МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДЛЯ РАСЧЕТА ПАРАМЕТРОВ СТЕНДА, ПРЕДНАЗНАЧЕННОГО ДЛЯ ПРОВЕРКИ РАБОТЫ ТЕРМИНАЛОВ КОСМИЧЕСКОЙ ЛАЗЕРНОЙ СВЯЗИ, В ЗАВИСИМОСТИ ОТ РАЗЛИЧНЫХ ОРБИТ

Р. Р. Акбулатов, Д. Д. Воеводин, <u>М. И. Гавриленко</u>, А. В. Гусаков, Н. А. Огурцов, А. В. Писецкая, Р. К. Лозов, Ю. Л. Чернядьева

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров Нижегородской обл.

Введение

В настоящее время идет активная разработка терминалов космической лазерной связи (КТ), позволяющих обеспечить скорости передачи информации по межспутниковым каналам (низкая орбита НО – низкая орбита НО, геостационарная орбита ГСО – низкая орбита НО) до 100 Гб/с [1]. Перед тем, как терминалы будут осуществлять полет в космос, необходимо проведение предварительных наземных физических испытаний, проверяющих их работу, а также подтверждающих основные технические характеристики при осуществлении передачи информации по линиям связи. Для достижения данной цели авторами [2] был разработан специальный стенд, моделирующий функционирование КТ в космосе (рис. 1).

Стенд позволяет определить такие технические характеристики, как мощность излучения лазера информационного канала (ИНК), передающего полезную информацию; мощность излучения лазера канала «маяка», входящего в систему наведения терминала; диаграмму направленности излучений этих каналов; дальность действия лазерной связи.

Рис. 1. Структурная схема стенда. ПП₁ и ПП₂ – поворотные платформы № 1 и № 2 соответственно, Т₁ и Т₂ – космические терминалы № 1 и № 2 соответственно, З₁ и З₂ – поворотные зеркала № 1 и № 2 соответственно, О₁ и О₂ –объективы № 1 и № 2 соответственно, Д – узел диафрагмы

Подробное описание стенда представлено в [2], а в этой работе предлагается создание математическоймодели для расчета его параметров, предназначенного для проверки работы терминалов космической лазерной связи, в зависимости от различных орбит.

Для реализации математической модели рассмотрим краткий принцип работы стенда.

Принцип работы стенда

На рис. 1 представлена структурная схема стенда. Излучения каналов ИНК и «маяка» с выходной апертуры первого терминала T₁ попадают на объектив, состоящий из системы линз O₁ с фокусным расстоянием f, пройдя через который свет фокусируется в плоскости диафрагмы Д с диаметром отверстия d. Пучки должны быть дифракционного качества.

После прохождения диафрагмы Д свет попадает на объектив O_2 второго терминала T_2 , который аналогичен объективу первого терминала T_1 , но дляпринимающего терминала он выполняет роль коллиматора. После объектива O_2 пучки попадают во входную апертуру терминала T_2 . Поскольку терминалы работают в дуплексном режиме, через стенд одновременно распространяются пучки излучений как от терминала T_1 к терминалу T_2 , так и от T_2 к T_1 . Зеркала 3_1 и 3_2 моделируют дрожание лазерного пучка в космосе и позволяют отработать смещение пучков терминалов от оптической оси [2]. Поворотные платформы $\Pi\Pi_1$ и $\Pi\Pi_2$, на которые устанавливаются T_1 и T_2 соответственно имитируют угловые перемещения пучков излучений ИНК.

Диафрагма, установленная в фокальной плоскости линзы, моделирует угловую область пространства, в которой может осуществляться связь с определенным уровнем ошибок BER [4]. Дифракционное качество пучка в плоскости линзы (Л), его распределение интенсивности после прохождения через диафрагму (Д), а также параллельность после распространения через коллиматор обеспечивают моделирование работы лазерных каналов, а также самих терминалов в реальных космических условиях [1].

Программа «Стенд – математическая модель». Модуль задания параметров стенда и лазерного излучения КТ

Для реализации математической модели для расчета параметров стенда, предназначенного для проверки работы терминалов космической лазерной связи, в зависимости от различных орбит была разработана специальная программа под названием «Стенд – математическая модель». Интерфейс её модуля задания параметров стенда и лазерного излучения КТ представлен на рис. 2.

Рис. 2. Интерфейс программы «Стенд – математическая модель». Модуль задания параметров стенда и лазерного излучения КТ

Окно ввода модуля задания параметров стенда и лазерного излучения КТ программы «Стенд – математическая модель» включает в себя:

1) Расстояние от источника излучения до линзы. На рис. 2 – это расстояние между двумя точками **J** и **A**. Источником излучения является КТ, который проходит наземную отработку на стенде.

2) Расстояния от объектива (O₁) до зеркала (З) (рис. 1). На рис 2 – это расстояние между двумя точками **A** и **B**.

3) Угол поворота а зеркала (3). Максимальный угол поворота зеркала во время дрожания.

4) Угол падения θ оптической оси лазерного излучения на поверхность зеркала (3).

5) Фокусное расстояние объективов (O_1 и O_2) **F**.

6) Расстояние до экрана. На рис. 2 – это расстояние между двумя точками С и V. На рис. 1 данные точки соответствуют центру отверстия диафрагмы (Д) и центру объектива \mathbb{N} 2 (O_2) (экрану).

7) Мощность источника излучения (выходная мощность КТ).

8) Радиус пучка на выходе апертуры КТ по уровню интенсивности e^{-2} относительно максимума.

9) Длина волны лазерного излучения ИНК КТ.

10) Радиус отверстия диафрагмы (Д).

Программа «Стенд – математическая модель». Модуль задания КТ

После того как вышеперечисленные параметры заданы, вводятся параметры в модуле задания КТ. На рис. 3 представлен интерфейс этого модуля.

Рис. 3. Интерфейс программы «Стенд – математическая модель». Модуль задания КТ

Входными параметрами модуля задания КТ являются:

1) Задание габаритов КТ (длина, ширина, высота).

2) Задание габаритов визирной головки (длина между зеркалами, длина между телескопом и зеркалом 6 (рис. 1), длина между зеркалом 8 и выходной апертурой, радиус выходной апертуры).

3) Задание радиуса поворотной платформы ПП₁.

4) Скорость вращения платформы ПП₁.

5) Угол наклона КТ к плоскости платформы ПП₁.

На рис. З ЭП₁ иЭП₂–электроприводы (на рис. 4 отмечены цифрами 8 и 9 соответственно), которые вращают визирную головку (на рис. 4 зеркала 6 и 7)

Результаты моделирования программы «Стенд – математическая модель» для линии связи НО КТ – НО КТ

Для случая отработки связи по каналу НО КТ – НО КТ задавались параметры, представленные в табл. 1. НО КТ имеют двузеркальную визирную головку. На рис. 4 представлен вид такого терминала. Подробное описание НО КТ демонстрируется в [3, 4]

Рис. 4. Структурная схема НО КТ: 1 – передатчик, 2 – приемник, 3 – блок развязки, 4 – блок диаграммы направленности, 5 – телескоп, 6 и 7 – зеркала, 8 и 9 – электроприводы ЭП₁ и ЭП₂ соответственно, 10 – «маяк»

Таблица 1

Входные параметры программы «Стенд – математическая модель» для линии связи НО КТ – НО КТ

Расстояние между КТ и О ₁	1 м
Расстояния между О1 и З1	9 м
Максимальный угол поворота зеркала во время дрожания ф	$7,2 \cdot 10^{-5}$
Угол падения θ оптической оси лазерного излучения на поверхность зеркала (3).	10°
Фокусное расстояние объективов (O ₁ иO ₂) ${f F}$	10 м
Расстояния между Д и О ₂	10 м
Выходная мощность КТ	2 Вт
Радиус пучка на выходе апертуры КТ по уровню интенсивности <i>e</i> ⁻²	37.5 мм
Длина волны лазерного излучения ИНК КТ	1550 нм
Радиус отверстия диафрагмы (Д)	б мкм
Расходимость лазерного излучения КТ w ₀	$2\cdot 10^{-3}$

Программа вывела следующие результаты:

1) углы γ_1 и γ_2 – это углы поворота электроприводов 8 и 9 на рис. 4. В данных расчетах угол γ_1 лежит в пределах от 0° до 360°, а γ_2 – в пределах от 0° до 10° (рис. 3);

2) расчет распределения интенсивностей на элементах стенда (рис. 5).

Рис. 5. Интерфейс программы «Стенд – математическая модель». Расчет распределения интенсивностей на элементах стенда при заданных параметрах для линии связи НО КТ – НО КТ

Результаты моделирования программы «Стенд – математическая модель» для линии связи ГСО КТ – НО КТ

Для случая отработки связи по каналу ГСО КТ – НО КТ задавались параметры, представленные в табл. 2. Космические терминалы ГСО КТ имеют однозеркальную визирную головку. На рис. 6 представлен вид такого терминала. Подробное описание НО КТ демонстрируется в [3, 4]

Рис. 6. Структурная схема ГСО КТ: 1 – передатчик, 2 – приемник, 3 – блок развязки, 4 – блок диаграммы направленности, 5 – телескоп, 6 – зеркало, 7 – электроприводЭП₁, 8 – «маяк»

Входные параметры программы «Стенд – математическая модель» для линии связи ГСО КТ – НО КТ

Расстояние между КТ и О ₁	1 м
Расстояния между О1 и З1	9 м
Максимальный угол поворота зеркала во время дрожания ф	$7,2 \cdot 10^{-5}$
Угол падения θ оптической оси лазерного излучения на поверхность зеркала (3).	10°
Фокусное расстояние объективов (O ₁ иO ₂) \mathbf{F}	10 м
Расстояния между Д и О2	10 м
Выходная мощность КТ	4 Вт
Радиус пучка на выходе апертуры КТ по уровню интенсивности e^{-2}	75мм
Длина волны лазерного излучения ИНК КТ	1550 нм
Радиус отверстия диафрагмы (Д)	б мкм
Расходимость лазерного излучения КТ w ₀	$1 \cdot 10^{-3}$

Программа вывела следующие результаты:

1) угол γ_1 лежит в пределах от 0° до 360°, а γ_2 отсутствует, так как система ГСО КТ однозеркальная (рис. 6).

2) расчет распределения интенсивностей на элементах стенда (рис. 7).

Рис. 7. Интерфейс программы «Стенд – математическая модель». Расчет распределения интенсивностей на элементах стенда при заданных параметрах для линии связи ГСО КТ – НО КТ

Заключение

В работе была разработана программа «Стенд – математическая модель», которая промоделировала работу НО КТ и ГСО КТ, их составных элементов на стенде.

Математическая модель, изучаемого объекта должна содержать максимально полную информацию об объекте, используя математическую формализацию описания данного объекта и происходящих процессов.

Верификация математической модели объекта может быть произведена только при испытаниях реального изделия или сопоставлением результатов ранее проведенных экспериментов с результатами расчета. Кроме того, математическая модель показывает работу идеального изделия, на испытания поставляется реальный объект, изготовленный с определенным качеством, которое не может быть заложено в математическую модель и может быть определено только во время испытаний.

Математическое моделирование не может полностью заменить испытания, однако позволяет сократить длительность, если результаты эксперимента будут совпадать с расчетными на начальном промежутке испытаний. Также математическая модель изделия позволяет оптимизировать конструкцию на этапе проектирования и для сокращения испытаний выбирать наиболее критичные режимы.

Список литературы

1. Kaushal H., Jain V. K., Kar S. Free space optical communication. – New Delhi : Springer india, 2017. – C. 60.

2. Буйко С. А., Воеводин Д. Д., Гаранин С. Г., Григорович С. В., Лажинцев Б. В., Мокеев А. С., Писецкая А. В., Ройз И. М., Стародубцев В. А. Заявка на изобретение № 2022110474, 18.04.2022.

3. Hemmati H. Near-earth laser communications // Near-Earth Laser Communications. – CRC press, 2020. – C. 1–40.

4. Majumdar A. K., Ricklin J. C. Free-space laser communications: principles and advances. – Springer Science & Business Media, 2010. – T. 2.