## О ВОЗМОЖНОСТИ РЕГУЛИРОВАНИЯ ИНТЕРВАЛА ВРЕМЕНИ МЕЖДУ ПИКАМИ ИМПУЛЬСОВ РЕАКТОРА БР-1М И УСКОРИТЕЛЯ ЛИУ-30 В РЕЖИМЕ СОВМЕСТНОЙ РАБОТЫ

### А. С. Кошелев, В. Х. Хоружий

ФГУП «РФЯЦ-ВНИИЭФ, г. Саров Нижегородской обл.

Статья поступила в редакцию 19.05.2021, после доработки – 14.07.2021, принята к публикации – 18.11.2021

Проанализированы особенности формирования импульсов делений реактора БР-1М и ускорителя ЛИУ-30 в режиме совместной работы установок. Рассмотрены варианты конструктивной реализации и пространственного перемещения специализированного высокоскоростного регулятора реактивности реактора с возможностью значительного влияния на интервал между пиками импульсов ЛИУ-30 и БР-1М при инициировании импульса делений реактора с фиксированными параметрами импульсом излучений ускорителя.

**Ключевые слова:** импульс делений реактора, связь импульсов ускорителя и реактора, специализированный высокоскоростной регулятор реактивности, вариативность межпикового интервала импульсов установок.

ON THE POSSIBILITY OF REGULATING THE TIME INTERVAL BETWEEN PULSE PEAKS OF REACTOR BR-1M AND ACCELERATOR LIU-30 IN THE MODE OF THEIR JOINT OPERATION / A. S. Koshelev, V. Kh. Khoruzhy // The peculiarities of fission pulse formation in BR-1M and accelerator LIU-30 in the mode of the facilities joint operation are analyzed. There are considered the versions of design realization and spatial displacement of a specialized high-speed reactivity regulator with the rated possibility of a considerable effect on the value of the interval between the peaks of LIU-30 and BR-1M pulses at the initiation of the reactor fission pulse with the fixed parameters by the accelerator radiation pulse.

**Key words:** reactor fission pulse, relation between accelerator and reactor pulses, specialized high-speed reactivity regulator, variability of the interval between pulse peaks of the facilities.

### Введение

При совместной работе мощного линейного ускорителя электронов ЛИУ-30 и импульсного ядерного реактора на быстрых нейтронах БР-1М [1, 2] в режиме инициирования импульса делений реактора импульсом излучений ускорителя формируемый в активной зоне реактора всплеск мощности делений оказывается настолько значительным (практически реализованный максимум составил ~  $2,5 \cdot 10^{20}$  дел.АЗ/с при полном выходе индуцированного источника ~  $5 \cdot 10^{12}$  дел.АЗ), что интервал времени между импульсом ускорителя и пиком импульса реактора в практически востребованных редакциях совместных пусков действующими системами управления ускорителя и реактора может варьироваться только незначительно, от ~100 до ~150 мкс.

В настоящей статье рассматривается один из возможных путей расширенного варьирования межпикового интервала импульсов ускорителя ЛИУ-30 и реактора БР-1М до 450 мкс и более за счет введения в конструкцию реактора дополнительного специализированного высокоскоростного регулятора реактивности (СВРР) и перехода от одноступенчатой процедуры быстрого достижения реактивности реакторной системы, необходимой для генерирования импульса делений на мгновенных нейтронах с заданными параметрами, к двухступенчатой. Она реализуется путем последовательного ввода штатного импульсного блока реактора, обеспечивающего увеличение реактивности реакторной системы до промежуточного уровня  $\rho \approx 0.85\beta_{ob}$ , с последующим генерированием импульса ускорителя и одновременным или с варьируемо задержанным пуском СВРР реактора, обеспечивающим «на лету» достижение необходимой надкритичности по мгновенным нейтронам.

# Особенности формирования импульса реактора

Особенности развития импульса делений реактора БР-1М, инициируемого импульсом излучений ускорителя ЛИУ-30, иллюстрируют экспериментально установленные [3] графические отображения изменения мощности реактора в интервале от момента генерирования импульса ускорителя t = 0 до 700 мкс (рис. 1).

Генерирование импульса делений реактора при мощности индуцированного в активной зоне источника делений  $2,56\cdot10^{20}$  дел. АЗ/с (полный выход ~  $5\cdot10^{12}$  дел. АЗ) осуществлено в конфигурации взаиморасположения центров активной зоны реактора и мишенного блока ускорителя на центральной оси ускорителя. Генерирование импульса делений реактора при мощности индуцированного в активной зоне источника делений  $5,80\cdot10^{19}$  дел. АЗ/с (полный выход ~  $1,2\cdot10^{12}$  дел. АЗ) осуществлено при перпендикулярном смещении центра активной зоны реактора от центральной оси ускорителя на 20 см без изменения его расстояния от пола в помещении совместной работы установок.



Рис. 1. Развитие импульса делений реактора БР-1М в состоянии «нулевой» мощности с момента инициирования его импульсом ускорителя ЛИУ-30. Мощность сформированного источника – 2,56·10<sup>20</sup> дел.АЗ/с (1) и 5,80·10<sup>19</sup> дел.АЗ/с (2)

При почти совпадающих импульсных характеристиках: полуширина ~72 мкс, пиковая мощность (интенсивность) ~  $2,7 \cdot 10^{21}$  дел.АЗ/с, полное энерговыделение ~  $2,6 \cdot 10^{17}$  дел.АЗ – практически пятикратное уменьшение мощности (и выхода) индуцированного источника делений изменяет межпиковый интервал импульсов ускорителя и реактора всего на ~35 %, от 100 до 135 мкс.

### Варианты конструктивного решения СВРР

Двухступенчатая процедура генерирования импульса делений реактора, инициируемого импульсом излучений ускорителя, предопределяет следующие требования к СВРР:

– максимально короткое время изменения реактивности реакторной системы, от  $\rho_1 \approx \approx 0.85\beta_{9\phi}$  до  $\rho_2 \approx 1.10\beta_{9\phi}$ , обеспечивающей для реактора БР-1М генерирование импульса делений с рекомендованным пределом по полному энерговыделению 2,5  $\cdot 10^{17}$  дел.АЗ; – максимально возможное постоянство уровня реактивности реакторной системы  $\rho_2$  за счет СВРР при его возможном перемещении после реализации перехода  $\Delta \rho = \rho_2 - \rho_1$ .

С учетом указанных требований к характеру изменения реактивности при движении СВРР и результатам предварительных оценок, выполненных с использованием расчетной схемы, реализованной в [4], для детализированного рассмотрения были выбраны четыре варианта конструктивной компоновки структурных элементов СВРР.

Вариант 1 – это комбинация из трех конструктивно объединенных элементов цилиндрической формы:

 – полого цилиндра из полиэтилена с диаметрами (внешний×внутренний) 40×20 мм, высотой 60 мм; функционально неподвижного;

 – полого цилиндра из бора с диаметрами 40×20 мм, высотой 100 мм; функционально неподвижного;

– полого цилиндра из бора с диаметрами 20×10 мм, высотой 60 мм; функционально подвижного на базе перемещения от исходной позиции до формализованной ∞.

Рассматриваемое размещение на реакторе – центральный канал активной зоны (рис. 2,*a*).

Вариант 2 – это комбинация из пяти конструктивно объединенных элементов цилиндрической формы:

 – цилиндра из полиэтилена диаметром 10 мм, высотой 60 мм; функционально неподвижного;

 – полого цилиндра из полиэтилена диаметрами 40×20 мм, высотой 60 мм; функционально неподвижного;

 – цилиндра из бора диаметром 10 мм, высотой 100 мм; функционально неподвижного;

– полого цилиндра из бора с диаметрами 40×20 мм, высотой 100 мм; функционально неподвижного;

– полого цилиндра из бора с диаметрами 20×10 мм, высотой 60 мм; функционально подвижного на базе перемещения от исходной позиции до формализованной ∞.

Рассматриваемое размещение на реакторе – центральный канал активной зоны (рис. 2,*б*).

Вариант 3 – комбинация из трех конструктивно объединенных элементов цилиндрической формы:

 – полого цилиндра из полиэтилена с диаметрами 40×20 мм, высотой 60 мм; функционально неподвижного;

– полого цилиндра из бора с диаметрами 40×20 мм, высотой 180 мм; функционально неподвижного;

– полого цилиндра из бора с диаметрами 20×10 мм, высотой 60 мм; функционально подвижного на базе перемещения от исходной позиции до формализованной ∞.

Рассматриваемое размещение на реакторе – центральный канал активной зоны (рис. 2,*в*).

Вариант 4 – комбинация из конструктивно объединенных элементов цилиндрической формы:

 – полого цилиндра из полиэтилена с диаметрами 40×20 мм, высотой 60 мм; функционально неподвижного;

 – полого цилиндра из бора с диаметрами 80×20 мм, высотой 180 мм; функционально неподвижного;

– полого цилиндра из бора с диаметрами 20×10 мм, высотой 60 мм; функционально подвижного на базе перемещения от исходной позиции до формализованной ∞.

Рассматриваемое размещение на реакторе – центральный канал активной зоны (рис. 2,*г*).

При проведении расчетов во всех выбранных вариантах СВРР элементы из полиэтилена принимались сформированными из монолитного материала плотностью 0,92 г/см<sup>3</sup>, а элементы из бора – сформированными из борного порошка с 85 % обогащением по <sup>10</sup>В с насыпной плотностью 0,95 г/см<sup>3</sup>.

Расчетные конфигурации активной зоны реактора и СВРР в состоянии, принимаемом за исходное, представлены на рис. 2. Изменение реактивности реакторной системы при перемещении из исходной позиции z = 1 см (соответствует координате нижнего торца подвижного цилиндра из бора на оси z) до формализованного значения  $z = \infty$  рассчитывалось по методике С-007 [5]. Следуя [2], в качестве

делящегося материала активной зоны принимался сплав высокообогащенного (90 % по <sup>235</sup>U) урана с молибденом (массовая доля 10 %). Для каждого варианта СВРР определялись 10 значений реактивности, соответствующих положениям нижнего торца подвижного цилиндра из бора, z = 1, 3, 5, 7, 9, 11, 13, 17,21, 25 см, и одно значение реактивности, определенное в расчете без подвижного борного цилиндра ( $z = \infty$ ).



Генеральная выборка результатов расчета в нормировке данных по условию  $\rho$  (z = 1 см) =0 (далее по тексту  $\rho_{\text{норм}}$ ) представлена в табл. 1. Графическое отображение нормированных реактивностей на интервале изменения zот 1 до 25 см представлено на рис. 3. Точки на графике соответствуют значениям  $\rho_{\text{норм}}$ в табл. 1. Соединительные линии – *Excel*вариант точечного графика с гладкими межточечными кривыми.

Таблица 1

| <i>z</i> , см | $ρ_{\text{hopm}}, β_{3φ}$ |           |           |           |  |  |  |
|---------------|---------------------------|-----------|-----------|-----------|--|--|--|
|               | Вариант 1                 | Вариант 2 | Вариант 3 | Вариант 4 |  |  |  |
| 1             | 0,000                     | 0,000     | 0,000     | 0,000     |  |  |  |
| 3             | 0,075                     | 0,082     | 0,071     | 0,080     |  |  |  |
| 5             | 0,167                     | 0,188     | 0,163     | 0,170     |  |  |  |
| 7             | 0,244                     | 0,270     | 0,240     | 0,232     |  |  |  |
| 9             | 0,268                     | 0,296     | 0,266     | 0,250     |  |  |  |
| 11            | 0,278                     | 0,305     | 0,274     | 0,254     |  |  |  |
| 13            | 0,282                     | 0,309     | 0,275     | 0,256     |  |  |  |
| 17            | 0,269                     | 0,299     | 0,259     | 0,247     |  |  |  |
| 21            | 0,262                     | 0,289     | 0,256     | 0,248     |  |  |  |
| 25            | 0,260                     | 0,290     | 0,258     | 0,248     |  |  |  |
| $\infty$      | 0,259                     | 0,287     | 0,257     | 0,246     |  |  |  |

Генеральная выборка расчетных значений нормированных реактивностей CBPP

### Расчетный прогноз совместной работы ЛИУ-30 и БР-1М с СВРР

В практике расчета параметров для импульсов делений реакторов на быстрых нейтронах давно и успешно находит применение расчетно-теоретическая модель, используемые уравнения кинетики реактора которой, ориентированные на наличие внешнего (привнесенного извне) источника делений, сформулированы в работе [6], а жестко-устойчивые методы их решения – в работе [7].

Для учета влияния защитной бетонной оболочки реакторных помещений, к которым относится зал совместной работы ускорителя и реактора, хорошо зарекомендовали себя методы расчета, конкретизированные в работе [8].

Существенно инерционное гашение реактивности реактора описывается с помощью характерных для импульсных реакторов с металлической активной зоной уравнений [9]:

$$\begin{split} \rho(t) &= \rho_0 - \sum_{\omega} a_{\omega} v_{\omega}(t) - \Delta \rho(t), \\ \frac{1}{\omega^2} \frac{d^2 v_{\omega}}{dt^2} + v_{\omega} = Y(t), \quad Y(t) = \int_{t_0}^t dt' P(t'), \\ \Delta \rho(t) &= c(t - t_{\text{пик}} - \Delta)^2 \text{ при } t \ge t_{\text{пик}} + \Delta. \end{split}$$

Здесь  $\rho_0$  – стартовая реактивность реактора; P(t) – скорость делений в реакторе; Y(t) – энерговыделение в реакторе к моменту времени t;  $v_{\omega}(t)$  – условные смещения в единицах энерговыделения, соответствующие частотам колебаний элементов активной зоны  $\omega$ , а  $a_{\omega}$  – коэффициенты гашения реактивности, оцененные с помощью теории возмущений. Член  $\Delta \rho(t)$  приближенно описывает сброс реактивности после импульса делений.



Рис. 3. Изменение реактивности при выводе СВРР из центрального канала активной зоны реактора БР-1М (1-4 – варианты СВРР)

Для детализированного расчетного рассмотрения особенностей генерирования импульсов делений реактора БР-1М, инициируемых импульсом излучений ускорителя ЛИУ-30, в процессе двухступенчатой процедуры комплексной работы ядерно-физических установок с использованием штатного импульсного блока реактора и предлагаемого специализированного высокоскоростного регулятора реактивности был выбран вариант 4 СВРР как наиболее соответствующий сформулированным выше требованиям к характеру изменения реактивности при движении СВРР.

Дискретизированная зависимость реактивности  $\rho_{\text{норм}}(z)$  на интервале перемещения СВРР по *z* от 1 до 25 см, представленная в табл. 1, переформатировалась в непрерывную путем кубической сплайн-интерполяции с использованием стандартных программ. Для всех используемых в процессе расчета значений *z* > 25 см принималось  $\rho_{\text{норм}} = 0,248\beta_{9\phi}$ .

Индуцированный излучениями ускорителя в активной зоне реактора источник был выбран равным  $6 \cdot 10^{11}$  дел.АЗ. Выбор источника сделан из расчета возможности его реализации при смещении центра активной зоны реактора несколько более 20 см, что позволяет увеличить объем пространства, доступного комплексному воздействию излучений ускорителя и реактора.

Скорость перемещения СВРР из начального положения до окончания процедуры расчета принималась неизменной, равной 100, 200, 300, 400 и 500 м/с. Интервал времени, охватываемый расчетом, – от 0,1 до  $10^5$  мкс. Шаг дискретизации по времени t – в мкс, переменный, автоматически регулируемый в процессе счета. Рассчитываемые величины – суммарное изменение реактивности реакторной системы  $\rho$  в  $\beta_{3\phi}$  (за счет перемещения СВРР, нагрева и колебания кольцевых элементов из делящегося материала), интенсивности делений в активной зоне *P* в дел.АЗ/с, суммарное число

делений в активной зоне к моменту времени t *Y* в дел.АЗ и ожидаемая реактивность  $\rho_{\text{норм}}(\beta_{3\phi})$ , вносимая «на лету» в реакторную систему.

На рис. 4 в графической форме представлено изменение реактивности активной зоны реактора с учетом ее разогрева  $\rho_1$ , без учета ее разогрева  $\rho_2$  и интенсивности делений в зоне  $P_f$  в процессе формирования импульса делений реактора на мгновенных нейтронах, инициированного импульсом ускорителя при всех пяти рассмотренных скоростях перемещения СВРР. Наблюдаемый на рис. 4,*в*,*г*,*д* всплеск реактивности  $\rho_1$  обусловлен изменением реактивности активной зоны за счет колебания колец из делящегося материала.

Изменение интервала времени между пиком импульса излучений ускорителя и пиком импульса делений реактора, инициированным импульсом ускорителя, в графической форме представлено на рис. 5. Точками на графике обозначены значения  $\Delta T_{пик}$ , полученные в расчете. Сплошная кривая соответствует *Excel*-аппроксиманте  $\Delta T_{пик} = 11357V^{-0,566}$ ( $\Delta T_{пик}$  – в мкс, скорость перемещения СВРР V – в м/с, достоверность аппроксимации  $R^2 =$ = 0,9995).

Несмотря на то, что при реактивности активной зоны 0,85β<sub>эф</sub>, имеющей место на момент генерации импульса ускорителя, должен наблюдаться разгон реактора на запаздывающих нейтронах с периодом ~ 0,5 с согласно [10], по мгновенным нейтронам реакторная система подкритична на ~-0,15<sub>βэф</sub>. Поэтому для всех расчетных зависимостей интенсивности делений в активной зоне реактора после всплеска делений, обусловленных излучениями ускорителя, некоторое время (от ~250 мкс для  $V_{CBPP} = 100 \text{ м/с}$  до ~60 мкс для  $V_{CBPP} =$ = 500 м/с) имеет место значимый спад интенсивности делений в активной зоне (в ~200 раз для  $V_{\text{CBPP}} = 100 \text{ м/с}$ , в ~20 раз для  $V_{\text{CBPP}} =$ = 300 м/с, в ~7 раз для V<sub>СВРР</sub> = 500 м/с).



Рис. 4. Изменение реактивности активной зоны реактора с учетом ее разогрева ρ<sub>1</sub> (1), без учета ее разогрева ρ<sub>2</sub> (2) и интенсивности делений в зоне P<sub>f</sub> (3) в процессе формирования импульса делений реактора на мгновенных нейтронах, инициированного импульсом ускорителя при скоростях перемещения СВРР 100 (а), 200 (б), 300 (в), 400 (г) и 500 м/с (д)



Рис. 5. Изменение интервала времени между пиками импульсов ускорителя и реактора при изменении скорости перемещения СВРР от 100 до 500 м/с

Выявленное наличие спада интенсивности делений в активной зоне реактора после всплеска делений, обусловленного импульсом излучений ускорителя, позволяет рассмотреть вариант пуска СВРР не в момент импульса ускорителя, а некоторое время спустя, с интервалом времени между импульсом ускорителя и пуском CBPP  $\Delta T_{3an}$ . Результаты расчета зависимости изменения интенсивности делений в активной зоне реактора после импульса излучений ускорителя в случае перемещения СВРР на скорости 300 м/с и задержки его пуска на  $\Delta T_{3a\Pi}$  50, 100, 150, 250 и 350 мкс позволили конкретизировать величину интервала времени между пиками импульсов ускорителя и реактора при всех упомянутых  $\Delta T_{3an}$ . Полученные данные в графической форме представлены на рис. 6. В выборку расчетных данных, отмеченных точками на рисунке, включены также и данные для  $\Delta T_{3a\pi} = 0$ .

Кривые на рис. 6 соответствуют *Excel*аппроксимационным решениям для функциональной связи межпикового интервала  $\Delta T_{пик}$ и интервала задержки запуска СВРР  $\Delta T_{зап}$ .



Рис. 6. Изменение интервала времени между пиками импульсов ускорителя и реактора при перемещении СВРР со скоростью 300 м/с и изменении задержки пуска СВРР после генерирования импульса ускорителя от 0 до 350 мкс (1 и 2 – параболическая и линейная аппроксимация соответственно)

Аппроксимационное решение *1* получено в виде  $\Delta T_{\Pi u \kappa} = 459, 23 \pm 1,553 \Delta T_{3an} - 0,0009 \Delta T_{3an}^2$ с достоверностью аппроксимации  $R^2 = 0,9990$ . Аппроксимационное решение 2 получено в виде  $\Delta T_{\Pi u \kappa} = 473, 67 \pm 1,22 \Delta T_{3an}$  с достоверностью аппроксимации  $R^2 = 0,9937$ . Принимая во внимание фактически реализуемый разброс ожидаемых значений  $\Delta T_{\Pi u \kappa}$  в интервале изменения  $\Delta T_{3an}$  от 50 до 350 мкс ~ ±10 мкс для решения *1* и ~ ±5 мкс для решения *2*, можно говорить о наличии линейной связи между  $\Delta T_{\Pi u \kappa}$  и  $\Delta T_{3an}$  в рассмотренных пределах изменения  $\Delta T_{3an}$ .

Изменение интенсивности делений в активной зоне реактора БР-1М в интервале от 0 до 1000 мкс после импульса излучений ускорителя и задержанном запуске СВРР в интервале от 0 до 350 мкс со скоростью перемещения 300 м/с в графической форме представлено на рис. 7. Численные значения базовых параметров импульсов делений БР-1М, соответствующих их графическому отображению на рис. 7, представлены в табл. 2.



Рис. 7. Изменение интенсивности делений в активной зоне реактора при инициировании импульса делений реактора импульсом излучений ускорителя, скорости перемещения СВРР 300 м/с и варьировании задержки пуска СВРР после импульса ускорителя  $\Delta T_{\text{CBPP}}$ : 1 –  $\Delta T_{\text{CBPP}} = 0$ ; 2 –  $\Delta T_{\text{CBPP}} = 50$  мкс; 3 –  $\Delta T_{\text{CBPP}} = 100$  мкс; 4 –  $\Delta T_{\text{CBPP}} = 150$  мкс; 5 –  $\Delta T_{\text{CBPP}} = 250$  мкс; 6 –  $\Delta T_{\text{CBPP}} = 350$  мкс

Таблица 2

Результаты расчета базовых параметров импульса делений реактора БР-1М при перемещении СВРР со скоростью 300 м/с и варьируемой задержкой его пуска после импульса ускорителя в интервале от 0 до 350 мкс

| Рассчитываемый параметр                                                                                                                                                           |     | Задержка пуска СВРР, мкс |       |       |       |       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------|-------|-------|-------|-------|--|--|
|                                                                                                                                                                                   |     | 50                       | 100   | 150   | 250   | 350   |  |  |
| Интервал времени между пиками импульсов<br>ускорителя и реактора $\Delta T_{\text{пик}}$ , мкс                                                                                    | 454 | 539                      | 608   | 668   | 781   | 890   |  |  |
| Интенсивность делений в пике импульса реактора $P_{\rm max}$ , $10^{21}$ дел.АЗ/с                                                                                                 |     | 2,01                     | 1,96  | 1,94  | 1,89  | 1,84  |  |  |
| Полуширина импульса реактора $\theta_{1/2}$ , мкс                                                                                                                                 |     | 90,6                     | 91,4  | 91,8  | 92,6  | 93,6  |  |  |
| Энерговыделение в «быстрой» части импульса реактора (до первого минимума интенсивности делений после <i>P</i> <sub>max</sub> ) <i>Y</i> <sub>1min</sub> , 10 <sup>17</sup> дел.АЗ |     | 2,04                     | 2,01  | 1,99  | 1,96  | 1,93  |  |  |
| Энерговыделение в импульсе реактора за полное время расчета 100 мс <i>Y</i> , 10 <sup>17</sup> дел.АЗ                                                                             |     | 2,28                     | 2,25  | 2,23  | 2,20  | 2,17  |  |  |
| Долевое соотношение $Y_{1\min}/Y$                                                                                                                                                 |     | 0,895                    | 0,893 | 0,892 | 0,890 | 0,889 |  |  |

#### Заключение

В результате расчетного анализа выявлена принципиальная возможность осуществления планируемого регулирования интервала времени между пиком импульса излучений ускорителя ЛИУ-30 и пиком импульса интенсивности делений реактора БР-1М от ~450 мкс до ~900 мкс при инициировании импульса делений реактора импульсом излучений ускорителя.

Подтверждена целесообразность использования на момент генерирования импульса излучений ускорителя реактивности реакторной системы ~  $0,85\beta_{9\phi}$ , что позволяет избежать быстрого разгона реакторной системы сразу после импульса ускорителя и значительно уменьшить прирост реактивности после пуска ускорителя для вывода реактора на уровень, требуемый для генерирования импульса делений на мгновенных нейтронах с плановыми параметрами.

Установлено одно из возможных физикотехнических решений для специализированного высокоскоростного регулятора реактивности, обеспечивающего переход реакторной системы из состояния ~  $0,85\beta_{эф}$  в состояние ~  $1,10\beta_{э\phi}$  с необходимым профилем и скоростью изменения реактивности.

Выявлена возможность фиксирования скорости перемещения СВРР значением ~300 м/с с последующим регулированием времени запуска СВРР после импульса излучений ускорителя, обеспечивающая практически линейную связь между изменением интервала задержки запуска СВРР и изменением интервала между пиками импульсов ускорителя и реактора. Отметим, что конструктивная возможность достижения требуемой скорости перемещения СВРР выходит за пределы данной работы, так как требует специального рассмотрения. 1. Завьялов Н. В., Гордеев В. С., Савченко В. А. и др. Моделирующие и облучательные комплексы и установки РФЯЦ-ВНИИЭФ // 65 лет ВНИИЭФ. Физика и техника высоких плотностей энергий: В 2-х выпусках. – Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2011. Вып. 1. С. 165–191.

2. Колесов В. Ф., Кувшинов М. И., Воронцов С. В. и др. Критические стенды и импульсные реакторы РФЯЦ-ВНИИЭФ // Там же. С. 136–164.

3. Кошелев А. С., Хоружий В. Х. Формирование импульсов делений на мгновенных нейтронах реактора БР-1М в условиях высокой стартовой мощности // Вопросы атомной науки и техники, сер. Физика ядерных реакторов, 2013, вып. 3, с. 102–111.

4. Кошелев А. С., Никитин И. А., Хоружий В. Х. Быстрый импульсный блок реактора БР-К1М // Вопросы атомной науки и техники, сер. Физика ядерных реакторов, 2018, вып. 4, с. 116–128.

5. Житник А. К., Донской Е. Н., Огнев С. П. и др. Методика С-007 решения методом Монте-Карло связанных линейных уравнений переноса нейтронов, гамма-квантов, электронов и позитронов // Вопросы атомной науки и техники, сер. Математическое моделирование физических процессов, 2011, вып. 1, с. 17–24.

6. Хоружий В. Х. Уравнения кинетики реактора и бустера в терминах интенсивности делений // Вопросы атомной науки и техники, сер. Физика ядерных реакторов, 2010, вып. 2, с. 14–16.

7. Хоружий В. Х., Кошелев А. С., Колесов В. Ф. Интегрирование уравнений кинетики импульсного реактора на быстрых нейтронах жестко-устойчивыми методами Гира // Вопросы атомной науки и техники, сер. Физика ядерных реакторов, 1989, вып. 1, с. 8–14. 8. Хоружий В. Х., Колесов В. Ф. К расчету полей отраженных нейтронов и нейтронов утечки с помощью методов инвариантного погружения и сложения // Вопросы атомной науки и техники, сер. Импульсные реакторы и простые критические сборки, 1987, № 1, с. 3–11.

9. Колесов В. Ф. Апериодические импульсные реакторы: Монография в двух томах. – Саров: РФЯЦ-ВНИИЭФ, 2007. Т. 2. 10. Кошелев А. С. К выбору параметров запаздывающих нейтронов для импульсных реакторов на быстрых нейтронах // Вопросы атомной науки и техники, сер. Физика ядерных реакторов, 1998, вып. 2, с. 19–24.

Контактная информация -

Кошелев Александр Сергеевич, ведущий научный сотрудник ИЯРФ, РФЯЦ-ВНИИЭФ, e-mail: otd4@exped.vniief.ru

Вопросы атомной науки и техники. Сер. Физика ядерных реакторов, 2021, вып. 4, с. 108–118.