УДК: 544.971.62 DOI: 10.53403/9785951505378_2023_157

Гидриды ИМС фаз Лавеса с высоким давлением диссоциации

М. А. Прохоренков, С. В. Митрохин, Э. А. Мовлаев

Химический факультет Московского государственного университета им. М. В. Ломоносова, Москва

mikl1995@yandex.ru

В настоящей работе для расчета водородсорбционных свойств ранее не исследованных ИМС с высоким давлением диссоциации была применена разработанная в нашей лаборатории статистическая модель, использующая уже известные литературные данные термодинамических параметров реакций абсорбции/десорбции водорода интерметаллическими композициями на основе гексагональных (C14) и кубических (C15) фаз Лавеса. С использованием статистической модели прогноза были рассчитаны водородсорбционные свойства сплавов: Ti_{0,9}Zr_{0,1}(Cr_{0,5}Mn_{0,25}Fe_{0,25})_{1,84}; Ti_{0,79}Zr_{0,21}(V_{0,2}Fe_{0,8})_{1,92}; ZrFe_{1,94}; Ti(V_{0,33}Fe_{0,67})_{1,88}. Сплавы были синтезированы и охарактеризованы методами РФА и EDX, для них были построены изотермы абсорбции и десорбции водорода. Проведено сравнение расчетных и экспериментальных данных для оценки корректности работы модели прогноза.

Введение

Развитие альтернативных источников энергии, и в частности водородной энергетики, предопределило повышенный интерес к веществам, способным эффективно обратимо аккумулировать и компримировать водород. Для этого наиболее актуальными являются интерметаллические соединения (ИМС). На сегодняшний день с появлением комбинированных композитных баллонов высокого давления требуется и разработка ИМС с высоким входным и выходным давлением. Для того чтобы получить нужное равновесное давление, используются многокомпонентные системы, имеющие однофазную структуру. Сейчас самыми перспективными с точки зрения массовой емкости и экономически целесообразными являются ИМС на основе титана и циркония. На сегодняшний день для подбора подходящего ИМС высокого давления для конкретной задачи проводят массу экспериментов, помимо этого количество изученных ИМС с высоким равновесным давлением крайне мало. В настоящей работе для сокращения числа экспериментов была применена разработанная нами статистическая модель и произведено сравнение теоретически полученных данных с экспериментальными. Для того чтобы точно охарактеризовать данные соединения, они были подвергнуты рентгенофазовому анализу (РФА) и энергодисперсионному рентгеновскому анализу (EDX). Построены изотермы десорбции и абсорбции, а также рассчитаны термодинамические параметры реакции с водородом следующих соединений: Ti_{0.9}Zr_{0.1}(Cr_{0.5}Mn_{0.25}Fe_{0.25})_{1.84}; Ti_{0.79}Zr_{0.21}(V_{0.2}Fe_{0.8})_{1.92}; ZrFe_{1.94}; Ti(V_{0.33}Fe_{0.67})_{1.88}.

Методика испытаний. Статистическая модель прогноза свойств металлогидридов

Согласно закону Вегарда параметры элементарных ячеек изменяются пропорционально концентрациям компонентов в пределах однофазной области твердых растворов. Также известно, что давление образования или разложения гидридных фаз сплавов одного структурного типа уменьшается с увеличением объема элементарных ячеек. Поскольку давление абсорбции (десорбции) связано с энтальпией и энтропией реакции по уравнению Вант-Гоффа, можно предположить, что эти термодинамические параметры связаны с параметрами элементарных ячеек сплавов. Поэтому, имея достаточный экспериментальный массив данных этих параметров, можно, используя математические методы, аппроксимировать их некоторой функцией, которая описывает монотонную зависимость состав – свойство. В нашей лаборатории была разработана модель расчета термодинамических характеристик многокомпонентных стехиометрических сплавов. Было показано [3], что с достаточной долей достоверности, изменения таких свойств, как параметры элементарной ячейки сплавов, ΔH и ΔS реакции с водородом, могут быть описаны полиномом второй степени, в котором аргументами являются концентрации образующих ИМС компонентов:

$$F(x) = Y_0 + \sum A_i \cdot x_i + \sum B_{ij} \cdot x_i \cdot x_j, \quad j \ge 1,$$

где *х* – концентрации компонентов в ИМС; *Y*₀ – свободный член бинома; *A*, *B*–коэффициенты.

В результате вычислений, для исследования в настоящей работе были выбраны следующие составы: $(TiZr_{0,1})_{1,1}Cr_{1,1}Fe_{0,6}Mn_{0,6}$; $Zr_{0,2}Ti_{0,8}Fe_{1,6}V_{0,4}$; $Zr_{0,9}Y_{0,1}Fe_2$; $TiFe_{1,4}V_{0,6}$.

Приготовление исходных сплавов

В качестве исходных компонентов использовались металлы следующей чистоты (по паспорту): ванадий электролитический – 99,99 %; железо армко – 99,9 %; марганец электролитический – 99,99 %; иодидный цирконий – 99,99 %; иодидный титан – 99,99 %; хром – 99,99 %.

Исходные ИМС готовились путем сплавления шихты из металлов на водоохлаждаемом медном поду электродуговой печи с нерасходуемым вольфрамовым электродом в атмосфере очищенного аргона под давлением 1–1,5 атм. Для дополнительной очистки аргона от примесей кислорода перед началом плавки расплавлялся губчатый титан. С целью получения однородных по составу сплавов образцы переворачивали 3–4 раза. Навески исходных металлов взвешивались на аналитических весах с точностью ±0,0005 г. Марганец брали с небольшим избытком, определенным экспериментально (6 масс. %), для компенсации потерь от угара. Перед использованием в эксперименте образцы сплавов тщательно очищали от оксидной пленки на корундовом круге.

Термическая обработка сплавов

Выплавленные сплавы подвергали отжигу для получения гомогенных образцов. Отжиг проводился в запаянных кварцевых ампулах, заполненных аргоном, при остаточном давлении 0,1 Па. В качестве геттера остаточных газов использовали титановую стружку, а для предотвращения взаимодействия образцов с кварцем корольки сплавов заворачивали в танталовую фольгу. Продолжительность отжига составляла 1200 ч при температуре 900 °C. После отжига сплавы медленно охлаждались со скоростью 0,5 °C/мин. Отжиг проводился в муфельных печах с автоматическим регулированием температуры.

Характеристики образцов

Исходные образцы охарактеризованы методами EDX и P Φ A. Пример для образца (TiZr_{0,1})_{1,1}Cr_{1,1}Fe_{0,6}Mn_{0,6} приведен на рис. 1.

Данные рентгеноспектрального микроанализа приведены в табл. 1. Количественный средний состав сплавов, согласно EDX, удовлетворительно соответствует рассчитанному. В сплаве $Zr_{0,9}Y_{0,1}Fe_2$ при плавке почти испарилась вся добавка иттрия; предположительно это связано с высоким давлением насыщенных паров. По данным EDX и РФА было установлено, что образцы являются однофазными. Совершенно незначительная примесь присутствует в сплаве (TiZr_{0,1})_{1,1}Cr_{1,1}Fe_{0,6}Mn_{0,6} и TiFe_{1,4}V_{0,6}.

Рис. 1. Фотография микроструктуры поверхности и РФА образца $(TiZr_{0,1})_{1,1}Cr_{1,1}Fe_{0,6}Mn_{0,6}$

Таблица 1

	По данным EDX		
Рассчитанный состав	Средний состав (условный)	Основные фазы	
$(TiZr_{0,1})_{1,1}Cr_{1,1}Fe_{0,6}Mn_{0,6}$	$Ti_{0,9}Zr_{0,1}(Cr_{0,48}Mn_{0,26}Fe_{0,25})_{1,8}$	$Ti_{0,9}Z_{r0,1}(Cr_{0,5}Mn_{0,25}Fe_{0,25})_{1,84}$	
$Zr_{0,2}Ti_{0,8}Fe_{1,6}V_{0,4}$	$Ti_{0,79}Zr_{0,21}(V_{0,22}Fe_{0,78})_{1,84}$	$Ti_{0,79}Zr_{0,21}(V_{0,2}Fe_{0,8})_{1,92}$	
$Zr_{0,9}Y_{0,1}Fe_2$	$Zr_{0,95}Y_{0,05}Fe_{1,87}$	$ZrFe_{1,94}$	
$TiFe_{1,4}V_{0,6}$	$Ti(V_{0,33}Fe_{0,67})_{1,89}$	Ti(V _{0,33} Fe _{0,67}) _{1,88}	

Данные рентгеноспектрального микроанализа*

Примечание: * – погрешность метода составляет 5 % от определяемой величины.

РФА показал, что полученные сплавы имеют структурный тип гексагональной (С14) и кубической (С15) фаз Лавеса. В табл. 2 приведены рассчитанные значения параметров элементарных ячеек.

Таблица 2

Средний состав (условный)	Фазовый состав	a, Å	<i>c</i> , Å	V, Å ³
\mathbf{T} ; \mathbf{Z} ; $(\mathbf{C}$; \mathbf{M} ; \mathbf{E} ; \mathbf{C} ; \mathbf{M} ; \mathbf{E} ; \mathbf{C} ; \mathbf{M} ; \mathbf{T} ; T	$Ti_{0,9}Zr_{0,1}(Cr_{0,5}Mn_{0,25}Fe_{0,25})_{1,84}(C14)$	4,887(9)	8,02(1)	165,8(5)
110,9Z10,1(C10,48W110,26Fe0,25)1,8	$Ti_{0,96}Zr_{0,05}Cr_{0,39}Mn_{0,24}Fe_{0,36}$	следы		
$Ti_{0,79}Zr_{0,21}(V_{0,22}Fe_{0,78})_{1,84}$	$Ti_{0,79}Zr_{0,21}(V_{0,2}Fe_{0,8})_{1,92}(C14)$	4,91(1)	7,99(2)	166,6(7)
Zr0,95Y0,05Fe1,87	ZrFe _{1,94} (C15)	7,11(1)	_	360,4(9)
Ti(V0,33Fe0,67)1,89	Ti(V _{0,33} Fe _{0,67}) _{1,88} (C14) 99,2 %	4,88(2)	7,95(2)	164,2(8)
	Ti0,52V0,16Fe0,32 BCC (229) 0,8 %	3,07(2)	_	29,0(3)

Параметры элементарных ячеек исходных сплавов

Взаимодействие с водородом

Построение изотерм и определение термодинамических характеристик реакций. На рис. 2–5 приведены изотермы абсорбции и десорбции водорода, полученные для образцов при разных температурах. Значения термодинамических параметров ΔH и ΔS реакции с водородом вычислялись по уравнению Вант-Гоффа.

Рис. 2. Изотермы для системы $Ti_{0,9}Zr_{0,1}(Cr_{0,5}Mn_{0,25}Fe_{0,25})_{1,84}$ –H2

Рис. 5. Изотермы для системы Ti(V_{0,33}Fe_{0,67})_{1,88}-H₂

Определенные экспериментальные термодинамические параметры реакции с водородом приведены в табл. 3.

Таблица 3

Состав	$\Delta H_{\mathrm{abc.}},$	$\Delta S_{ m a ar c c.},$	$\Delta H_{\text{dec.}}$,	$\Delta S_{\text{dec.}}$,
Состав	кДж/моль	Дж/моль•К	кДж/моль	Дж/моль К
$Ti_{0,9}Zr_{0,1}(Cr_{0,5}Mn_{0,25}Fe_{0,25})_{1,84}$	16,9(2)	96,9(3)	19,7(1)	103(1)
$Ti_{0,79}Zr_{0,21}(V_{0,2}Fe_{0,8})_{1,92}$	20,9(1)	114,7(4)	15,8(2)	97,6(4)
ZrFe _{1,94}	14,1(1)	100,6(3)	18(1)	107,8(3)
Ti(V _{0,33} Fe _{0,67}) _{1,88}	22,2(2)	104,6(3)	28,2(3)	121(1)

Термодинамические параметры реакции с водородом

Рентгенофазовый анализ полученных гидридных фаз. При пассивации кислородом при температуре жидкого азота удалось застабилизировать 2 гидрида. Был проведен РФА 1-го и 4-го гидридов. В табл. 4 приведены рассчитанные значения параметров элементарных ячеек гидридных фаз $Ti_{0.9}Zr_{0.1}(Cr_{0.5}Mn_{0.25}Fe_{0.25})_{1.84}H_x$ и $Ti(V_{0.33}Fe_{0.67})_{1.88}H_x$. Так как гидриды имеют высокое равновесное давление, они нестабильны в нормальных условиях и их пассивация затруднена. В образце $Ti_{0.9}Zr_{0.1}(Cr_{0.5}Mn_{0.25}Fe_{0.25})_{1.84}H_x$ присутствуют две фазы – гидридная и α -фаза (раствор водорода в ИМС), что свидетельствует о его частичном разложении.

Таблица 4

Фазовый состав	<i>a</i> , Å	<i>c</i> , Å	V, A^3	$\Delta V/V_0$, %
$Ti_{0,9}Zr_{0,1}(Cr_{0,5}Mn_{0,25}Fe_{0,25})_{1,84}$ H _x (65,1 %)	5,20(3)	8,51(3)	199(2)	21
$Ti_{0.9}Zr_{0.1}(Cr_{0.5}Mn_{0.25}Fe_{0.25})_{1.84}\alpha$ - ϕ asa (34,9%)	4,90(3)	8,05(3)	168(1)	1,3
$Ti(V_{0,33}Fe_{0,67})_{1,88}H_x$	5,21(4)	8,51(4)	200(2)	21,8

Значения параметров элементарных ячеек гидридов

Обсуждение результатов

Как следует из сопоставления приведенных выше экспериментальных данных РФА и EDX, образцы представляют собой многокомпонентные фазы Лавеса.

При гидрировании увеличение объема элементарной ячейки фаз Лавеса достигало 22 %. Структурный тип сохранился, что свидетельствует о стабильности этих систем при циклах абсорбции и десорбции.

В табл. 5 приведены вычисленные по статистической модели и экспериментальные значения термодинамических параметров реакции с водородом исследованных сплавов.

Таблица 5

Состав	$\begin{array}{c} Ti_{0,9}Zr_{0,1} \\ (Cr_{0,5}Mn_{0,25}Fe_{0,25})_{1,84} \end{array}$	$\begin{array}{c} Ti_{0,79}Zr_{0,21} \\ (V_{0,2}Fe_{0,8})_{1,92} \end{array}$	ZrFe _{1,94}	Ti (V _{0,33} Fe _{0,67}) _{1,88}
Δ <i>H</i> _{дес} (эксп.), кДж/моль	19,7(1)	15,8(2)	18(1)	28,2(3)
ΔS _{дес} (эксп.), Дж/моль∙К	103(1)	97,6(4)	107,8(3)	121(1)
Δ <i>H</i> _{дес} (теор.), кДж/моль	21,9	17,8	22,6	24,5
ΔS _{дес} (теор.), Дж/моль∙К	110,4	105,4	107,2	108,2
Р _{дес} (эксп.), 25 °С, атм	80	190	260	24
Δ <i>H</i> _{абс} (эксп.), кДж/моль	16,9(2)	20,9(1)	14,1(1)	22,2(2)
ΔS _{абс} (эксп.), Дж/моль·К	96,9(3)	114,7(4)	100,6(3)	104,6(3)
Р _{абс} (эксп.), 25 °С, атм	120	214	460	37,6

Теоретические и экспериментальные значения термодинамических параметров

Теоретический расчет параметров абсорбции не производился, так как база данных для абсорбции нуждается в дополнении и уточнении. Как видно из табл. 5, модельные расчеты дают приемлемый для значений энтальпии и энтропии реакции прогноз. Как следует из общего вида полученных изотерм, гидриды сплавов вполне пригодны для использования в качестве рабочих тел аккумулирования водорода или последовательных ступеней термосорбционного компрессора.

Заключение

С использованием статистической модели прогноза водородсорбционных свойств рассчитаны, синтезированы и охарактеризованы методами РФА и EDX четыре сплава высокого давления. Для сплавов были построены изотермы абсорбции и десорбции водорода, вычислены термодинамические параметры реакции. Статистическая модель позволяет сократить число экспериментов для поиска требуемых сплавов.

Благодарность

Исследование выполнено по Программе развития Междисциплинарной научно-образовательной школы МГУ им. М. В. Ломоносова «Будущее планеты и глобальные экологические изменения» и поддержано Министерством науки и высшего образования Российской Федерации, проектами № АААА-А16-116053110012-5 и 122012400186-9.

Список литературы

1. Алефельд Г., Фелькль И. Проблемы прикладной физики. Водород в металлах. – М.: Мир, 1981. Т. 2. С. 25–37.

2. Вербецкий В. Н., Митрохин С. В. Свойства металлогидридов и перспективы их использования // Материаловедение. 2009. № 1. С. 48–59.

3. Mitrokhin S. V., Tepanov A. A., Verbetsky V. N. Hydrogen interaction with alloys of $NdNi_{5-x}Al_x$ system // Int. J. of Hydrogen Energy. 2017. Vol. 42. P. 22353–22357.