ПРОВЕДЕНИЕ АНАЛИЗА ПОСЛЕДСТВИЙ АВАРИЙ, СВЯЗАННЫХ С РАЗГЕРМЕТИЗАЦИЕЙ СИСТЕМЫ КАТАЛИТИЧЕСКОЙ РЕКОМБИНАЦИИ И ГАЗОВОГО КОНТУРА ПРИ РАБОТЕ ПЕРСПЕКТИВНОГО ИССЛЕДОВАТЕЛЬСКОГО ЯДЕРНОГО РЕАКТОРА ВИР-3

А. В. Шуркаев, А. А. Пикулев, А. А. Кубасов, Д. А. Юнин, А. Д. Авдеев, А. Р. Дягель, С. О. Табаков

ФГУП «РФЯЦ-ВНИИЭФ», г. Саров

Введение

В настоящее время ведутся работы по модернизации исследовательской ядерной установки (ИЯУ) ВИР-2М с целью повышения ее облучательных возможностей и улучшения эксплуатационных характеристик [1].

Работы по модернизации ИЯУ ВИР-2М сопровождаются анализом последствий ядерных и радиационных аварий, которые могут произойти на установке. В дополнение к газовому контуру (ГК), который имеется на ИЯУ ВИР-2М, ИЯУ ВИР-3 планируется оснастить системой каталитической рекомбинации (СКР) радиолитического газа, что создает дополнительный источник опасности, связанный с возможностью разгерметизации контура СКР при работе ИЯУ ВИР-3 в статическом режиме [1].

Работа посвящена рассмотрению максимально возможных радиационных последствий аварий, связанных с разгерметизацией корпуса АЗ и/или газового контура ИЯУ при генерации импульса делений или во время работы установки в статическом режиме. В работе представлены следующие результаты:

– дана консервативная оценка активности РБГ, которые могут выйти в помещения ИЯУ;

 – оценены выходы благородных газов на 1 МДж энерговыделения;

– произведена консервативная оценка активностей изотопов йода и дочерних изотопов РБГ, которые могут поступить в организм персонала ИЯУ ингаляционным путем.

Основные расчетные соотношения

Выход благородных газов из топливного раствора (ТР) при работе реактора как в импульсном, так и в статическом режиме, происходит главным образом за счет выноса РБГ всплывающими на поверхность ТР пузырьками радиолитического газа [2]. Для консервативной оценки активности РБГ будем считать, что происходит их полное выделение (100% выход РБГ) из раствора в надтопливное пространство корпуса реактора; выход изотопов йода полагаем равным 0,001% (согласно [2]) как в импульсном, так и статическом режимах работы.

Максимальная проектная мощность ИЯУ ВИР-3 в статическом режиме работы составляет 20 кВт [1]. При проведении расчетов принято, что в одном акте деления ядра U^{235} выделяется $E_f = 180$ МэВ энергии. Таким образом, скорость наработки $\left[\frac{sqep}{c}\right]$ i-ого продукта деления в АЗ составит:

$$\nu_i = \frac{\omega_i W}{E_f} \tag{1}$$

где ω_i – независимый выход *i*-ого продукта деления;

 $W = 20 \text{ кBt} - \text{мощность ИЯУ ВИР-3 при ра$ $боте в статическом режиме.}$

Примечание 1. В последующих разделах работы, под статическим пуском следует понимать работу установки на постоянной мощности 20 кВт продолжительностью 60 часов.

Примечание 2 В качестве максимального энерговыделения за один импульсный

пуск в АЗ реактора ВИР-3 в расчетах использовано значение E = 150 МДж, что на 25% превосходит проектное значение [1].

Таким образом, общее число делений за импульсный пуск с энерговыделением 150 МДж составит:

$$N_f = \frac{E}{E_f} = 5,21 \cdot 10^{18} \tag{2}$$

Для консервативной оценки активности благородных газов будем считать, что все РБГ покинули ТР (как после импульса делений так и во время работы установки в статическом режиме). Ниже будем рассматривать только те РБГ, период полураспада которых существенно (на несколько порядков) больше длительности импульса реактора. Поэтому при проведении расчетов полагалось, что импульс делений произошел мгновенно; активность РБГ перед импульсом принята равной нулю.

При расчетах активностей РБГ, образующихся при работе установки в статическом режиме, считали, что РБГ покидали ТР мгновенно. Активности РБГ перед началом работы установки на мощности считали равными нулю.

Значения независимых выходов осколков деления были приняты для деления ядер U^{235} нейтронами тепловой области. Также считали, что продукты деления не захватывают нейтроны.

Активности радиоактивных благородных газов

Для консервативной оценки активностей вышедших в верхний реакторный зал РБГ, предположим, что разгерметизация происходит после статического пуска. В настоящее время НРБ-99/2009 [3], ОСПОРБ-99/2010 [4] не регламентируют объемную активность РБГ. Принятый в РФЯЦ-ВНИИЭФ контрольный уровень по удельной активности РБГ составляет примерно 10⁵ Бк/м³. При этом не регламентируется объемной активности конкретных изотопов РБГ, поэтому можно ограничиться рассмотрением суммарной активности данных газов. На рис. 1 представлена зависимость суммарной объемной активности в верхнем зале от времени после разгерметизации. Поскольку ИЯУ ВИР-3 будет размещаться на месте существующей ИЯУ ВИР-2М, при проведении расчетов, были использованы параметры реакторных залов ИЯУ ВИР-2М (объем 1760 м³).

Из рис. 1 видно, что при отключенной вентиляции объемная активность РБГ в зале в рассматриваемый промежуток времени значительно (более чем на 5 порядков) превосходит КОА^{РБГ}. Через 7,2 часа объемная активность РБГ снижается примерно в четыре раза – с $1,3 \cdot 10^{11}$ до $3,4 \cdot 10^{10} \frac{Б\kappa}{M^3}$.

Рис. 1. Объемная суммарная активность РБГ в верхнем реакторном зале при разгерметизации ГК или СКР после статического пуска

Рис. 2. Объемная суммарная активность РБГ в верхнем реакторном зале при разгерметизации ГК или СКР после импульса деления (верхний график) и пересчет той же величины на 1 МДж энерговыделения

Оценим выход РБГ на 1 МДж энерговыделения при импульсе деления. Как и в расчетах, представленных выше, ограничимся рассмотрением суммарной объемной активности. Ниже на рис. 2 представлена зависимость суммарной объемной активности РБГ в верхнем реакторном зале при разгерметизации ГК или СКР после импульса деления а также та же зависимость при пересчете на 1 МДж энерговыделения.

Как можно видеть из графика, объемная активность РБГ на 6 порядков превышает контрольные уровни, установленные во ФГУП «РФЯЦ-ВНИИЭФ».

Заметим, что выход большей части РБГ из надтопливного пространства возможен только в случае отказов элементов сразу в нескольких системах (запроектная авария). В проекте ИЯУ ВИР-2ММ предусмотрен комплекс мероприятий, направленный на локализацию последствий аварий. Так в контуре СКР при статическом режиме работы давление газов поддерживается на уровне 0,9 атм. В случае разгерметизации повышение давления будет фиксироваться датчиками давления, расположенными в контуре СКР. При повышении давления до 0,98 атм. сработает аварийная уставка, и система управления и защиты выдаст сигнал на закрытие вентилей высокого давления, связывающих контур СКР с надтопливным пространством корпуса. В случае сжигания гремучего газа после импульса контур СКР будет отсекаться от корпуса реактора и ГК. Наиболее уязвимым местом в этом случае будет являться линия сжигания ГК. Линия сжигания рассчитана выдерживать импульсное повышение давления до 10 МПа. Максимальное давление при сжигании гремучего газа не будет превышать 8 МПа.

Оценка мощности дозы гаммаизлучения, создаваемой вышедшими РБГ в верхнем реакторном зале

Работа в залах ИЯУ ВИР-2М разрешается при мощности дозы не более 11 мкЗв/ч и уровне активности РБГ не более $1.5 \cdot 10^5$ Бк/м³.

Для определения мощности дозы гаммаизлучения, создаваемой РБГ, поступившими в зал в результате разгерметизации корпуса АЗ (и/или ГК), были проведены оценочные расчеты. Были выделены основные изотопы РБГ, вносящие наибольший вклад в общую мощность дозы гамма-излучения: Kr⁸⁸, Kr⁸⁹, Xe¹³⁵, Xe¹³⁸.

При проведении расчетов предполагалось, что человек находится в помещении с геометрическими размерами $15 \times 12 \times 10 \text{ м}^3$ (Д×Ш×В), а помещение (верхний реакторный зал) однородно заполнено одним из следующих РБГ: Xe¹³⁸, Kr⁸⁹ или Kr⁸⁸. В этом

случае, спектральные характеристики данных изотопов были взяты из библиотеки ENDF/B-VII. Расчет производился при помощи программы С-007 разработки ИТМФ [5]. Для консервативной оценки мощности эквивалентной дозы, создаваемой излучением Xe¹³⁵, равномерно распределенного в объеме верхнего зала, воспользуемся выражением для нахождения мощности поглощенной дозы в бесконечной однородной среде с равномерной по объему активностью, представленным в справочнике [6]:

$$K = \frac{4\pi\Gamma_{\delta}A_{v}}{\mu_{0}}, \qquad (3)$$

где

 $\Gamma_{\delta}, \frac{a\Gamma p \cdot M^2}{c \cdot \delta \kappa}$ – керма-постоянная; $A_{v}, \frac{\delta \kappa}{M^3}$ – объемная активность Xe¹³⁵ в верхнем зале:

 μ_0, M^{-1} – линейный коэффициент ослабления гамма-кванта в среде (воздухе);

Результат вычислений по соотношению (3) имеет размерность $\frac{a\Gamma p}{c} (\frac{10^{-18} \cdot \Gamma p}{c})$ и определяет мощность дозы, создаваемой квантами одной энергии. Так как коэффициент качества для квантов всех энергий равен единице, то легко перейти в единицы $\frac{3B}{4}$. Для нахождения мощности дозы, создаваемой ү-квантами всех энергий, испускаемых нуклидом, необходимо провести суммирование мощности доз от каждой линии в отдельности:

$$K = \sum_{n=1}^{N} \frac{4\pi\epsilon_{n}\Gamma_{\delta}^{n}A_{v}10^{-18}\cdot 3600}{\mu_{0}^{n}}, \qquad (4)$$

где n – индекс, относящийся к энергии фотона (линии);

N – общее число линий излучения;

 ϵ_n – относительный квантовый выход фотонов n – ой линии на распад;

Для расчета по (4) воспользуемся справочными данными, представленными в табл. 1.

Результаты расчетов, произведенных для случая разгерметизации СКР или ГК после статического пуска, представлены в табл. 2.

Как было замечено в предыдущем разделе, столь высокие значения объемных активностей РБГ относятся к рассмотрению запроектных аварий с максимальными последствиями.

Изотопы йода

Будем считать, что при работе реактора на мощности с поверхности топливного раствора в надтопливное пространство выделяются около 0,001 % образовавшихся изотопов йода [2]. Изотопы йода в виде аэрозолей в случае разгерметизации СКР (и/или ГК) попадают в верхний реакторный зал. В результате, при нарушении порядка допуска персонала в помещения ИЯУ, изотопы йода могут ингаляционным путем попасть в организм работников, находящихся в верхнем зале. Попавшие в легкие изотопы йода разносятся кровотоком по организму и оседают в органах-мишенях. Одна из основных опасностей изотопов йода заключается в том, что нуклиды данного типа избирательно накапливаются в щитовидной железе. В частности. шитовилная железа, имеюшая массу около 20 г, накапливает в себе около 30 % изотопов йода от общего количества йода. попавшего в организм [6].

В табл. З представлены изотопы йода, которые нормированы в приложении 1

Таблица 1

Нуклид	Энергия фотонов, МэВ	Квантовый выход на распад	Керма- постоянная, <u>аГр∙м²</u> с∙Бк	Коэффициент линейного ослабления, м ⁻¹	Объемная активность, ^{Бк}
v 135	0,24	0,905	7,976	0,015	24 1010
Xe ¹³⁵	0,031	0,006	0,030	0,039	$2,4 \cdot 10^{-3}$

Параметры излучения Хе¹³⁵[6]

Таблица 2

Режим работы	Изотоп	Объемная активность, <u>Бк</u> м ³	Мощность дозы, <mark>Зв</mark> ч
	Kr ⁸⁹	1,8 · 10 ¹⁰	0,35
C	Xe ¹³⁸	$2,4 \cdot 10^{10}$	0,30
Статический пуск	Kr ⁸⁸	$1,4 \cdot 10^{10}$	0,30
	Xe ¹³⁵	$2,4 \cdot 10^{10}$	0,52
	Kr ⁸⁹	5,0 · 10 ¹¹	9,8
	Xe ¹³⁸	5,7 · 10 ¹⁰	0,74
импульсный пуск	Kr ⁸⁸	5,7 · 10 ⁹	0,12
	Xe ¹³⁵	1,6 · 10 ⁹	0,03

Максимальные мощности дозы гамма-излучения, создаваемые вышедшими РБГ в верхнем реакторном зале при разгерметизации контура СКР или ГК

Таблица З

Значения дозовых коэффициентов (ДК), допустимой объемной активности для персонала группы А (ДОА_{ПЕРС}) и предела годового поступления (ПГП) с воздухом изотопов йода для персонала

Нуклид	Период полураспада	ДК, Зв/Бк	ПГП, Бк/год	ДОА _{ПЕРС} , Бк/м ³
I^{129}	1,57.10 ⁷ лет	9,6 · 10 ⁻⁸	2,1 · 10 ⁵	8,3 · 10 ¹
I ¹³¹	8,04 сут.	2,0 · 10 ⁻⁸	1,0 · 10 ⁶	4,0 · 10 ²
I ¹³²	2,3 ч	$3,1 \cdot 10^{-10}$	6,5 · 10 ⁷	2,6 · 10 ⁴
I ¹³³	20,8 ч	4,0 · 10 ⁻⁹	$5 \cdot 10^{6}$	2,0 · 10 ³
I ¹³⁴	0,876 ч	$1,5 \cdot 10^{-10}$	1,3 · 10 ⁸	5,3 · 10 ⁴
I ¹³⁵	6,7 ч	9,2 · 10 ⁻¹⁰	2,2 · 10 ⁷	8,7 · 10 ³

к НРБ-99/2009 и появление которых возможно в верхнем реакторном зале при разгерметизации СКР (и/или ГК).

Элементарный йод имеет наименьшие пределы годового поступления по сравнению с другими радиоактивными соединениями йода, что важно при консервативной оценке активности поступившего в организм нуклида. Поэтому в настоящей работе предполагалось, что все изотопы йода, представленные в табл. 3, относятся к ингаляционному типу Г1 (консервативное приближение) [4]. Проведем оценку эквивалентной дозы, вызванной внутренним поступлением изотопов йода, которую может получить персонал при входе в реакторный зал, в случае разгерметизации СКР (и/или ГК). Будем использовать следующее консервативное приближение: работник входит в зал сразу после разгерметизации и находится в зале 7,2 часа (полная продолжительность смены).

Активность поступившего в организм йода вычислялась при помощи следующего выражения:

$$A_{\rm BH} = \int_{t_1}^{t_2} g v_{\rm BJ} \frac{A(t)dt}{V_{\rm B.3}}$$
(5)

где $g = 10^{-5}$ – доля ядер изотопов йода, выделившихся из топливного раствора, от общего числа ядер данного изотопа, образовавшегося при работе установки в статическом режиме;

 $v_{6\partial} = \frac{v_{nepc}}{t_{nepc}} = 3,922 \cdot 10^{-4} \frac{M^3}{c}$ – скорость потребления воздуха персоналом группы А, определенная по данным из НРБ-99/2009 [3]; $V_{6.3} = 1760 \text{ м}^3$ – объем верхнего зала; t_1, t_2 – время момента начала и конца пребы-

 t_1, t_2 – время момента начала и конца пребывания персонала в зале после разгерметизации СКР ($t_1 = 0, t_2 = 7,2$ часа).

Предположим, что РБГ равномерно распределены в воздухе зала и вентиляция не влияет на данное распределение. Исходя из объема верхнего зала $V_{B.3} = 1760 \text{ м}^3$ и мощности приточно-вытяжной вентиляции 3 м³/с находим, что время, за которое воздух в верхнем зале обновляется наполовину, составляет $\tau = 585$ с получаем, что за время полуобновления воздуха в верхнем реакторном зале число ядер данного РБГ за счет влияния приточно-вытяжной вентиляции уменьшается в два раза.

Таким образом, для учета влияния приточно-вытяжной вентиляции можно ввести эффективную постоянную распада нуклида в зале:

$$\lambda_{\vartheta\phi} = \lambda + \frac{\ln(2)}{\tau} \tag{6}$$

где λ , c^{-1} – постоянная распада данного нуклида;

 λ эф, с⁻¹ – эффективная постоянная распада данного нуклида в верхнем зале;

 $\tau = 585 c$ – время полуобновления воздуха в верхнем зале.

В результате, выражения для вычисления числа ядер того или иного продукта деления будут аналогичны выражениям для вычисления числа ядер без учета вентиляции, с той оговоркой, что в качестве постоянной распада используется эффективная постоянная распада, приведенная в формуле (6).

Результаты расчетов для случаев выключенной и включенной приточно-вытяжной вентиляции представлены в табл. 4.

Из табл. 4 видно, что для условий статического пуска даже при выключенной приточно-вытяжной вентиляции, суммарная эквивалентная доза от изотопов йода, поступивших в организм персонала, составляет около 15 мЗв, что соответствует 75% от значения контрольной эффективной дозы для персонала группы А – 20 мЗв/год.

После импульсного пуска, суммарная эквивалентная доза от изотопов йода (см. табл. 5) на порядок ниже значения контрольной эффективной дозы для персонала группы А.

Таблица 4

Дозовые характеристики изотопов йода, поступивших в организм персонала за смену при разгерметизации СКР (и/или ГК) после статического пуска в единицах предела годового поступления (ПГП)

	Вентиляция	выключена	Вентиляция включена		
Нуклид	Эквивалентная доза, Зв	Доля от ПГП, %	Эквивалентная доза, Зв	Доля от ПГП, %	
I ¹³¹	$4,17 \cdot 10^{-3}$	21	$1,35 \cdot 10^{-4}$	0,7	
I ¹³²	$2,20 \cdot 10^{-4}$	1,1	$7,14 \cdot 10^{-6}$	0,04	
I ¹³³	8,41 · 10 ⁻³	42	$2,98 \cdot 10^{-4}$	1,5	
I ¹³⁴	$1,43 \cdot 10^{-4}$	0,7	$1,47 \cdot 10^{-5}$	0,08	
I ¹³⁵	$1,59 \cdot 10^{-3}$	7,8	$7,20 \cdot 10^{-5}$	0,36	
Сумма	$1,45 \cdot 10^{-2}$	72,7	$5,27 \cdot 10^{-4}$	2,6	

Таблица 5

	Вентиляция в	выключена	Вентиляция включена		
Нуклид	Эквивалентная доза, Зв	Доля от ПГП	Эквивалентная доза, Зв	Доля от ПГП	
I ¹³¹	$1,26 \cdot 10^{-4}$	$6,32 \cdot 10^{-3}$	$4,91 \cdot 10^{-7}$	2,46 · 10 ⁻⁵	
I ¹³²	$3,82 \cdot 10^{-6}$	$1,90 \cdot 10^{-4}$	$5,68 \cdot 10^{-7}$	2,78 · 10 ⁻⁵	
I ¹³³	$5,55 \cdot 10^{-4}$	$2,78 \cdot 10^{-2}$	$6,15 \cdot 10^{-6}$	3,08 · 10 ⁻⁴	
I ¹³⁴	$1,34 \cdot 10^{-4}$	$6,87 \cdot 10^{-3}$	$5,76 \cdot 10^{-6}$	2,88 · 10 ⁻⁴	
I ¹³⁵	$3,42 \cdot 10^{-4}$	$1,69 \cdot 10^{-2}$	$1,50 \cdot 10^{-5}$	7,50 · 10 ⁻⁴	
Сумма	$1,16 \cdot 10^{-3}$	5,81 · 10 ⁻²	2,80 · 10 ⁻⁵	1,40 · 10 ⁻³	

Дозовые характеристики изотопов йода, поступивших в организм персонала за смену при разгерметизации корпуса реактора (и/или ГК) после импульсного пуска в единицах ПГП

Стоит отметить, что подобная оценка доз, полученных при вдыхании изотопов йода, является консервативной и относится к случаям запроектных аварий.

Дочерние нуклиды РБГ

Выше была проведена оценка эквивалентной дозы, вызванной внутренним поступлением изотопов йода, которую может получить персонал при входе в реакторный зал после разгерметизации СКР (и/или ГК). Образующиеся при распаде РБГ нуклиды могут быть также источниками внутреннего облучения. В связи с этим ниже проведена оценка радиационного влияния дочерних продуктов РБГ за счет поступления в организм персонала через органы дыхания.

Для оценки их опасности будем опираться на нормы НРБ-99/2009 [4], в которых данным нуклидам установлены пределы годового поступления.

В табл. 6 представлены значения максимальных объемных активностей дочерних продуктов РБГ по отношению к ДОА_{ПЕРС}.

Из нуклидов, представленных в табл. 6, выделяется группа из 8 дочерних ядер РБГ (Y^{93} , Y^{92} , Sr^{91} , La^{141} , Sr^{92} , Ba^{139} , La^{142} , Rb^{88}), обладающая наибольшими активностями порядка 10^{13} Бк. Имеется также группа из 5 дочерних ядер РБГ, имеющих активность ~ 10^{13} Бк (Y^{94} , Ba^{141} , Rb^{89} , Y^{93} ,

Таблица б

Максимальные объемные активности дочерних ядер РБГ в верхнем реакторном зале при разгерметизации СКР (и/или ГК) после статического пуска

Нуклид	<i>Rb</i> ⁸⁸	<i>Rb</i> ⁸⁹	Sr ⁸⁹	<i>Sr</i> ⁹⁰	<i>Sr</i> ⁹¹	<i>Sr</i> ⁹²	Y ⁹⁰	Y ⁹²
<i>А_V^{max.} /</i> ДОА _{ПЕРС}	1,58 · 10 ⁴	3,48 · 10 ⁴	4,52 · 10 ⁴	1,12 · 10 ⁴	3,84 · 10 ⁵	2,64·10 ⁵	7,14 · 10 ²	4,81 · 10 ⁵
Нуклид	Y ⁹³	Y ⁹⁴	Cs ¹³⁷	Cs ¹³⁸	Ba ¹³⁹	Ba^{140}	Ba^{141}	Ba ¹⁴²
<i>А_V^{max.} /</i> ДОА _{ПЕРС}	1,06 · 10 ⁶	6,32 · 10 ³	2,21 · 10 ³	4,08 · 10 ³	3,38 · 10 ⁴	3,92 · 10 ⁵	4,20 · 10 ³	9,26 · 10 ²
Нуклид	La ¹⁴⁰	La ¹⁴¹	La ¹⁴²	Ce ¹⁴¹	Cs ¹³⁵			
<i>А_V^{max.} /</i> ДОА _{ПЕРС}	1,82 · 10 ⁵	2,82 · 10 ⁵	7,19 · 10 ⁴	5,47 · 10 ⁵	<<1			

*Ba*¹⁴², *Cs*¹³⁸) в течение первых 40 минут после разгерметизации. Активность Ва¹⁴⁰ постоянна и составляет около 6.0 · 10¹² Бк. Оставшиеся ядра имеют на несколько порядков меньшую активность. Как видно из табл. 6, единственным нуклидом, объемная активность которого не превышает ДОАперс, является *Cs*¹³⁵, что связано с очень длительным периодом полураспада данного нуклида $(2.6 \cdot 10^6 \text{ лет})$. Максимальные объемные активности остальных нуклидов по отношению к ДОАПЕРС варьируются в пределах от ~700 для Y⁹⁰ до ~ 10⁶ для Y⁹³ (см. табл. 5). Такое высокое превышение ДОАПЕРС (на шесть порядков) связано с высокой объемной концентрацией РБГ в верхнем реакторном зале, превышающей КОА РБГ практически на 6 порядков.

Считали, что персонал входит в зал сразу после разгерметизации СКР и/или ГК. Активности поступивших в организм нуклидов определяли при помощи выражения (5). Предполагалось, что все нуклиды, попавшие в легкие при дыхании, полностью оседают в них. Были рассчитаны следующие величины: число единиц ПГП данного нуклида, поступившего в организм персонала за смену (7 часов 12 мин), время достижения ПГП данного нуклида при нахождении персонала в зале. Результаты расчетов представлены в табл. 7. Из табл. 7 видно, что для некоторых нуклидов (в табл. 7 выделены жирным) время достижения ПГП не превосходит 1 мин. Поэтому данные нуклиды являются наиболее опасными из продуктов распада РБГ.

Средние объемные активности, отнесенные к ДОА_{ПЕРС} данных нуклидов после импульса деления, представлены в табл. 8.

Как видно из табл. 8, единственным нуклидом, объемная активность которого не превышает ДОА_{ПЕРС}, является Cs^{135} , что связано с очень длительным периодом полураспада данного нуклида (2,6 · 10⁶ лет). Объемные активности (усредненные значения) остальных нуклидов по отношению к ДОА_{ПЕРС} варьируются в пределах от 25 для Y^{90} до 3,15 · 10⁵ для Y^{93} (см. табл. 7).

Таблица 7

Нуклид	Число ПГП за 7,2 ч	Время достижения ПГП	Нуклид	Число ПГП за 7,2 ч	Время достижения ПГП
<i>Rb</i> ⁸⁸	63	3,4 мин	Cs ¹³⁵	_	_
<i>Rb</i> ⁸⁹	8	3,0 мин	Cs ¹³⁷	9,1	47 мин
Sr ⁸⁹	315	1,2 мин	Cs ¹³⁸	16,7	13,2 мин
<i>Sr</i> ⁹⁰	45	9,4 мин	Ba ¹³⁹	139	< 1 мин
<i>Sr</i> ⁹¹	1526	< 1 мин	Ba^{140}	1592	< 1 мин
<i>Sr</i> ⁹²	621	< 1 мин	Ba ¹⁴¹	17	1,4 мин
Y ⁹⁰	3	2,4 ч	Ba ¹⁴²	3,6	2,6 мин
Y ⁹²	1955	< 1 мин	La ¹⁴⁰	749	< 1 мин
Y ⁹³	4373	< 1 мин	<i>La</i> ¹⁴¹	1169	< 1 мин
Y ⁹⁴	26	1 мин	La ¹⁴²	286	< 1 мин

Оценка поступления продукт	пов распада РБІ	в организм персонала
при разгерметизации СКР	(и/или ГК) после	статического пуска

Таблица 8

Средние объемные активности дочерних ядер РБГ в верхнем реакторном зале	?
при разгерметизации СКР (и/или ГК) после импульсного пуска	

Нуклид	<i>Rb</i> ⁸⁸	<i>Rb</i> ⁸⁹	Sr ⁸⁹	<i>Sr</i> ⁹⁰	<i>Sr</i> ⁹¹	Sr ⁹²	Y ⁹⁰	Y ⁹²
<i>А_V^{max.} /</i> ДОА _{ПЕРС}	6,32 · 10 ³	3,27 · 10 ⁴	2,04 · 10 ³	3,59 · 10 ²	5,90 · 10 ⁴	1,03 · 10 ⁵	2,50 · 10 ¹	6,37 · 10 ⁴
Нуклид	Y ⁹³	Y ⁹⁴	Cs ¹³⁷	Cs ¹³⁸	Ba ¹³⁹	Ba ¹⁴⁰	Ba ¹⁴¹	Ba ¹⁴²
<i>А_V^{max.} /</i> ДОА _{ПЕРС}	3,15 · 10 ⁵	8,90 · 10 ⁴	6,92 · 10 ¹	2,80 · 10 ⁴	3,45 · 10 ⁴	1,41 · 10 ⁴	7,57 · 10 ⁴	8,39 · 10 ⁴
Нуклид	La ¹⁴⁰	La ¹⁴¹	La ¹⁴²	Ce ¹⁴¹	<i>Cs</i> ¹³⁵			
<i>А_V^{max.} /</i> ДОА _{ПЕРС}	7,09 · 10 ²	8,33 · 10 ⁴	1,00 · 10 ⁵	6,14 · 10 ³	<<1			

Расчет активности данных нуклидов, поступивших в организм персонала, производили аналогично расчетам, представленным выше. Считали, что сотрудник входит в зал сразу после импульса и через 20 минут. Результаты расчета представлены в табл. 9.

Таблица 9

Оценка поступления продуктов распада РБГ в организм персонала при разгерметизации СКР (и/или ГК) после импульсного пуска

	Вход в зал сраз	у после импульса	Вход в зал через 20 мин после импульс	
Нук-лид	Число ПГП за	Время достижения	Число ПГП за	Время достижения
	7 часов 12 мин	ΠΓΠ	6 часов 52 мин	ΠΓΠ
<i>Rb</i> ⁸⁸	28,5	22,2 мин	27,7	11,6 мин
<i>Rb</i> ⁸⁹	38,4	2,45 мин	19,4	1 мин
Sr ⁸⁹	10,4	1,06 ч	10,3	48 мин
Sr ⁹⁰	1,56	4,65 ч	1,5	4,57 ч
<i>Sr</i> ⁹¹	227	2,9 мин	214,8	1,3 мин
Sr ⁹²	331	45 c	299,2	30 c
Y ⁹⁰	0,10	—	0,10	—
Y ⁹²	306	19 мин	303,9	5 мин
Y ⁹³	1385	2,5 мин	1341,7	30 c
Y ⁹⁴	103,4	54 c	54,8	30 c
Cs ¹³⁷	0,31	_	0,3	_
Cs ¹³⁸	86,3	5,3 мин	76,1	1 мин
Ba ¹³⁹	127,6	5,7 мин	118,2	70 c
Ba ¹⁴⁰	58,6	9 мин	56,3	7,2 мин
Ba ¹⁴¹	79,2	40 c	37,3	30 c
Ba ¹⁴²	50,9	13 c	3,2	2,5 мин
La ¹⁴⁰	3,9	3,6 ч	3,9	3,3 ч
La ¹⁴¹	399,4	5,7 мин	389,3	1 мин
La ¹⁴²	305,3	2,2 мин	269,5	20 c
Ce ¹⁴¹	32,9	1,0 ч	32,9	1,03 ч

Для некоторых нуклидов (в табл. 9 выделены жирным) время достижения ПГП не превосходит 1 мин. Данные нуклиды и являются наиболее опасными.

Проведенные расчеты показали, что поступление продуктов распада РБГ в организм персонала ингаляционным путем представляет значительную опасность; так, объемная активность нуклидов Sr^{92} , Y^{93} , Y^{94} , Ba^{141} , Ba^{142} , La^{142} превосходит ДОА_{ПЕРС} на пять порядков, а ПГП для этих нуклидов достигается за время не более 1 мин.

Заключение

Результаты проделанной работы были использованы при разработке технического проекта на ИЯУ ВИР-3 и в дальнейшем будут использованы для обоснования безопасности эксплуатации ИЯУ. Расчеты относятся к сценариям запроектных аварий. На ИЯУ ВИР-3 будет реализован комплекс мер по ограничению последствий аварий, что сделает данную установку более совершенной с точки зрения обеспечения радиационной безопасности по сравнению с действующей установкой.

Список литературы

1. Будников Д. В., Воронцов С. В. и др. Ядерные электрофизические установки РФЯЦ-ВНИИЭФ: настоящее и будущее. // ВАНТ. Сер. Физика и техника ядерных реакторов. 2021. Вып. 4. С. 5–25.

2. Лобода С. В., Петрунин Н. В., Хвостионов В. Е., Чарнко В. Е. Вынос продуктов деления из топлива растворного реактора / /Атомная энергия, 1989. Т. 67, Вып. 6, С. 432–433.

3. Нормы радиационной безопасности НР009. Санитарные правила и нормативы СанПиН 2.6.1.2529.

4. Основные санитарные правила обеспечения радиационной безопасности ОСПОР010. Санитарные правила и нормативы СП 2.6.1.2610.

5. Житник А.К., Донской Е.Н., Огнев С.П. и др. Методика 07 решения методом Монте-Карло связанных линейных уравнений переноса нейтронов, гамма-квантов, электронов и позитронов. Вопросы атомной науки и техники. Серия Математическое моделирование физических процессов, 2011, вып. 1, с. 17–24.

6. 6. Козлов В. Ф. Справочник по радиационной безопасности. – 5-е изд., перераб. и доп. – М.: Энергоатомиздат, 1999. 520 с.