УДК 530.1; 539.8 DOI 10.53403/9785951505163_2021_26_1_58

Кластерная модель образования наночастиц и мезообъектов ударными волнами в тяжелых металлах и при выбросах с их поверхности

На основе кластерной модели рассчитаны наиболее вероятные, средние и максимально возможные размеры наночастиц и мезообъектов, образующихся в процессах ударно-индуцированной перестройки микроструктуры тяжелых металлов и последующих выбросов частиц с поверхности макроскопических образцов вблизи дефектов кристаллической решетки. Предложенная модель дает полный расчетный диапазон характеристических размеров исследуемых нано- и мезообъектов от ≈ 1 нм до ≈ 370 мкм.

Э. Э. Лин

Введение

Традиционно теоретическое описание взрывных выбросов частиц с поверхности металлов разделяется на атомистическое и молекулярно-динамическое моделирование, а также на рассмотрение газодинамической стадии процесса формирования пылевых облаков в многофазной среде [1]. В работе [2] предложен твердофазный механизм ударно-волнового образования пылевых частиц тяжелых металлов, в частности, актиноида [3]. Этот механизм связан с разрушением кристаллической решетки вещества на дефектах структуры в результате разрывов межатомных связей и образования «обломков» кристаллической решетки – атомных кластеров. В дальнейшем происходит коалесценция атомных кластеров (наночастиц) внутри ударной волны (УВ) в результате их фононных возбуждений и взаимной компенсации незадействованных электронных связей поверхностных атомов.

Предложенный кластерный подход занимает промежуточное положение между атомистическим моделированием и газодинамическими расчетами и основан на представлениях о существовании в кристаллах фононов и точечных дефектов – вакансий и межузельных атомов. Эти «базовые» дефекты обусловливают разрыв межатомных связей в результате возбуждения колебаний решетки при ударном воздействии и подбарьерных переходов в квантово-механической системе,

[©] Письма в ЖТФ. 2018. Т. 44, вып. 23. С. 71–77.

КЛАСТЕРНАЯ МОДЕЛЬ ОБРАЗОВАНИЯ НАНОЧАСТИЦ И МЕЗООБЪЕКТОВ...

когда число колебаний во «фронте» УВ чрезвычайно велико (~10² -10³). Принципиально воз-

можность квантового туннелирования атомов в кристалле при внешнем воздействии доказана в работе [4]. В статье [2], на основе дифференциального уравнения для роста среднего размера объектов со временем, полученного в работе [5] исходя из соотношений неопределенностей «координата-импульс» в пространстве размеров кластеров а и «энергия-время», которые в случае квантовой системы в когерентном состоянии (в приближении гармонических колебаний атомов с одинаковой частотой) выполняются в виде точных равенств, рассчитаны средние размеры наночастиц и мезозерен в УВ, лежащие в диапазоне от 10 нм до 300 мкм. Данный диапазон охватывает различные режимы твердофазного механизма агрегации объектов: малый поток зародышей на частицу, фронтальные столкновения, касательные взаимодействия, одновременное возбуждение объектов во всем объеме. Можно полагать, что эти режимы соответствуют процессам перестройки микроструктуры металла при ударном воздействии. Перестройка внутри УВ является первичным процессом по отношению к последующему выбросу частиц с поверхности образца при выходе УВ в вакуум, газ или жидкость и при образовании встречной волны разрежения, распространяющейся внутрь твердого образца. Выбросы могут происходить на приповерхностных дефектах кристаллической структуры вещества: вакансиях и межузельных атомах, микрополостях и порах, дислокациях, при движении которых образуются вакансии, а также на межзеренных границах. Можно полагать, что в потоке объектов, образовавшемся в многофазной среде при выбросе наночастиц с поверхности образца, могут происходить коалесценция наночастиц и агрегация мезозерен по описанному выше фононному механизму в режимах малого потока зародышей на частицу и касательных взаимодействий объектов.

В данной работе проведены расчеты характеристических размеров наночастиц и мезообъектов, которые могут образоваться в процессе ударно-индуцированной перестройки микроструктуры металла внутри УВ и последующего выброса частиц с поверхности образца. Исходя из приведенного в работе [5] решения методом Вентцеля–Крамерса–Бриллюена кинетического уравнения Фоккера–Планка (УФП), описывающего распространение волны плотности распределения объектов в пространстве размеров a, можно записать следующую формулу для относительной плотности P распределения, которая отражает существование множества локальных максимумов P, соответствующих наиболее вероятным (устойчивым) размерам:

$$P \approx \left(\frac{a}{a_0}\right)^{-3/4} \times \cos\frac{2\sqrt{2}}{5} \frac{\lambda}{\beta^{1/2}} \left(\left(\frac{a}{a_0}\right)^{5/2} - 1 \right). \tag{1}$$

В этой формуле, во избежание чрезмерных подробностей непринципиального характера, целесообразно не брать модуль косинуса, а рассматривать только положительную часть осциллирующего сомножителя. Здесь параметр $\beta \approx \hbar t_i / 2m_0 a_0^2$ (\hbar – приведенная постоянная Планка) определяется массой m_0 и размером a_0 зародыша, а также характерным параметром времени t_i взаимодействия объектов, $\lambda \approx \sqrt{15/2}$ – постоянная, определяемая путем сшивки решения УФП для малых частиц с первым максимумом уравнения (1), соответствующим зародышу. При описании процессов внутри образца для учета интенсивности УВ параметр t_i целесообразно принять равным периоду колебаний атомов, задаваемому ударным фронтом: $t_i = 2\pi\hbar/k_BT$, где T – температура во фронте УВ, k_B – постоянная Больцмана. В качестве зародыша целесообразно рассмотреть наночастицу с размером $a_0 \equiv a_* = 2a_c$, где a_c – размер ячейки кубической кристаллической решетки. Это

ПРИКЛАДНЫЕ ЗАДАЧИ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

отражает трансляционную симметрию решетки, т. е. образование кристаллического порядка. При описании процессов в потоке выброшенных частиц параметр t_i целесообразно принять равным времени пробега звуковой волны по зародышу: $t_i = 2a_c/c_0$, c_0 – скорость звука в веществе образца.

Максимально возможный размер объектов можно оценить по формуле, полученной в работе [5] на основе соотношения неопределенностей для координаты и импульса в пространстве размеров *a* объектов при условии сохранения массы в элементарном процессе взаимодействия объекта с зародышем:

$$a_{\max} \approx \frac{2m_0 a_0^3}{9\hbar\Delta t_{\min}} = \frac{2\rho_0 a_0^6}{9\hbar\Delta t_{\min}},$$
 (2)

где ρ_0 – плотность вещества с кубической кристаллической решеткой. В процессах внутри образца $\Delta t_{\min} = 2\pi \hbar/kT$, в процессах выброса $\Delta t_{\min} = 2a_c/c_0$.

Средние размеры объектов после выброса с поверхности образца, при указанных выше режимах агрегации и при условии сохранения ближнего порядка на базе двух размеров кристаллической ячейки, рассчитываются по следующим формулам [2, 5]:

$$\left\langle a\right\rangle_{sf} = \left(\frac{75k_BTa_c^3}{Am_u}\right)^{1/5} t^{2/5},\tag{3}$$

$$\left\langle a\right\rangle_{sm} = \left(\frac{27k_BTa_c}{4Am_u}\right)^{1/3} t^{2/3},\tag{4}$$

где A и m_u – массовое число и атомная единица массы. Формула (3) соответствует малому потоку (*st*) зародышей на частицу, формула (4) – касательному взаимодействию объектов (сдвиговый механизм «*sm*»).

На рис. 1 и 2 приведены расчеты по формуле (1) для процессов внутри образца из свинца с параметром гранецентрированной кубической решетки $a_c = 0,49496$ нм [6] при температурах T = 300 и 500 К. Шаг расчетов равнялся атомному радиусу. Можно видеть, что с увеличением интенсивности УВ наибольший по величине P(a) локальный максимум после зародышей смещается в сторону увеличения координаты a. При этом в распределении P(a) появляются более широкие максимумы (сдвоенные и строенные пульсации), означающие слияние наночастиц. Аналогичные распределения P(a) получены для актиноида [3]. Максимально возможный размер зерен, рассчитанный по формуле (2) для УВ в свинце при T = 300 К, $a_{max} \approx 140$ мкм, при T = 500 К $a_{max} \approx 230$ мкм. В случае актиноида при T = 500 К $a_{max} \approx 200$ мкм, при T = 900 К $a_{max} \approx 370$ мкм. Таким образом, рассчитанные в данной работе размеры твердофазных частиц, образующихся внутри макроскопических образцов из рассматриваемых металлов при ударных воздействиях, лежат в диапазоне от ≈ 1 нм до ≈ 370 мкм. Он включает в себя упомянутые выше средние размеры объектов, рассчитанные в работе [2].

Рис. 1. Относительная плотность распределения наночастиц свинца по размерам в УВ внутри образца при *T* = 300 K (шаг расчетов равен 0,175 нм – атомный радиус [6], наибольший по величине *P*(*a*) локальный максимум после зародыша соответствует размеру 1,5 нм, расчет «оборван» на размере 10 нм)

Рис. 2. Относительная плотность распределения наночастиц свинца по размерам в УВ внутри образца при T = 500 K (шаг расчетов равен 0,175 нм – атомный радиус [6], наибольший по величине P(a) локальный максимум после зародыша соответствует размеру 2 нм, расчет «оборван» на размере 10 нм)

Расчеты по формуле (1) показали, что в потоках выброшенных наночастиц распределения P(a) приблизительно соответствуют аналогичным распределениям в УВ внутри образца. Расчеты по формулам (3), (4) дают следующие интервалы средних размеров пылевых частиц свинца при длительностях ударного процесса $t = 10^{-9} - 10^{-6}$ с и указанных выше температурах: в режиме малого потока зародышей $\langle a \rangle_{sf} = (0,010-0,18)$ мкм; в режиме касательных взаимодействий $\langle a \rangle_{sm} = (0,03-4)$ мкм. Максимально возможный размер частиц свинца, оцененный по формуле (2), составляет: $a_{max} \approx 27$ мкм. Близкие значения характеристических размеров $\langle a \rangle_{sf}$, $\langle a \rangle_{sm}$ исследуе-

мых объектов рассчитаны для рассматриваемого актиноида. Верхняя граница $\langle a \rangle_{sm}$ и указанная величина a_{max} находятся в качественном соответствии с экспериментальными данными работ, перечисленных в [1, 2]. Следует отметить, что в совокупности со спектрами P(a) полученные величины $\langle a \rangle_{sf}$, $\langle a \rangle_{sm}$ расширяют диапазон возможных размеров пылевых частиц в нанометричную область, при этом данный кластерный подход не содержит запретов на выбросы крупных мезозерен, образовавшихся в УВ внутри образца.

Средний пространственный шаг l выбросов вдоль поверхности полированных образцов определяется средним расстоянием между дефектами кристаллической решетки. Если выбросы происходят вблизи вакансий с атомной концентрацией $\alpha = 0,01-0,02$ (1-2% атомных вблизи температуры плавления [7]), то величину среднего шага можно оценить как $l_v \approx (\alpha n)^{-l/3} \approx (1,1-1,5)$ нм $(n \approx (3,2-3,7)10^{28} \text{ м}^{-3}$ – концентрации атомов Pb и δ -Pu). Это сравнимо с размером наночастиц, т. е. в случае сильной УВ выброс наночастиц на вакансиях происходит по всей ударнонагруженной поверхности образца. В свинце при комнатной температуре вакансии находятся на расстоянии около 100 атомов [3]. Это означает, что в случае слабой УВ в свинце средний шаг выбросов наночастиц на вакансиях приблизительно равен 35 нм (атомный радиус Pb равен 0,175 нм [6]). При выбросах на дислокациях величина среднего шага l_d определяется поверхностной плотностью дислокаций, которая зависит от способа обработки (отжиг или деформация) и составляет полный диапазон $\eta_d = (10^{10} - 10^{16}) \text{ м}^{-2}$ [3]. Отсюда получаем: $l_d \approx 1/\sqrt{\eta_d} = (0,01-10) \text{ мкм}$. При выбросах на межзеренных границах максимальная величина шага l_{max} определяется величинами a_{max} в образце: $l_{\text{max}} = a_{\text{max}} = 140 - 370 \text{ мкм}$.

Предложенная кластерная модель дает полный расчетный диапазон характеристических размеров исследуемых нано- и мезообъектов в процессах их образования внутри ударных волн в тяжелых металлах и при последующих выбросах частиц с поверхностей макроскопических образцов. Полученные результаты могут оказаться полезными при экспериментальных исследованиях выбросов вещества с поверхности ударно-нагруженных образцов и постопытном анализе их микроструктуры.

Список литературы

1. Buttler W. T., Williams R. J. R., Najjar F. M. Foreword to the Special Issue of Ejecta // Journal of Dynamic Behavior of Materials. 2017. Vol. 3. Issue 2. P. 141–145.

2. Лин Э. Э., Михайлов А. Л., Хворостин В. Н. Твердофазный механизм ударно-волнового образования пылевых частиц тяжелых металлов // Письма в журнал технической физики. 2016. Т. 42. Вып. 15. С. 67–71.

3. Хеккер З. С. Плутоний – от атомов к микроструктуре // Плутоний. Фундаментальные проблемы. В 2-х томах / Пер. с английского под ред. Б. А. Надыкто, Л. Ф. Тимофеевой. Саров: РФЯЦ-ВНИИЭФ, 2003. С. 495.

КЛАСТЕРНАЯ МОДЕЛЬ ОБРАЗОВАНИЯ НАНОЧАСТИЦ И МЕЗООБЪЕКТОВ...

4. Слядников Е. Е. Двухуровневая квантовая система в деформированном кристалле // Физическая мезомеханика. 2003. Т. 6, № 3. С. 23–28.

5. Lin E. E. Asymptotic Models for Studying Kinetics of Formation of Compact Objects with Strong Internal Bonds // World Journal of Mechanics. 2014. Vol. 4. N 6. P. 170–194.

6. Егоров А. М. Свинец: Физический энциклопедический словарь. Т. 4 / Под ред. Б. А. Введенского, Б. М. Вула. М.: Советская энциклопедия, 1965. С. 493.

7. Шефтель Н. Н. Вакансии: Физический энциклопедический словарь. Т. 1 / Под ред. Б. А. Введенского, Б. М. Вула. М.: Советская энциклопедия, 1960. С. 219.

Cluster Model of Formation of Nanoparticles and Mesoobjects in Shock Waves in Heavy Metals and at Emissions from Their Surface

E. E. Lin

Using the cluster model, we have calculated the most probable, average and maximum sizes of nanoparticles and meso-objects formed in the processes of shock-induced restructuring of the micro-structure of heavy metals and during subsequent emissions of particles from the surface of macroscopic samples near the crystal lattice defects. The proposed model relates to the full range of characteristic sizes of the studied nano- and meso-objects from ≈ 1 nm to $\approx 370 \ \mu$ m.