УДК 539.172.13 DOI: 10.53403/9785951504937_2020_25.1_216_223

Оценка сечений образования радиоактивных ядер ¹⁰Ве при взаимодействии дейтронов с ⁹Ве

В работе представлена оценка сечений реакции ⁹Be(d, x)¹⁰Be_{gs} от нулевой энергии налетающих дейтронов до 22 МэВ, выполненная на основании всех имеющихся экспериментальных данных с применением математических средств электронной библиотеки SaBa, разработанной в РФЯЦ-ВНИИЭФ.

Л. Н. Генералов, С. М. Селянкина, С. М. Таова, В. А. Жеребцов

Введение

Одна из потребностей в ядерных данных по реакциям на бериллии вытекает из задач прогнозирования радиоактивности термоядерных установок. Проведенные расчеты по образованию радиоактивных ядер ¹⁰Ве в бланкете NET-TYPE CTR [1] показали, что накопление этих ядер возникает в основном из реакций ¹⁰В(n, p)¹⁰Ве_{gs} и ⁹Ве(d, p)¹⁰Ве. Для протекания последней реакции быстрые дейтроны рождаются из нейтронных реакций. (Здесь и далее обозначения ¹⁰Ве_{gs} и ¹⁰Ве равнозначны.)

Настоящая работа обусловлена тем, что в международной библиотеке оцененных данных TENDL (версия 2014 г. [2]) представлена ошибочная оценка сечений реакции ⁹Be(*d*, *x*)¹⁰Be_{gs}. В этой библиотеке оценка выполнена с помощью программного кода TALYS [3] на основании экспериментальных данных [4, 5], которые формально отличаются в два раза, а на самом деле хорошо согласуются между собой. В работе [4], выполненной в 1955 г., сечения измерены радиохимическим методом по регистрации β -частиц распада ядер ¹⁰Be_{gs}. При обработке результатов измерений авторы [4] использовали значение периода полураспада ¹⁰Be_{gs}, 2,7 ·10⁶ лет, современное же его значение (1,51±0,06) ·10⁶ лет [6], и его использование понижает данные [4] в 1,788 раза. Аналогичная ситуация [7, см. также цитируемую литературу] наблюдается для реакций ¹⁰Be(d, р)¹¹Be, ¹⁰Be(d, α)⁸Li и ¹⁰Be(p, γ)¹¹B. Для абсолютизации сечений этих реакций толщина мишеней определялась с помощью измерения активности β -частиц распада ядер ¹⁰Be_{gs}, при этом период полураспада ядер ¹⁰Be_{gs}, при этом период полурас-

В [5] сечения образования ¹⁰Ве_{gs} получены суммированием измеренных парциальных сечений реакций ⁹Ве(d, p_i)¹⁰Ве^{*}(E_i): суммирование ведется до первого ядерно-нестабильного уровня 7,371 МэВ [8]. Такие же данные имеются и при энергии дейтронов 11,8 МэВ [9].

[©] Известия РАН. Сер. Физическая. 2018. Т. 82, № 6. С. 699.

Экспериментальные сечения реакции ⁹Be(d, x)¹⁰Be_{gs}

Впервые сечения реакции ⁹Be(d, x)¹⁰Be_{gs} были измерены в [4]: использовался метод регистрации радиоактивных ядер ¹⁰Be, накопленных в облученной бериллиевой мишени, из которой эти ядра переносились в счетчик Гейгера для регистрации β -частиц их распада. По активности β -частиц определялось количество ядер ¹⁰Be_{gs}, образованных в облученной мишени. Данные в этой работе получены в интервале энергий дейтронов от 1 до 22 МэВ.

Сечения реакции ⁹Be(d, x)¹⁰Be_{gs} с высокой точностью можно определить (табл. 1) из суммы сечений $\sigma_{\sum p_i}$ реакций ⁹Be(d, p_0)¹⁰Be_{gs}, ⁹Be(d, p_1)¹⁰Be^{*}(3,368), ⁹Be(d, p_2)¹⁰Be^{*}(5,958) ⁹Be(d, p_3)¹⁰Be^{*}(5,9599), ⁹Be(d, p_4)¹⁰Be^{*}(6,1793), ⁹Be(d, p_5)¹⁰Be^{*}(6,2633). Так как уровни ¹⁰Be, лежащие по энергии выше 5 уровня, ядерно-нестабильные, то реакции с их возбуждением вносят малый вклад в образование ¹⁰Be_s.

Таблица 1

Номер уровня ¹⁰ Ве	Энергия уровня, МэВ	$J^{\pi}; T$	τ _{1/2} или Г, кэВ	Тип распада ¹⁰ Ве	<i>Q</i> , МэВ	Порог реакции, МэВ
0 или gs	0	0+; 1	1,51·10 ⁶ лет	β^-	4,587	-
1	3,368	2+; 1	180 фс	γ	1,319	-
2	5,958	2+; 1	$\tau_m < 80 \ \varphi c$	γ	-1,371	1,675
3	5,9599	1-; 1		γ	-1,373	1,678
4	6,1793	0+; 1	1,1 пс	γ	-1,591	1,947
5	6,2633	2-; 1		γ	-1,676	2,051
6	7,371	3-; 1	15,7 кэВ	п	-2,784	3,409

Уровни ¹⁰Ве [8], заселяемые в реакциях 9 Ве(d, p_i)

Этим методом были получены сечения в [5] при $E_d = 5-11$ МэВ и в [9] при $E_d = 11,8$ МэВ (табл. 2). В указанных работах по регистрации протонов были измерены дифференциальные сечения (угловые распределения) реакций ⁹Be(d, p₀)¹⁰Be_{gs}. ⁹Be(d, p₁)¹⁰Be^{*}(3,368), ⁹Be(d, p₂₊₃)¹⁰Be^{*}(5,958 + 5,9599), ⁹Be(d, p₄₊₅)¹⁰Be^{*}(6,1793 + 6,2633). Из полученных дифференциальных сечений определялись интегральные сечения этих реакций, в сумме составляющие сечение реакции ⁹Be(d, x)¹⁰Be_{gs}.

Таблица 2

E _d , МэВ	$\sigma_{\sum p_i},$ мб	Случайная погрешность, мб	<i>E</i> _d , МэВ	$\sigma_{\sum p_i},$ мб	Случайная погрешность, мб
5,0	151	2	8,0	97,9	1,5
5,5	142	2	9,0	84,4	1,5
6,0	128	2	10,5	78,0	2,3
6,5	124	2	11,0	68,4	2,3
7,0	118	2	11,8 [9]	67,1	6,4*
7.5	107.2	1.5	_	_	_

Сечения образования ядер ¹⁰Ве_{gs} при взаимодействии дейтрона с ⁹Ве [5, 9]

* Полная погрешность, систематическая погрешность данных [5] 3 %.

Как было отмечено, основная причина систематического завышения данных [4] связана с использованием в этой работе неверного значения периода полураспада ¹⁰Ве_{gs}. По этой причине результаты [4] завышены в $K(T_{1/2}) = 1,788$ раза. Однако и с учетом этого фактора результаты пер-

вой серии измерений [4] будут завышены в $1,08\pm0,04$, а второй – в $1,13\pm0,03$ раза по сравнению с данными [5], т. е. в среднем завышение исправленных данных [4] по сравнению с данными [5] составит $1,11\pm0,03$ раза. Если же при $E_d = 11,8$ МэВ сравнить исправленное значение сечения [4] с величиной [9], то завышение исправленного сечения [4] составит $1,19\pm0,11$ раза. Таким образом, исправленные данные [4] остаются завышенными относительно данных [5, 9] в среднем в $K_S = 1,15\pm0,04$ раза. Отметим, что, возможно, и современное значение периода полураспада 10 Ве $(1,51\pm0,06)\cdot10^6$ лет [6] завышено. Для настоящей оценки данные [4] были снижены в $K(T_{1/2})\cdot K_S = 2,056$ раза.

При энергиях дейтронов ниже порогов реакций 9 Be(d, p₂₊₃) 10 Be^{*}(5,958+5,9599) и 9 Be(d, p₄₊₅) 10 Be^{*}(6,1793+6,2633) сечение реакции 9 Be(d, x) 10 Be_{gs} равно сумме сечений реакций 9 Be(d, p₀) 10 Be_{gs} и 9 Be(d, p₁) 10 Be^{*}(3,368). Наш анализ существующих экспериментальных данных в этой области энергии можно найти в [5], где также приведены результаты наших измерений в интервале от 3 до 11 МэВ. Для оценки сечений 9 Be(d, x) 10 Be_{gs} в этом энергетическом диапазоне использовались данные анализа из работы [5] (табл. 3).

Таблица 3

E MaD	с . мб	Полная	5. NŐ	Полная	$\sigma_{dp_0} + \sigma_{dp_1}$,	Полная	Литера-
$E_{\rm d}$, MBD	о _{др0} , мо	о _{dp0} , мб	о _{др1} , мо	σ _{dp1} , мб	мб	$\sigma_{dp_0} + \sigma_{dp_1}$, мб	тура
0,1034	0,0018	$1,4 \cdot 10^{-4}$	0,00535	$4 \cdot 10^{-4}$	0,00715	4,23792.10-4	
0,123	0,00795	$4,8 \cdot 10^{-4}$	0,0106	9.10-4	0,01855	0,00102	
0,1425	0,0233	0,0014	0,0382	0,0024	0,0615	0,00278	[13]
0,1504	0,0332	$5 \cdot 10^{-4}$	0,0484	6.10-4	0,0816	7,81025.10-4	
0,162	0,0472	0,003	0,0767	0,005	0,1239	0,00583	
0,19	0,22	0,11	0,275	0,13	0,495	0,17029	[14]
0,9	13,6	0,2	15,2	0,5	28,8	0,53852	
1	14	0,2	17,8	0,5	31,8	0,53852	
1,1	13,2	0,2	18,5	0,6	31,7	0,63246	
1,2	13,4	0,4	19,8	0,6	33,2	0,72111	[11]
1,3	14,2	0,2	22,6	0,7	36,8	0,72801	[11]
1,4	15,2	0,4	24,6	0,7	39,8	0,80623	
1,5	14,5	0,6	28	0,8	42,5	1	
1,6	15,2	0,4	33,7	1	48,9	1,07703	
0,359	1,77	0,5	1,64	0,2	3,41	0,53852	
0,463	4,2	0,13	3,334	0,37	7,534	0,39217	
0,567	6,8	0,2	6,09	0,65	12,89	0,68007	
0,708	9,73	0,3	8,32	0,71	18,05	0,77078	
0,718	9,93	0,3	7,17	0,75	17,1	0,80777	
0,728	10,1	0,3	9,18	0,78	19,28	0,8357	
0,739	10,1	0,3	9,59	0,81	19,69	0,86377	[12]
0,749	9,9	0,3	9,85	0,85	19,75	0,90139	
0,758	9,71	0,3	9,4	0,84	19,11	0,89196	
0,769	9,71	0,3	9,78	0,85	19,49	0,90139	
0,778	9,95	0,3	10,2	0,84	20,15	0,89196	
0,789	10,4	0,3	10,6	0,83	21	0,88255	
0,8	10,8	0,3	11,5	0,83	22,3	0,8825	

Сечения реакций ⁹Be(d, p_0)¹⁰Be_{gs} и ⁹Be(d, p_1)¹⁰Be^{*}(3,368) при $E_d < 1,7$ МэВ

Оценка полных сечений реакций в библиотеке SaBa

В библиотеке SaBa [10] экспериментальные и оцененные данные представлены в виде полных сечений реакций и астрофизических *S*-факторов. Для проведения оценки экспериментальные значения сечений реакций σ преобразуются в астрофизические факторы

$$S(E_{\text{II,M}}) = \sigma(E_{\text{II,M}})E_{\text{II,M}}\exp\left(\sqrt{\frac{E_{\text{G}}}{E_{\text{II,M}}}}\right),\tag{1}$$

где $E_{\text{ц.м}}$ – энергия в системе центра масс во входном канале; E_{G} – энергия Гамова, определяемая как

$$\sqrt{E_{\rm G}} = 0,98948z_1 z_2 \sqrt{\frac{m_1 m_2}{m_1 + m_2}},\tag{2}$$

 z_1 , z_2 – заряды налетающей частицы и ядра мишени; m_1 , m_2 [a.e.м.] – массы налетающей частицы и ядра мишени.

Оцененная кривая в библиотеке в общем случае является суммой гладкой и резонансной частей:

$$f = S_p(E) + R_l(E). \tag{3}$$

Описание резонансной части с числом пиков *n* и фоном степени *p* проводится на основе выражения Брейта – Вигнера:

$$R_{l}(E) = \sum_{i=0}^{n_{l}-1} \frac{H_{i}(\Gamma_{i}/2)^{2}}{(E-E_{i})^{2}} + \delta_{l} \sum_{j=0}^{p_{l}} a_{j}(E-x_{0})^{j},$$
(4)

где H_i – высота пика; E_i – положение пика; Γ_i – ширина на полувысоте; $\delta_l = 0$ или 1 в зависимости от того, учитывается или нет фон резонансной области в окончательном приближении; x_0 – начало интервала, подогнанного данным резонансом R_l .

Нерезонансные части оцениваемой кривой проводятся с использованием полиномиального описания кубическими сплайнами, которые определены на сетке узлов $\{x_0 < x_1 < ... x_{n-1} < x_n\}$. В общем виде гладкая часть выражается как

$$S_{p}(E) = \sum_{i=0}^{p} a_{i} (E - x_{0})^{i}, \qquad (5)$$

где a_i – коэффициент сплайна; x_0 – левая граница интервала, на котором определены приближаемые данные.

Приближающая кривая строится путем поиска оптимального набора параметров сплайна – количества узлов, их энергий, дефектов, значения систематической ошибки данных. Оцененная кривая астрофизического *S*-фактора определяется путем минимизации значения χ^2 :

$$\chi^{2} = \frac{\sum_{i=1}^{N_{d}} \left(\frac{S_{i} - f(E_{i})}{\sigma_{i}} \right)^{2}}{N_{d} - N_{p}},$$
(6)

где $\{E_i, S_i, \sigma_i\}$ – точка экспериментальных данных с полной ошибкой σ_i , N_d – число этих точек, N_p – число подгоняемых параметров.

Оцененные значения астрофизического *S*-фактора в SaBa хранятся в виде набора коэффициентов сплайна. При просмотре данных, записанных в библиотеку, происходит восстановление оцененной кривой по ее коэффициентам.

На рис. 1 представлены оцененные значения полных сечений реакции взаимодействия дейтронов с ядрами ⁹Ве с образованием ядра ¹⁰Ве, полученные в настоящей работе. Для проведения оценки были использованы два типа подгонки, имеющиеся в SaBa: сплайнами и резонансами. Результирующие резонансные параметры представлены в табл. 4, параметры фонового полинома – в табл. 5. Коэффициенты аппроксимирующего сплайна оцененных значений *S*-фактора реакции ⁹Be(d, x)¹⁰Be приведены в табл. 6.

Рис. 1. Оцененные значения полных сечений реакции ⁹Ве(*d*, *x*)¹⁰Ве: ▲ – [4], ● – [11], □ – [5], ▼ – [9], ◊ – [12], ◀ – [13], ○ – [14], пунктир – оцененная кривая

Таблица 4

Значения резонансных параметров оцененной кривой *S*-фактора реакции ${}^{9}\text{Be}(d, x){}^{10}\text{Be}$

Номер пика	Е, МэВ	Г, МэВ	<i>Н</i> , мб∙МэВ
1	5,9198·10 ⁻¹	$5,7938 \cdot 10^{-2}$	$1,2988 \cdot 10^{3}$

Таблица 5

Значения коэффициентов полинома, описывающего фон резонансной области

Степень	E MaD	Коэффициенты полинома			
полинома	<i>E</i> ₀ , мэв	A_0	A_{l}	A_2	
2	4,9386.10-1	6,9993 · 10 ³	$-2,8623 \cdot 10^2$	-5,7607	

Таблица б

Энергия узла	T 1	Коэффициенты сплайна				
сплайна, МэВ	Дефект	C_0	C_1	C_2	<i>C</i> ₃	
0,08451	1	$1,27268 \cdot 10^4$	$-1,33096 \cdot 10^4$	$-8,99256 \cdot 10^4$	1,31766·10 ⁵	
0,65580	1	3,42056·10 ²	$1,29559 \cdot 10^4$	1,35902·10 ⁵	$-3,30705 \cdot 10^{6}$	
0,69714	2	$8,76286 \cdot 10^2$	$7,23542 \cdot 10^3$	$-1,79572 \cdot 10^{5}$	$5,50384 \cdot 10^{5}$	
0,83248	3	$-6,92294 \cdot 10^{1}$	$-1,11274 \cdot 10^{4}$	$2,25507 \cdot 10^4$	$-1,05022 \cdot 10^{4}$	
1,67882	1	$2,99370 \cdot 10^2$	$4,47582 \cdot 10^{3}$	$-4,11460 \cdot 10^{3}$	$1,18356 \cdot 10^3$	
2,64833	2	$1,84977 \cdot 10^{3}$	$-1,65022 \cdot 10^{2}$	$1,09227 \cdot 10^4$	$-1,43690 \cdot 10^{4}$	
3,05768	1	$2,62688 \cdot 10^3$	$1,55409 \cdot 10^3$	$-6,72310 \cdot 10^{3}$	$5,11423 \cdot 10^3$	
3,74710	2	$2,17865 \cdot 10^3$	$-4,23539 \cdot 10^{2}$	$-2,79540 \cdot 10^{3}$	$2,12838 \cdot 10^{3}$	
4,50117	2	$1,18236 \cdot 10^3$	$-1,00870 \cdot 10^{3}$	$-4,64849 \cdot 10^{3}$	$9,87924 \cdot 10^{3}$	
4,97515	2	$7,11907 \cdot 10^2$	$1,24308 \cdot 10^{3}$	$-7,09866 \cdot 10^{3}$	$6,54405 \cdot 10^3$	
5,66458	2	$3,39288 \cdot 10^2$	$7,86439 \cdot 10^2$	$-3,89105 \cdot 10^{3}$	$1,20623 \cdot 10^3$	
6,11702	2	$1,03180 \cdot 10^{1}$	$-1,99373 \cdot 10^{3}$	$3,17278 \cdot 10^3$	$-1,73088 \cdot 10^{3}$	
6,95726	1	$-4,51684 \cdot 10^{2}$	$-3,27963 \cdot 10^{2}$	$-1,19029 \cdot 10^{3}$	$1,38997 \cdot 10^{3}$	
7,92677	2	$-6,21788 \cdot 10^{2}$	$1,28356 \cdot 10^3$	$-2,36260 \cdot 10^{3}$	$9,87929 \cdot 10^2$	
9,41335	2	$-6,89257 \cdot 10^{2}$	$8,08915 \cdot 10^2$	$-1,01520 \cdot 10^{3}$	$3,62104 \cdot 10^2$	
10,53367	1	$-5,48036 \cdot 10^{2}$	$-1,02323 \cdot 10^{2}$	$2,01824 \cdot 10^2$	$-3,53222 \cdot 10^{1}$	
12,19261	1	$-3,23614 \cdot 10^{2}$	$2,75675 \cdot 10^2$	$2,60317 \cdot 10^{1}$	-7,31535	
17,62186	0	-	—	-	-	

Значения коэффициентов сплайна оцененной кривой *S*-фактора реакции ${}^{9}\text{Be}(d, x){}^{10}\text{Be}$

Последняя строка табл. 6 содержит лишь значение энергии конечного узла сплайна. Это правая граница интервала определения сплайна. За ней осуществляется переход к экстраполяционным формулам. В настоящей работе для получения продолжений оцененной кривой в область низких (менее 0,08451 МэВ) и высоких (более 17,62186 МэВ) энергий использовались полиномы первой степени. Полином первой степени представляет собой прямую линию с сохранением угла наклона, определенного ходом кривой в предыдущем интервале оценки. Коэффициенты экстраполирующего полинома аппроксимирующей функции *S*-фактора реакции ⁹Be(d, x)¹⁰Be_{gs} указаны в табл. 7.

Таблица 7

Значения коэффициентов сплайна оцененной кривой *S*-фактора реакции ${}^{9}\text{Be}(d, x){}^{10}\text{Be}_{gs}$ при экстраполяции в область низких и высоких энергий

Направление	Тип полинома,	Энергия узла	Коэффициенты сплайна		
экстраполяции	степень	сплайна, МэВ	C_0	C_1	
Менее 0,08451 МэВ	1	0,08451	$1,27268 \cdot 10^4$	$-1,3310 \cdot 10^4$	
Более 17,62186 МэВ	1	17,62186	$7,69701 \cdot 10^2$	$-8,8558 \cdot 10^{1}$	

Как указано выше, при просмотре данных в библиотеке SaBa происходит восстановление оцененной кривой по ее коэффициентам. С использованием указанных в табл. 4, 5 коэффициентов по формуле (2) вычисляются значения резонансной части оцененной кривой. Гладкая часть аппроксимирующей функции астрофизического *S*-фактора вычисляется с применением коэффициентов сплайна (табл. 6 и 7) по формуле

$$S(E) = C_0 + C_1 h + C_2 h^2 + C_3 h^3,$$
(7)

где $h = E - x_0$, E – выбранное значение энергии, x_0 – значение энергии узла сплайна, $x_0 < E < x_{0+1}$, C_i (i = 0, 1, 2, 3) – значения коэффициентов сплайна, соответствующие данному узлу.

Из полученных значений астрофизических *S*-факторов полное сечение реакции 9 Be(d, x) 10 Be рассчитывается с использованием формулы (1).

Авторами было проведено сравнение результатов настоящей работы с данными библиотеки TENDL, версия 2014 г. (программный код TALYS). На рис. 2 представлены зависимости оцененных значений полных сечений реакции 9 Be(d, x) 10 Be от энергии налетающих частиц, полученные авторами и приведенные в библиотеке TENDL. Из рисунка видно, что значительные расхождения наблюдаются в интервале энергии 2,5–10 МэВ. Максимальное отличие в значениях сечений наблюдается при энергии налетающих частиц около 5 МэВ. Оцененные значения сечений из библиотеки SaBa при этой энергии почти в два раза превышают значения сечений из библиотеки TENDL-2014.

Рис. 2. Сравнение оцененных данных из библиотек SaBa (1) и TENDL-2014 (2)

Заключение

Выполнен подробный анализ экспериментальных данных по полным сечениям образования радиоактивных ядер ¹⁰Ве при взаимодействии дейтронов с ⁹Ве. Выполнена перенормировка данных [4], которой объясняется использование в этой работе неверного значения периода полураспада ¹⁰Ве_{gs}. На основании проведенного анализа и отбора экспериментальных значений в библиотек SaBa получена оценка полных сечений реакции ⁹Ве(d, x)¹⁰Ве. Сравнение оцененных данных из библиотек SaBa и TENDL-2014 выявило наличие существенных разногласий в представленных значения.

Список литературы

1. Beynon T. D., Sim B. S. ¹⁰Be and ¹⁴C production rates in NET-TYPE CTR blankets // Ann. Nucl. Energy. 1990. Vol. 17, N 5. P. 271–280.

2. Koning A. J., Rochman D. TALYS-based evaluated nuclear data library [Electronic resource]. – ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.html.

3. Koning A. J., Rochman D. Modern nuclear data evaluation with the TALYS code system // Nucl. Data Sheets. 2012. Vol. 113. P. 2841–2870.

4. Heft R. E., Libby W. F. Absolute cross sections for deuterons on beryllium // Phys. Rev. 1955. Vol. 100. P. 799–815.

5. Генералов Л. Н., Абрамович С. Н., Звенигородский А. Г. Сечения реакций ⁹Be(d, p_{0,1}) и ⁹Be(d, t₀) // Изв. РАН. Сер. Физическая. 2000. Т. 64. С. 440–445.

6. Audi G. et al. The NuBase evaluation of nuclear and decay properties // Nucl. Phys. 2003. Vol. A729. P. 1.

7. Goosman D. R., Kavanagh R. W. Cross sections for ${}^{10}Be(d, p){}^{11}Be$, ${}^{10}Be(d, \alpha){}^{8}Li$ and ${}^{10}Be(p, \gamma_0){}^{11}B$ // Phys. Rev. C. 1973. Vol. 7. N 4. P. 1717–1720.

8. Ajzenberg-Selove F. Energy levels of light nuclei A = 5 - 10 // Nucl. Phys. 1979. Vol. A320. P. 1.

9. Schmidt-Rohr U. et al. The angular proton distributions from ${}^{9}Be(d, p){}^{10}$, ${}^{12}C(d, p){}^{13}C$, ${}^{16}O(d, p){}^{17}O$ and ${}^{40}Ca(d, p){}^{41}Ca$ reactions near energy 11.8 MeV // Nucl. Phys. 1964. Vol. 53. P. 77–87.

10. Zvenigorodskij A. G., Zherebtsov V. A., Lazarev L. M. et al. The library of evaluated and experimental data on charged particles for fusion application // Report IAEA-NDS-191, Dec. 1999.

11. Zwieglinski B., Saganek A., Sledzinska I. et al. Direct and resonance processes in ${}^{9}Be(d, p_{0,1}){}^{10}Be$ and ${}^{9}Be(d, t_0){}^{8}Be$ at low energies // Nucl. Phys. A. 1975. Vol. 250. P. 93–105.

12. Annegarn J., Mingay D. W., Sellschop J. P. F. et al. Evidence for a nuclear level in ¹¹B at 16.43 MeV // Phys. Rev. C. 1974. Vol. 9. P. 419.

13. Yan J., Cecil F. E., McNeil J. A. et al. Deuteron-induced reactions on ⁹Be, ¹⁰B, and ¹¹B at low energies // Phys. Rev. C. 1997. Vol. 55. P. 1890–1900.

14. Perchereau J. Investigation of the deuteron-induced reactions (d, p) and (d, t) on ${}^{9}Be$ at the energy range 120–200 keV // Rapport CEA-R-4070. 1971.

Evaluation of Cross Section of ¹⁰Be Radioactive Nuclei Production at Deuteron Interaction with ⁹Be

L. N. Generalov, S. M. Selyankina, S. M. Taova, V. A. Zherebtsov

The evaluation of ${}^{9}Be(d, x){}^{10}Be_{gs}$ reaction at deuteron energies from 0 to 22 MeV is presented in the paper. It has been obtained using all the experimental data obtained using mathematical equipment of the SaBa electron library designed in RFNC-VNIIEF.