КОНСТРУКТОРСКИЕ БЮРО

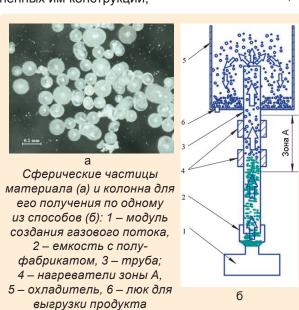
НЕЙТРОНОЗАЩИТНЫЕ МАТЕРИАЛЫ НА ПОЛИМЕРНОЙ ОСНОВЕ

Разработаны способы получения перспективных композиционных материалов, предназначенных для радиационной защиты. В частности, с помощью данных способов получены высокодисперсные порошки с частицами сферической формы на основе линейного полиэтилена высокого давления и нитрида бора в качестве нейтронопоглощающей добавки. В зависимости от выбранного способа получения массовое содержание бора может меняться от 0 до 30 % при среднем размере частиц от 200 до 400 мкм. Материалы могут применяться в космической и атомной отраслях, а также авиации, судостроении.

Преимущества нейтронозащитных материалов на полимерной основе по сравнению с имеющимися аналогами:

- высокая степень защиты от нейтронного излучения за счет высокого содержания активного наполнителя;
- низкая плотность порошкового материала, способствующая снижению массы заполненных им конструкций;

- высокая инертность, устойчивость к коррозии;
- равномерное заполнение объемов произвольной формы благодаря сферической форме частиц;
- широкий диапазон температуры эксплуатации в различных климатических условиях;
- доступность исходных компонентов на российском рынке поставщиков.


Разработка получила золотую медаль Международного салона изобретений и новых технологий «Новое время», проходившего 22–24 сентября 2022 г. в Севастополе, а также специальный приз Федерации космонавтики России.

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОЕКТИРОВАНИЯ СЛОЖНЫХ ТЕХНИЧЕСКИХ СИСТЕМ УПРАВЛЕНИЯ И КОНТРОЛЯ

В рамках создания программно-технических средств для экспериментальной отработки и проверки тактико-технических характеристик исследуемых образцов с целью ускорения работ по проектированию, отладке и внедрению сложных технических систем, сокращению мате-

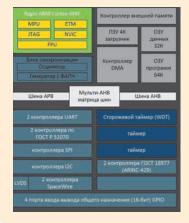
риальных затрат и повышению качества разработан универсальный стендовый комплект (УСК). Он обеспечивает повышение эффективности и качества создания образцов сложных технических систем, отвечающих современным требованиям по надежности и безопасности. В основе УСК лежит программно-аппаратная модель, обеспечивающая имитацию сложных технических систем и среды функционирования. Комплект прошел полный цикл отработки, испытаний и принят в эксплуатацию для обеспечения испытаний изделий заказчика на комплексном стенде универсальной корабельной системы управления стрельбой.

В качестве одного из приоритетных направлений в подготовке специалистов эксплуатирующих организаций является широкое применение в процессе обучения тренировочных и тренажерных средств и совершенствование форм и методов обучения с их помощью. Это обусловлено, прежде всего, наличием современной, обладающей высокими боевыми качествами, оснащенной сложнейшими агрегатами, приборами и системами боевой и другой техники, осво-

ение которой требует от личного состава глубоких знаний и твердых практических навыков при эксплуатации и боевом применении. Использование учебно-тренировочных средств (УТС) позволяет организовать управляемый учебный процесс путем усложнения или упроще-

ния учебных задач, изменения их тематики, многократного повторения условий выполнения задания, организации автоматического контроля за выполнением алгоритмов деятельности обучаемых, отработки действия в нештатных и аварийных режимах и т. д. Наряду с этим прин-

ципиально новые возможности открыло применение в тренажерах и УТС компьютеров с моделирующими программами, использующими математическую/ имитационную модель физических процессов событий и обеспечивающую динамичность построения УТС.


НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ (НИИИС) им. Ю. Е. Седакова

РАЗРАБОТКА И ОСВОЕНИЕ
ПРОИЗВОДСТВА
НА ОТЕЧЕСТВЕННОМ
ПРЕДПРИЯТИИ
МИКРОПРОЦЕССОРА
НА ОСНОВЕ ЯДРА АЯМ
СО ВСТРОЕННЫМИ
ИНТЕРФЕЙСАМИ
В КОМПАКТНОМ
КОРПУСЕ

Завершена разработка микропроцессора на основе ядра ARM со встроенными интерфейсами в малогабаритном корпусе (далее – микросхемы), предназначенного для применения в аппаратуре телеметрии, космической аппаратуре и других образцах бортовой радиоаппаратуры. Готовится серийное изготовление микросхемы.

Микропроцессор 1914ВМ024 базируется на 32-разрядном процессорном RISC ядре с архитектурой ARM Cortex-M4F, включает в состав контроллеры интерфейсов UART, I2C, SPI, МКИО, GPIO, DMA, блоки ОЗУ программ и данных, а также генератор с ФАПЧ.

Частота тактового сигнала микросхемы 60,0 МГц, номинальное напряжение питания 3,3 В. Микросхема выполнена в компактном металлокерамическом 120-выводном планарном корпусе и работает в диапазоне температур от минус 60 до 85 °C.

Состав и внешний вид интерфейсов микропроцессора на основе ядра ARM 1914BM024

СОЗДАНИЕ МИКРОСХЕМЫ РЕЗОНАНСНОГО ИНВЕРТОРА 1359EУ044

Завершена разработка радиационностойкой интегральной микросхемы, предназначенной для управления

ключами двухтактного полумостового резонансного инвертора, стабилизация в котором осуществляется методом частотной модуляции импульсов управления за счет обратной связи по напряжению. Резо-

_		
Эпектрические	папаметры	MINKDOCKEMPI

Наименование параметра,	EVICEOUTION	Hopivia	
	Буквенное	не	не
единица измерения	единица измерения обозначение		более
Выходное напряжение источника опорного напряжения REF1, В (при $U_{\rm n}$ = 24,0 В; $I_{\rm on}$ = 10 мА)	U _{on}	4,9	5,1
Нестабильность источника опорного напряжения REF1 по входному напряжению, %/B (при $U_{\Pi 1}$ = 16 B, $U_{\Pi 2}$ = 36 B)	$K_{\!\scriptscriptstyle m UO\Pi}$	-	0,05
Напряжение внутреннего источника питания драйвера, В (при U_{Π} = 24,0 В)	$U_{\Pi extsf{DB}}$	8	10
Время нарастания импульса выходного напряжения, нс (при U_{Π} = 36 B, F_{Γ} = 500 кГц, $C_{\rm H}$ = 3,3 нФ)	t _{HAP}	_	150
Время спада импульса выходного напряжения, нс (при U_{Π} = 36 В, F_{Γ} = 500 кГц, $C_{\rm H}$ = 3,3 нФ)	t _{cп}	-	120
Остаточное напряжение выходного каскада при втекающем токе, В (при U_{Π} = 24 В, $U_{\Pi \text{ДB}}$ = 12 В, I_{BT} = 100 мА)	U _{OCT. BT}	-	0,75
Остаточное напряжение выходного каскада при вытекающем токе, В (при U_{Π} = 24 B, $U_{\Pi Д B}$ = 12 B, $I_{\text{ВЫТ}}$ = 50 мA)	$U_{ m oct.BbIT}$	_	0,75
Ток потребления, мА	I_{\PiOT}	-	7