $m_{ij} = 3\mu_{ij|k}/2$, и $r = r_{23}$. Привемасс трех тел, используемая денная для $\alpha_s(3\mu_{ii|k}/2)$ определяется как $\mu_{ii|k} = (2/3) \times$ в × $(m_i m_i + m_i m_k + m_i m_k)/(m_i + m_i + m_k)$. Фактор $\alpha *_s(m_{ii})$ принимает во внимание гипотетическое экранирование цвето-электрического заряда в области от 0,2 до 1 фм. Он определяется как $\alpha^*(m_{ii}) =$ $=(1-e^{-\rho \cdot mij})\cdot \alpha_s(m_{ij}),$ где $\alpha_s(m)=0.464\cdot(1+\ln(m))^{-0.8}$ для $m \ge 1$ и $\alpha_s(m) = 0,464$ для m < 1. Резкий подъем цвето-магнитного массового сдвига $E_{CM}^{(ij)}$ с ε_{ii}^{2} в переходной области кварковой пары sh коррекпараметром тируется дополнительным $k_{sh}: E_{CM}^{(sh)} = k_{sh}: E_{CM}^{(ij)}$, где $E_{CM}^{(ij)}$ определяется формулой (2). Таким образом, для расчета цветоэлектрического сдвига масс используется только два свободных параметра: f = 3/2 для расчета $\alpha_s(f \cdot \mu)$ и $\rho = 1.6 \ \Gamma eB^{-1}$ (0.32 фм) для экранировки цвето-электрического заряда. Для цветомагнитного сдвига массы в дополнению к уже имеющемуся параметру f = 3/2 добавляется еще четыре параметра: $r_{23} = 1,09$, $B_{CM} = 282,4$ МэВ, *A_{CM}*= 185,7 МэВ и *k_{sh}* = 2,12. И В_{СМ}, и А_{СМ} близки к Λ_{MS} , T_c и $(\langle qq \rangle^0)^{1/3} = 283$ МэВ [13]. Для S = 0 мезонов $a_{12} = -4$, а для S = 1 мезонов $a_{12} = 4/3$. Для S = 3/2 барионов все $a_{ij} = 2/3$. Величины a_{ij} для S = 1/2 барионов были фиксированы в предыдущем разделе. Третьей особенностью sh взаимодействия является перераспределение коэффициентов a_{ii} для Ξ_h барионов, содержащих *sh* кварковую пару. Для всех S = 1/2 барионов сумма коэффициентов а_{іі} должна быть равна –2. Для того, чтобы отразить тот факт, что тяжелый кварк h притягивает не только s-кварк, но также и q-кварк, коэффициент $a_{qs} = -4/3$ был заменен на -5/3, а $a_{hq} = -1/3$ был уменьшен до нуля, сохранив при этом величину a_{sh} . Можно было использовать $a_{hq} = a_{sh} = -1/6$, но это не меняет точности описания. Этот простой прием улучшает наше описание масс Ξ_h барионов. Изменение спиновой функции было применено $\kappa \Xi_{c}^{+}, \Xi_{c}^{0}, \Xi_{b}^{0}, u \Xi_{b}^{+}, a$ спиновые функции барионов, у которых все три кварка разные (Λ_c , Λ_b , Ξ_{bc} , и Ω_{bc}) по-прежнему сохранили спиновую структуру Λ^0 гиперона.

4. Результаты

В первом приближении величина критической температуры Tc = 221,5 МэВ определена массами нуклона и ∆-изобары, а массы *и*- и *d*-кварков $m_u = 2,2$ МэВ, $x_u = 0,1033$ МэВ и $m_d = 4,7$ МэВ, $x_d = 0,396$ МэВ могут быть взяты из *PDG* [11] и не варьироваться. Варьируемые параметры базовых масс адронов: $m_s = 260$ МэВ ($x_s = 189,5$ МэВ), $m_c = 1500$ МэВ ($x_c = 1400$ МэВ) и $m_b = 4855$ МэВ (*x*_b=4748 МэВ). Принимая во внимание параметры f = 3/2, $\rho = 1.6$ ΓeB^{-1} , $r_{23} = 1.09$, $B_{CM} = 282.4$ M₃B, $A_{CM} = 185,7$ МэВ и $k_{sh} = 2,12$, получается, что мы варьировались девять параметров. Результат описания масс адронов с указанными девятью параметрами показан на рис. 4. Сравнение с предсказаниями других моделей показывает, что VBM модель не уступает лучшим из них и при этом описывает одновременно и легкие и тяжелые адроны. Тем не менее, при описании масс не в полной мере приближаются изотопические сдвиги адронов. Изотопические сдвиги можно описать, $T_c = 221.4$ если варьировать величину И $m_d = 10,5$ МэВ. Видно, что величина критической

Рис. 4. Результирующее *VBM* описание масс всех 93-х 1S-адронов, составленных из пяти ароматов кварков

температуры изменяется незначительно, а масса *d*-кварка увеличивается более, чем вдвое, оставаясь при этом малой по сравнению с Т_c величиной.

Предсказанные *VBM* массы сравниваются с другими моделями. На рис. 4, если значение массы не измерено, приводится предсказание другой модели. Видно, что для барионов с двумя и тремя тяжелыми кварками *VBM* предсказания близки к предсказаниям других моделей.

5. Заключение

В заключение необходимо подчеркнуть, что константа критической температуры Тс позволяет описать не только легкие, но и тяжелые адроны. Качество простого и прозрачного VBM описания масс доказывает, что величина Т_с, соизмеримая с Λ_{MS} и $(\langle qq \rangle^0)^{1/3}$, может быть фундаментальной константой температуры плавления непертурбативного вакуума. В формуле (1) базовые адронные массы зависят только от Т_с и токовых масс кварков. Поскольку суммируются квадраты масс легких кварков, изотопические и связанные со странностью изменения масс могут быть в первом приближении объяснены изменением масс m_d и m_s . Масса и-кварка не может быть параметром, поскольку она сильно коррелирует с величиной Т_с. Полученные при описании значения масс тяжелых кварков больше, чем приведено в PDG [11], что объясняется тем, что в VBM складываются не массы, а квадраты масс, поэтому большая величина m_b оказывается близка к табличному значению, а остальные массы оказываются несколько больше.

Простая и прозрачная формула VBM описания масс позволяет добавлять любые дополнительные параметры, которые могли бы улучшить соответствие теоретических и экспериментальных значений, но следует отметить, что найденные решения для цвето-электрических и цвето-магнитных массовых сдвигов являются вторичными в VBM модели, а первичным является расчет базовых масс, который должен подтвердить фундаментальный характер константы T_c . Тем не менее интересно отметить, что описание цвето-электрических массовых сдвигов позволяет оценить величину радиуса перехода к области асимптотической свободы внутри адрона.

Список литературы

1. M.V. Kossov, Eur. Phys. J. A 14, 265 (2002)

2. P.V. Degtyarenko, M.V. Kossov, H.-P. Wellish, Eur. Phys. J. A **8**, 217 (2000)

3. P.V. Degtyarenko, M.V. Kossov, H.-P. Wellish, Eur. Phys. J. A 9, 411 (2000)

4. P.V. Degtyarenko, M.V. Kossov, H.-P. Wellish, Eur. Phys. J. A **9**, 421 (2000)

5. M.V. Kossov, IEEE Trans. Nucl. Sci. **52**, 2832 (2005)

6. M.V. Kossov, Eur. Phys. J. A **33**, 265 (2007)

7. M.V. Kossov, Eur. Phys. J. A **34**, 283 (2007) 8. M.V. Kossov, Eur. Phys. J. A **35**, 289 (2008)

9. D.J. Gross and F.Wilcheck, Phys. Rev. Lett. **30**, 1343 (1973)

10. H.D. Politzer, Phys. Rev. Lett. **30**, 1346 (1973)

11. Particle Data Group, Chin. Phys. C 40, 100001 (2016)

12. H. Hamber and G. Parisi, Phys. Rev. Lett. 47, 1792 (1981)

13. C. McNeile et al., Phys. Rev. D 87, 034503 (2013)

14. R. Aaij *et al.* (LHCb Collaboration), Phys. Rev. Lett. 119, 112001 (2017)

15. S. Dürr et al., Science **322**, 1224 (2008)

16. T. DeGrad, R.L. Jaffe, K. Johnson, J. Kiskis, Phys. Rev. D 58, 2060 (1975)

17. A. Bernotas and V. Simonis, Lith. J. Phys. Tech. Sci. **52**, 181 (2012)

18. K.C. Bowler *et al.*, Phys. Rev. D 57, 6948 (1998)

19. R. Roncaglia, D.B. Lichtenberg, E. Predazzi, Phys. Rev. D 52, 1722 (1995)

20. Patel, A.R. Rai, P.C. Vinodkumar, Pramana J. Phys. **70**, 797 (2008)

21. Z. Ghalenovi, A.A. Rajabi, M. Hamzavi, Acta Phys. Polon. B **42**, 1849 (2011)

22. B. Patel, A.R. Rai, P.C. Vinodkumar, J. Phys. G **35**, 065001 (2008)

23. H. Nagash, S. Bhatnagar, arXiv:1711.07036[hep-hp]

24. G.-S. Yang, H.-C. Kim, M.V. Polyarjv, M. Praszalowicz, Phys. Rev. D **94**, 07150(R) (2016)

25. Z.Shah, A.K. Rai, Eur. Phys. J. C 77, 129 (2017)

26. S.Fleck, J.-M. Richard, Prog. Theor. Phys. 82, 760 (1989)

27. B. Tatisceff, E. Tomasi-Gustafsson, arXiv:1505.06643v1 (2015)

28. C. Amsler *et al.*, (Crystal Barrel Collaboration), Phys. Lett. **B346**, 203 (1995)