ПЕРЕСТРАИВАЕМЫЙ ЛАЗЕР НА ОСНОВЕ АКТИВНОЙ СРЕДЫ Cr:LiSAF

Магда Лев Эдуардович, Касьянов Иван Вячеславович, <u>Клепалова Анна Михайловна</u> (dep5@vniitf.ru), Бобин Кирилл Гергиевич

ФГУП «РФЯЦ-ВНИИТФ имени академ. Е. И. Забабахина», г. Снежинск Челябинской обл.

В работе представлены результаты исследования лазера с активной средой Cr:LiSAF. В ходе работы был создан лазер на базе плоскопараллельного резонатора и получена генерация лазерного излучения в режиме свободной генерации и в режиме модуляции добротности. Для получения режима модуляции добротности впервые был использован пассивный затвор YAG:Cr⁴⁺.

Представлены результаты измерения параметров лазера с дисперсионным резонатором. В режиме свободной генерации была получена перестройка длины волны лазерного излучения. Диапазон перестройки составил 100 нм.

Ключевые слова: Cr:LiSAF-лазер, перестраиваемый лазер, свободная генерация, широкоспектральный лазер, модуляция добротности.

TUNABLE LASER ON A BASIS OF A Cr:LiSAF ACTIVE MEDIUM

Magda Lev Eduardovich, Kasyanov Ivan Vyacheslavovich, <u>Klepalova Anna Mikhaylovna</u> (dep5@vniitf.ru), Bobin Kirill Georgievich

FSUE «RFNC-VNIITF named after academ. E. I. Zababakhin», Snezhinsk, Chelyabinsk region

The article gives the results of research laser with active element Cr:LiSAF. The laser has been constructed on a basis of the Fabry-Perot cavity. Generation of laser radiation has been received in free-running mode and in Q-switched mode. The saturable absorber YAG: Cr^{4+} has been used in the received Q-switched mode for the first time.

The measured parameters of the laser with dispersion resonator are presented. Tunable wavelength laser radiation has been received in free-running mode. The tunable range was 100 nm.

Key words: Cr:LiSAF-laser, tunable laser, free-running mode, widely spectral laser, Q-switched mode.

Введение

В зависимости от типа используемой активной среды различают газовые, жидкостные и твердотельные лазеры. Наибольшее распространение среди твердотельных лазеров получили лазеры с активной средой, активированной ионами трехвалентного неодима. Однако для получения непрерывной перестройки длины волны лазерного излучения эти среды не подходят, так как обладают узкой шириной спектра генерации.

С точки зрения получения наибольшего диапазона перестройки в твердотельном лазере перспективны среды, активированные ионами группы железа. Из них наиболее известны: сапфир, активированный титаном и ряд сред, активированных двух-, трех- и четырехвалентным хромом (Cr:MgF2, Cr:YAG, Cr:LiSAF и т. д.).

В целях освоения новых лазерных сред и спектральных диапазонов во ФГУП «РФЯЦ-ВНИИТФ имени академ. Е. И. Забабахина» ведутся исследования свойств Cr:LiSAF лазера.

Преимуществами среды Cr:LiSAF являются [1]:

 широкая полоса поглощения, что позволяет создавать лазеры с диодной накачкой без термостабилизации излучателей накачки. Эффективность поглощения излучения накачки в этой среде не будет зависеть от температурного сдвига спектральной линии лазерных диодов; широкая полоса излучения, что позволяет создавать перестраиваемые лазеры, широкополосные лазеры и лазеры, генерирующие пикосекундные и фемтосекундные импульсы;

 четырехуровневая схема работы, что позволяет получать лазерную генерацию при относительно невысоких энергиях накачки.

Целью данной работы является исследование лазерно-физических характеристик широкополосной активной среды Cr:LiSAF, в частности получение перестройки длины волны лазерного излучения.

Лазер с активной средой Cr:LiSAF

На начальном этапе работы был собран лазер, оптическая схема которого представлена на рис. 1. Резонатор лазера образован выходным зеркалом с коэффициентом отражения R = 50 %. 1 и глухим зеркалом с коэффициентом отражения R > 99 % 2 в диапазоне длин волн от 740 нм до 880 нм, а также оптической усилительной головки (ОУГ).

Рис. 1. Схема лазера с активной средой Cr:LiSAF: 1 – глухое зеркало, 2 – выходное зеркало, 3 – оптическая усилительная головка, 4 – измеритель энергии

В качестве активной среды ОУГ данного лазера выступает кристалл Cr:LiSAF диаметром 6,3 мм и длиной 100 мм, концентрация ионов Cr^{3+} 1,5 %. Спектр люминесценции кристалла, при накачке Не-Ne лазером, представлен на рис. 2. Как видно из рис. 2 максимум спектра люминесценции лежит в диапазоне длин волн 770–790 нм.

Рис. 2. Спектр люминесценции кристалла Cr:LiSAF

Максимальная измеренная энергия генерации лазера с активной средой Cr:LiSAF в представленной на рисунке 1 конфигурации равна $E_{\text{ген}} = 890 \pm 40 \text{мДж}$ при энергии накачки $E_{\text{нак}} = 200 \text{Дж}$. При этом значение порога генерации, полученное путем экстраполяции к нулю зависимости выходной энергии от энергии накачки, равно $E_{\text{порог}} = 91 \text{Дж}$.

Также был получен спектр лазерного излучения для плоскопараллельного резонатора, который представлен на рис. 3.

Рис. 3. Спектр генерации лазера с плоскопараллельным резонатором и активной средой Cr:LiSAF

В соответствии с представленной на рис. 3 спектрограммой ширина спектра генерации на полувысоте равна $\Delta \lambda = 12$ нм.

Осциллограмма импульса лазерного излучения представлена на рис. 4.

Рис. 4. Осциллограмма импульса лазерного излучения

Длительность импульса генерации составила $\tau = 110\pm 30$ мкс.

Измерение длительности импульса здесь и далее проводилось по прекращению поступления в приемник пичков свободной генерации.

Лазер с активной средой Cr:LiSAF и резонатором с дисперсионным элементом

На следующем этапе работы был собран резонатор с дисперсионным элементом – равносторонней призмой, изготовленной из материала N-SF11, оптическая схема такого лазера представлена на рис. 5.

Перестройка частоты лазерного излучения в данном случае происходит следующим образом: при прохождении излучения сквозь призму 4 за счет дисперсии в зависимости от длины волны происходит отклонение излучения на разные углы от первоначального направления распространения. Далее излучение попадает на подвижное, глухое зеркало *1* резонатора, и резонатор оказывается съюстированным лишь для одной длины волны, однозначно определяемой углом установки зеркала. Для всех других длин волн потери в резонаторе будут больше. При повороте зеркала *1* происходит перестройка длины волны лазерного излучения.

Рис. 5. Схема лазера с перестройкой длины волны излучения. 1 – подвижное глухое зеркало, 2 –выходное зеркало, 3 – оптическая усилительная головка, 4 – призма, 5 – измеритель энергии

В результате работы был проведен эксперимент по получению перестройки длины волны лазерного излучения - были получены значения энергии излучения и длительности импульса генерации при изменении длины волны. Измерение ширины спектра порводилось по уровню 1/2 от интенсивности измеряемого сигнала.

По полученным данным была построена перестроечная характеристика лазера, представленная на рис. 6.

Исходя из графика, представленного на рис. 6 можно сказать, что диапазон перестройки равен 100 нм (от 791 до 891 нм), максимум энергии генерации при этом достигается на длине волны $\lambda = 859$ нм и равен $E_{\text{max}} = 163$ мДж.

Характерный вид спектров излучения и осциллограммы импульса выходного излучения для крайних точек перестроечной характеристики, а также для точки с максимальным значением энергии представлены на рис. 7. Отличие центральной длины волны спектра свободной генерации лазера с плоскопараллельным резонатором от длины волны максимума люминесценции можно объяснить спектральной зависимостью коэффициентов отражения зеркал резонатора, рис. 8. Отличие же положения максимума перестроечной характеристики, рис. 8, от длины волны генерации в «неселективном резонаторе» по-видимому, связано со спектральной зависимостью пропускания материала призмы. Кроме того, определенное влияние на форму перестроечной характеристики могло оказывать различие в геометрических параметрах в резонаторе для различных путей луча, имеющих место при различных длинах волн. Оценка величины этого влияния выходит за рамки данной работы.

Различие ширины спектра люминесценции и ширины перестроечной характеристики, вероятно, объясняется большими потерями на селективном элементе.

Рис. 6. Перестроечная характеристика

Рис. 7. Характерный вид спектров излучения (а, б, в) и осциллограммы импульсов излучения (г, д, е): а $-\lambda = 791$ нм, E=9 мДж; б $-\lambda = 859$ нм, E = 163 мДж; в $-\lambda = 891$ нм, E = 9 мДж; г $-\tau = 17$ мкс; д $-\tau = 69$ мкс; е $-\tau = 26$ мкс

Рис. 8. Спектры отражения и перестроечная характеристика: спектры отражения: 1 – глухого зеркала, 2 – выходного зеркала, 3 – максимума люминесценции; 4 – перестроечная характеристика

Лазер с активной средой Cr:LiSAF, работающий в режиме модуляции добротности

На данном этапе проводились эксперименты по получению генерации в режиме модуляции добротности. Для этого было предложено использовать пассивный затвор YAG:Cr⁴⁺, на рис. 9 представлен спектр ненасыщенного поглощения затвора [2].

Рис. 9. Спектр поглощения затвора YAG:Cr⁴⁺ [2]

Согласно графику, представленному на рис. 9, коэффициент поглощения пассивного затвора YAG:Cr⁴⁺ в интервале длин волн от 790 до 900 нм отличен от нуля, что позволяло надеяться на работоспособность данного пассивного затвора в лазере с активной средой Cr:LiSAF для получения режима модуляции добротности. Оптическая схема такого эксперимента представлена на рис. 10.

Рис. 10. Оптическая схема лазера в режиме модуляции добротности: 1 – глухое зеркало; 2 – диафрагма Ø 4мм; 3 – оптическая усилительная головка; 4 – пассивный затвор; 5 – выходное зеркало; 6 – измеритель энергии OPHIR

Эксперименты по получению генерации в режиме модуляции добротности проводились при энергии излучения накачки 250 Дж.

На рис. 11 приведен спектр генерации лазера в режиме модуляции добротности, зарегистрированный в результате проведенных экспериментов.

На рис. 12 показана временная форма импульса излучения, лазера, генерировавшего в режиме модуляции добротности.

Из рис. 11 видно, что в режиме модуляции добротности спектр генерации излучения имеет два пика. Центральная длина волны первого пика составляет $\lambda_1 = 830 \pm 1$ нм, а второго $\lambda_2 = 859 \pm 1$ нм.

Как видно из рис. 12, за один импульс накачки генерируется цуг из двух гигантских импульсов. Суммарная выходная энергия по обоим импульсам составила 22,5±0,5 мДж. При этом длительность первого импульса составляет 50,8±1,0 нс, а второго 76,4±1,5 нс (по уровню 0,5). Видно также, что второй импульс имеет длинный, растянутый во времени «хвост», который может быть интерпретирован и как третий, менее мощный импульс.

Рис. 12. Временная форма импульса лазерного излучения в режиме модуляции добротности

Предположение о том, что генерация двух импульсов связана с продолжающейся накачкой активного элемента и повторным достижением порога генерации, плохо объясняет вид осциллограммы интенсивности лазерного излучения. Интервал времени между импульсами слишком мал, для того, чтобы под воздействием излучения накачки в активной среде могла бы запастись существенная величина энергии. Возможно, в условиях эксперимента наблюдается генерация на других (помимо основного) переходах иона Cr^{3+} в матрице LiSAF. Причем не исключено, что паразитная генерация развивается на уровнях, заселяемых в процессе самопоглощения с возбужденного состояния. Так же возможно, что генерация развивается на переходах хрома в пассивном затворе. Поэтому выяснение причин генерации двух импульсов требует дополнительных исследований и, в первую очередь, разделения импульсов по спектру и снятия осциллограмм каждого из них.

Заключение

В ходе выполнения работы была получена генерация лазерного излучения с использованием активной среды Cr:LiSAF, как в режиме свободной генерации, так и в режиме модуляции добротности. Для работы лазера на Cr:LiSAF в режиме модуляции добротности впервые использован затвор YAG:Cr⁴⁺.

При работе лазера в каждом из режимов работы, был зафиксирован спектр лазерного излучения, а также измерена длительность импульса лазерного излучения, при использовании плоскопараллельного резонатора.

Также был собран лазер с дисперсионным резонатором, и в режиме свободной генерации была получена перестройка длины волны лазерного излучения. Диапазон перестройки составил 100 нм (от 791 до 891 нм).

Список литературы

1. Попов Е. Э., Сергеев А. А., Погода А. П., Петров В. М., Борейшо А. С. Импульсная генерация излучения в широком диапазоне длин волн на кристалле LiSrAlF₆:Cr // Оптический журнал. 2022. Т. 89, № 5. С. 11–20. DOI:10/17586/1023-5086-2022-89-05-11-20.

2. Звелто О. Принципы лазеров/ Пер. под науч. ред. Шмаонова Т. А. 4-е изд. СПб.: Издательство «Лань», 2008. С. 720.