СПЕКТРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ КРИСТАЛЛОВ МОЛИБДАТА СТРОНЦИЯ, АКТИВИРОВАННЫХ ИОНАМИ ГОЛЬМИЯ

М. Е. Дорошенко, П. Г. Зверев, <u>В. Г. Иванова</u>

Институт общей физики им. А. М. Прохорова РАН, г. Москва

Введение

В настоящее время большой интерес представляет создание двухмикронных лазеров на кристаллах и стеклах, активированных ионами Ho^{3+} (переход ${}^{5}\text{I}_{7} \rightarrow {}^{5}\text{I}_{8}$). Введение ионов гольмия в кристаллы, обладающие высокими коэффициентами ВКР-преобразования, позволяет расширить спектральный диапазон получаемого лазерного излучения за счет генерации Стоксовых компонент. Молибдат стронция обладает высоким коэффициентом ВКР усиления, высокими показателями механической прочности и лучевой стойкости, он не гигроскопичный. Поэтому полифункциональный кристалл SrMoO₄, активированный ионами Ho^{3+} , может одновременно работать как активная лазерная среда и нелинейная ВКР-активная среда и быть основой создания компактных твердотельных лазеров на новых спектральных компонентах, оптимальных для конкретных приложений. Использование полифункциональных активных сред позволит разработать более компактные и надежные в работе лазеры, обладающие широким набором рабочих длин волн [1].

Целью настоящей работы было исследование спектрально-люминесцентных свойств ионов Ho³⁺ в кристалле SrMoO₄. Для этого были подробно исследованы спектры поглощения кристалла в области 350–2300 нм, с помощью теории Джадда–Офельта [2, 3] определены параметры интенсивности оптических переходов и рассчитаны вероятности переходов, коэффициенты ветвления люминесценции и времена жизни для отдельных уровней. В дальнейшем были проведены экспериментальные изменения времен жизни этих уровней и проведена оценка вклада безизлучательных процессов и релаксацию.

Экспериментальные исследования

Исследуемый образец толщиной 3 мм был изготовлен из кристалла Ho^{3+} : SrMoO₄, выращенного в ИОФ РАН методом Чохральского на воздухе. Концентрация примесных ионов Ho^{3+} составляла $3, 2 \cdot 10^{19}$ см⁻³. С помощью двухканального спектрометра Cary-5000 были измерены поляризованные спектры поглощения кристалла в области 350–2300 нм.

Обработка и анализ спектров поглощения проводился с помощью программы Origin8.0. Расчет параметров интенсивности оптических переходов, вероятности переходов между уровнями в рамках теории Джадда–Офельта проводился в среде MathCad 11. Расчет экспериментального времени жизни проводился с помощью программы Sigma Plot 2000 и программы Peakfit.

Экспериментальное измерение времени жизни возбуждения на уровнях иона Ho^{3+} проводилось при помощи установки, собранной на базе импульсного неодимового лазера. Использовалось две активные среды лазера: Nd^{3+} : $Y_3Al_5O_{12}$ (1,064 мкм) и Nd^{3+} : $YAlO_3$ (1,078 мкм), удвоение частоты и лазер на красителе Родамин 640. Спектральная селекция спектра люминесценции проводилась с помощью монохроматора МДР-4. Кинетика люминесценции регистрировалась ФЭУ-83 и цифровым осциллографом Tektronix TDS2012.

Спектры поглощения и расчет параметров интенсивности оптических переходов в ионах Ho³⁺ в кристалле SrMoO₄

С помощью двухканального спектрометра Cary-5000 были измерены поляризованные спектры поглощения кристалла Ho^{3+} : SrMoO₄ в области 300–2500 нм. На рис. 1 представлен спектр поглощения кристала SrMoO₄ с ионами Ho^{3+} для π поляризации.

Рис. 1. Спектры поглощения кристалла Ho³⁺ : SrMoO₄ при комнатной температуре для двух ориентаций исследуемого образца

В спектре наблюдались полосы поглощения, характерные оптическим переходам в ионе Ho^{3+} с основного энергетического состояния ${}^{5}I_{8}$ на возбужденные, соответственно: $1 - {}^{5}I_{8} - {}^{5}I_{7}$ (1985 нм), $2 - {}^{5}I_{8} - {}^{5}I_{6}$ (1180 нм), $3 - {}^{5}I_{8} - {}^{5}F_{5}$ (648 нм), $4 - {}^{5}I_{8} - {}^{5}S_{2} + {}^{5}F_{4}$ (540 нм), $5 - {}^{5}I_{8} - {}^{5}F_{3}$ (485 нм), $6 - {}^{5}I_{8} - {}^{5}F_{2} + {}^{3}K_{8}$ (470 нм), $7 - {}^{5}I_{8} - {}^{5}G_{6} + {}^{5}F_{1}$ (453 нм), $8 - {}^{5}I_{8} - {}^{5}G_{5}$ (420 нм), $9 - {}^{5}I_{8} - {}^{3}H_{6}$ (361 нм).

Данные из спектров поглощения нами были использованы для вычисления параметров Джадда–Офельта и оценки излучательного времени жизни в ионах Ho^{3+} на некоторых уровнях. В теории Джадда–Офельта сила линий для электродипольного перехода между двумя уровнями, может быть выражена через феноменологические параметры Ω_t (t = 2,4,6) следующим образом:

$$S_{ed}^{JJ'}(J \to J') = \sum_{t=2,4,6} \Omega_t \left| \left\langle (S,L) J \right\| U^{(t)} \right\| (S',L') J' \right\rangle \right|^2,$$
(1)

где $\|U^{(t)}\|$ – матричные элементы единичных тензорных операторов, соответствующие переходу с J уровня на J' уровень для свободного иона Ho³⁺. В нашем анализе мы использовали расчетные значения $U^{(t)}$ из работы [4]. Отметим, что каждому переходу соответствуют по три значения $U^{(t)}$, однако, если в спектре поглощения две или более линий перекрываются, то необходимо брать сумму значений соответствующих матричных элементов.

С другой стороны, между уровнями могут существовать магнитно-дипольные переходы, которые разрешены согласно правилам отбора: $S^J - S^{J'} = 0$, $L^J - L^{J'} = 0$, $J^J - J^{J'} = 0, \pm 1$. Сила линии для магнитно-дипольного перехода между J и J' уровнями вычисляется по следующей формуле

$$S_{md}^{JJ'} = \left(\frac{h}{4\pi mc}\right)^2 \left| \left\langle (S,L)J \right\| L + 2S \| (S',L')J' \right\rangle \right|^2,$$
(2)

здесь h – постоянная Планка, c – скорость света в вакууме, m – масса электрона, L + 2S – магнитнодипольный оператор, который вычисляется согласно [4].

Согласно теории Джадда–Офельта экспериментальные силы осциллятора, f_{exp} , переходов между основным уровнем ⁵I₈ и возбужденными уровнями J', могут быть рассчитаны

$$f_{\rm exp} = \frac{mc^2}{\pi e^2 N_c \lambda^2} \Gamma,$$
(3)

где Г – интегральная оптическая плотность для каждой полосы поглощения, определяемая как:

$$\Gamma = \frac{\ln 10 \int D(\lambda) d\lambda}{L},\tag{4}$$

где e – заряд электрона, N_0 – концентрация иона Ho³⁺ в кристалле, λ – средняя длина волны полосы поглощения, здесь L – толщина образца, $D(\lambda)$ – измеренная оптическая плотность. Заметим, что шеелитовый кристалл SrMoO₄ является анизотропным. Ранее было показано, что в анизотропных одноосных средах, что экспериментальные силы осциллятора f_{exp} , необходимо определить независимо для σ и π ориентации. В дальнейшем для анализа Джадда–Офельта необходимо использовать усредненную экспериментальную силу осциллятора, которая определяется как

$$\overline{f}_{\exp} = \frac{\left(f_{\exp_{\pi}} + 2f_{\exp_{\sigma}}\right)}{3},\tag{5}$$

Значения интегральной оптической плотности исследованного образца для двух поляризаций Г_л и Г_о приведены в табл. 1.

Таблица 1

Энергетический переход ⁵ I ₈ –	$\lambda_{\pi},$ HM	$\lambda_\sigma,$ нм	Γ_{π} , нм/см	Γ_{σ} , нм/см
⁵ I ₇	1984,20	1986,90	27,50	21,30
⁵ I ₆	1173,80	1184,80	7,31	6,37
⁵ F ₅	644,81	649,85	11,25	4,50
${}^{5}S_{2} + {}^{5}F_{4}$	539,77	541,61	8,46	4,19
${}^{5}F_{2} + {}^{3}K_{8}$	469,59	469,67	1,584	1,43
${}^{5}G_{6} + {}^{5}F_{1}$	452,69	453,50	62,84	56,45
⁵ G ₅	419,26	419,21	5,56	2,56
³ H ₆	361,40	361,82	10,68	9,47

Значения интегральных плотностей кристалла Ho³⁺:SrMoO₄

Вычисленные значения сил осциллятора, включающие в себя вклад электродипольных и магнитнодипольных моментов, для переходов из состояния J в состояние J', можно рассчитать, используя расчетную силу переходов следующим образом

$$f_{ed}^{JJ'} = \chi \frac{8\pi^2 mc}{3h\lambda(2J+1)} S_{ed}^{JJ'},\tag{6}$$

$$f_{md}^{JJ'} = \frac{nh}{6mc\lambda(2J+1)} S_{md}^{JJ'},\tag{7}$$

$$\chi_{\pi} = \frac{(n_{\pi}^2 + 2)^2}{9n\pi}, \quad \chi_{\sigma} = \frac{(n_{\sigma}^2 + 2)^2}{9n\sigma},$$
(8)

где $\chi_{\pi,\sigma}$ – локальное поле Лоренца для коэффициента поглощения среды, которое вычисляется по формулам (8) для π и σ поляризации соответственно, J – полный угловой момент начального состояния, для Ho³⁺ J = 8, где n_0 и n_e – значения обыкновенного и необыкновенного показателя преломления в кристалле SrMoO₄, которые можно рассчитать по формулам (9) и (10) [5].

$$n_0^2 = 4,1366 + \frac{76,882}{\lambda^2 - 36,374},\tag{9}$$

$$n_e^2 = 4,1569 + \frac{76,882}{\lambda^2 - 46,482}.$$
 (10)

Параметры интенсивности Ω_t могут быть получены исходя из экспериментальных сил осцилляторов методом наименьших квадратов. Расчетные и экспериментальные силы осцилляторов приведены в табл. 2. Корень среднеквадратичного отклонение между экспериментальными и расчетными силами линий, был получен по формуле

$$rm\Delta S = \sqrt{\sum_{i=1}^{N} \frac{(S_{\exp} - S_{calc})^2}{N - 3}},$$
 (11)

где N – количество анализируемых полос поглощения. Параметры интенсивности составили: $\Omega_2 = 18,37 \cdot 10^{-20} \text{ см}^2$, $\Omega_4 = 4,32 \cdot 10^{-20} \text{ см}^2$, $\Omega_6 = 1,13 \cdot 10^{-20} \text{ см}^2$, среднеквадратичное отклонение $rm\Delta S = 1,96 \cdot 10^{-20} \text{ см}^2$.

Таблица 2

Энергетические переходы	λ_{π} , нм	$f_{\rm exp}, \pi \cdot 10^{-6}$	$f_{\rm exp}, \mathbf{\sigma} \cdot 10^{-6}$	$f_{\rm exp}, \cdot 10^{-6}$	$f_{\rm cal}, \cdot 10^{-6}$	$\Delta f, 10^{-6}$
${}^{5}I_{8} - {}^{5}I_{7}$	1985,58	2,45 (ED) 0,62(MD)	1,89 (ED) 0,62(MD)	2,08 (ED) 0,62(MD)	1,36 (ED)	0,72
${}^{5}I_{8} - {}^{5}I_{6}$	1179,30	1,86	1,59	1,68	1,23	0,45
${}^{5}I_{8} - {}^{5}F_{5}$	647,33	9,51	3,74	5,67	5,25	0,42
${}^{5}I_{8} - {}^{5}S_{2} + {}^{5}F_{4}$	540,69	10,21	5,02	6,75	5,39	1,36
${}^{5}I_{8} - {}^{5}G_{6} + {}^{5}F_{1}$	453,09	107,8	96,53	100,30	100,70	0,40
${}^{5}I_{8} - {}^{5}G_{5}$	419,23	11,12	5,12	7,12	8,06	0,93
³ H ₆	361,61	28,76	25,44	26,55	19,04	7,51

Экспериментальные и расчетные значения сил переходов для исследованных полос поглощения ионов Ho³⁺ в кристалле SrMoO₄

В табл. 3 приведены параметры интенсивности ионов Ho^{3+} для некоторых кристаллов по литературным данным. В таблице представлен также расчетный параметр спектроскопического качества *X*, который свидетельствует о потенциале кристалла для его использования в качестве высокоэффективной лазерной среды. Видно, что в кристалле Ho^{3+} : SrMoO₄ он почти в два раза выше, чем в ИАГ, YVO₄, LiNbO₃, близок к значению в другом шеелитовом кристалле SrWO₄.

Кристалл	$Ω_2, 10^{-20} \text{ cm}^2$	$Ω_4, 10^{-20} \text{ cm}^2$	$Ω_6, 10^{-20} \text{ cm}^2$	$X = \Omega_4 / \Omega_6$	Ссылка
SrMoO ₄	18,37	4,32	1,13	3,82	Настоящая работа
ИАГ	0,04	2,67	1,89	1,41	[6]
YVO ₄	7,5	4,0	1,9	2,1	[7]
LiNbO ₃	4,3	5,11	1,89	2,7	[8]
SrWO ₄	11,24	3,95	1,23	3,2	[9]

Сравнение параметров интенсивности ионов Но³⁺ в некоторых матрицах

Используя полученные значения параметров интенсивности переходов, можно рассчитать вероятности излучательных переходов с уровня J на нижележащие уровни J' по следующей формуле:

$$A(J,J') = \frac{64\pi^4 e^2}{3h\overline{\lambda}^3 (2J'+1)} \left[n \left(\frac{n^2+2}{3}\right)^2 S_{ed} + n^2 S_{md} \right],$$
(12)

В этой общей формуле учитывается себя вклад электродипольных и магнитнодипольных составляющих перехода. Для переходов между уровнями, включающими в себя только электродипольный момент, S_{md} необходимо взять равным нулю. Вероятность спонтанного излучения и излучательное время жизни τ_{rad} уровня определяется суммой вероятностей излучательных переходов по всем нижележащим уровням J':

$$\tau = \frac{1}{\sum_{J'} A_{JJ'}}.$$
(13)

Расчетные вероятности излучательных переходов A(J,J') позволяют определить теоретические коэффициенты ветвления $\beta_{JJ'}$ люминесценции с уровня *J* на нижележащие уровни *J'*.

$$\beta_{JJ'} = \frac{A_{JJ'}}{\sum_{J'} A_{JJ'}}.$$
 (14)

Вероятности спонтанных переходов, расчетное излучательное время жизни и коэффициенты ветвления для уровней ${}^{5}I_{7}$, ${}^{5}I_{6}$, ${}^{5}F_{5}$ и полосы ${}^{5}S_{2} + {}^{5}F_{4}$ представлены в табл. 4.

Таблица 4

	-	-		
Начальный уровень J	Конечный уровень J'	$A(JJ'), c^{-1}$	β	τ, мс
⁵ I ₇	⁵ I ₈	129,29 ED 23,07 MD	1	6,5
⁵ I ₆	⁵ I ₇	33,21ED 7,43 MD	0,114 0,026	3,4
	⁵ I ₈	250,86	0,861	
	⁵ I ₄	0,113	$2,36 \cdot 10^{-5}$	
	⁵ I ₅	14,31	$2,99 \cdot 10^{-3}$	
⁵ F ₅	⁵ I ₆	172,78	0,036	0,21
	⁵ I ₇	1003	0,21	
	⁵ I ₈	3592	0,751	

Вычисленные значения вероятностей спонтанного излучения, коэффициентов ветвления и времени жизни различных переходов в кристалле Ho³⁺: SrMoO₄

Окончание табл. 4

Начальный уровень Ј	Конечный уровень Ј'	$A(JJ'), c^{-1}$	β	τ, мс
	⁵ F ₅	52,919 ED	$6,67 \cdot 10^{-3}$	
		5,601 MD	$7,06 \cdot 10^{-4}$	
	⁵ I ₄	52,838	$6,66 \cdot 10^{-3}$	
${}^{5}S_{2} + {}^{5}F_{4}$	⁵ I ₅	209,87	0,026	0,12
	⁵ I ₆	664,562	0,084	
	⁵ I ₇	1399	0,176	
	⁵ I ₈	5549	0,699	

Измерение экспериментального времени жизни люминесценции в ионах Ho³⁺ в кристалле SrMoO₄

Экспериментальные времена жизни люминесценции ионов Ho^{3+} в кристалле SrMoO₄ снимались при комнатной температуре. Люминесценция ионов Ho^{3+} на переходе ${}^{5}\text{I}_{7} \rightarrow {}^{5}\text{I}_{8}$ наблюдалось в области 2050 нм при их возбуждении излучением импульсного лазерного диода с длиной волны 445 нм. Релаксация возбуждения хорошо описывается одноэкспоненциальной кривой (рис. 3). Измеренное время жизни уровня ${}^{5}\text{I}_{7}$ составило 5,9 мс, что несколько короче расчетного значения (табл. 4).

Для измерения времени жизни возбуждения на уровне $({}^{5}S_{2} + {}^{5}F_{4})$ использовалось вторая гармоника излучения импульсного Nd³⁺ : YAlO₃ лазера с длиной волны 539 нм и длительностью импульса 15 нс. В этом случае люминесценция ионов Ho³⁺ в кристалле SrMoO₄ регистрировалась на переходе $({}^{5}S_{2} + {}^{5}F_{4}) \rightarrow {}^{5}I_{7}$ на длине 766 нм. Кривая затухания люминесценции показана на рис. 4. Видно, что время жизни уровня $({}^{5}S_{2} + {}^{5}F_{4})$ равняется 3,09 мкм, что значительно короче расчетного времени.

Рис. 3. Кривая затухания люминесценции в ионах Ho^{3+} на переходе на переходе ${}^{5}\text{I}_{7} \rightarrow {}^{5}\text{I}_{8}$ в кристалле SrMoO₄ при возбуждении излучением с длиной волны 445 нм

При возбуждении излучением Nd³⁺ : YAlO₃ лазера с длиной волны 539 нм в кристалле Ho³⁺ : SrMoO₄ наблюдалась люминесценция на длине волны 988 нм, соответствующей переходу ${}^{5}F_{5} \rightarrow {}^{5}I_{7}$. Временная зависимость этой люминесценции представлена на рис. 5. Видно, что кривая имеет начальный этап разгорания и затем затухания люминесценции. Анализ энергетической диаграммы ионов Ho³⁺ и временной зависимости показал, что на первом этапе наблюдается разгорание люминесценции, соответствующее передаче возбуждения с уровня (${}^{5}S_{2} + {}^{5}F_{4}$) на уровень ${}^{5}F_{5}$ с характерным временем 3,09 мкс. В дальнейшем происходит релаксация на уровень ${}^{5}I_{7}$. Причем видно, что поскольку время разгорания и релаксации для уровня ${}^{5}F_{5}$ имеют близкие значения, то при анализе необходимо учитывать эти процессы одновременно, решая систему балансных уравнений. Решением системы уравнений было определено время жизни возбуждения на уровене ${}^{5}I_{7}$, которое составило 2,7 мкс, что значительно короче расчетного значения (табл. 4). Расчетная кривая суммарного процесса хорошо описывает экспериментальную временную зависимость, что свидетельствует об отсутствии более сложных процессов ап-конверсии и кросс релаксации при таких заданных возбуждения.

Рис. 4. Кривая затухания люминесценции на переходе $({}^{5}S_{2} + {}^{5}F_{4}) \rightarrow {}^{5}I_{7}$ в ионах Ho³⁺ в кристалле SrMoO₄ при возбуждении излучением Nd³⁺ : YAlO₃ лазера с длиной волны 539 нм

В табл. 5 представлены расчетные и экспериментальные времена жизней исследованных уровней в ионе Ho^{3+} в кристалле SrMoO₄. Как видно из данных табл. 5 расчетные времена жизней уровней ${}^{5}\text{I}_{7}$, ${}^{5}\text{F}_{5}$, $\left({}^{5}\text{S}_{2} + {}^{5}\text{F}_{4}\right)$ больше, чем экспериментально измеренные времена жизни этих уровней. Укорочение реального времени жизни уровня может быть связано с наличием безизлучательных процессов релаксации, которые не учитывает теория Джадда–Офельта. Коэффициент п показывает вклад безизлучательных переходов в экспериментально измеренное время релаксации и вычисляется по формуле

$$\eta = \left(1 - \frac{\tau_{_{\mathfrak{SKC}}}}{\tau_{pac}}\right) \cdot 100\%.$$
(15)

Так же в таблице представлены величины энергетических зазоров до ближайшего нижележащего уровня иона Ho³⁺. Вероятность безизлучательных процессов тем выше, чем меньше энергетический зазор, что хорошо коррелирует с вкладом безизлучательных процессов в процесс релаксации.

Рис. 5. Кривая затухания люминесценции с уровня ⁵ F₅ в ионах Ho³⁺ в кристалле SrMoO₄ при возбуждении излучением Nd³⁺ : YAlO₃ лазера с длиной волны 539 нм

Таблица 5

Начальный уровень	τ _{расч.} , мкс	τ _{экспер.} , мкс	Энергетический зазор, см ⁻¹	η, %
${}^{5}S_{2} + {}^{5}F_{4}$	120	3,08	3000	97,5
⁵ F ₅	210	2,7	2200	98,8
⁵ I ₇	6500	5900	5130	11

Расчетное и экспериментальное время жизни уровней в ионе Ho³⁺ в SrMoO₄

Выводы

В данной работе исследовались интенсивности оптических переходов ионов Ho³⁺ в кристалле SrMoO₄. Методом Джадда – Офельта определены параметры интенсивности ионов Ho³⁺, значения которых составили $\Omega_2 = 9,11 \cdot 10^{-20}$ см², $\Omega_4 = 2,32 \cdot 10^{-20}$ см², $\Omega_6 = 0,34 \cdot 10^{-20}$ см². С использованием полученных значений интенсивности переходов для ионов Ho³⁺ в кристалле SrMoO₄, рассчитаны значения излучательных времен жизни. Экспериментальное измерение времени жизни на уровнях (${}^5S_2 + {}^5F_4$), 5F_5 и 5I_7 показали, что в релаксацию высоколежащих уровней иона гольмия в SrMoO₄, имеющих маленький энергетический зазор с нижележащими уровнями, большой вклад вносят безизлучательные процессы. Расчетное значение времени жизни уровня 5I_7 , равное 6,6 мс, оказалось близко к экспериментально измеренного значению (5,9 мс), что говорит о незначительном вкладе безизлучательных процессов в процесс его релаксации. Это свидетельствует о том, что кристалл Ho³⁺ в SrMoO₄ может представлять интерес для создания эффективных двухмикронных твердотельных лазеров.

Благодарности

Авторы выражают благодарность Российскому фонду фундаментальных исследований (грант № 15-02-05932) за частичную финансовую поддержку данной работы. Авторы благодарят Л. И. Ивлеву за предоставленный образец кристалла Ho³⁺ : SrMoO₄.

Список литературы

1. Ivleva L. I., Basiev T. T., Zverev P. G., Osiko V. V., Voronina I. S., Polozkov N. M. // Optical Materials. 2002. Vol. 23. P. 439-442.

2. Judd B. R. Phys. Rev. 1962. Vol. 127. P. 750.

3. Ofelt G. S. // J. Chem. Phys. 1962. Vol. 37. P. 511.

4. Carnall W. T., Fields P. R., Rajnak K. // J. Chem. Phys. 1968. Vol. 49. P. 4424.

5. Ma X., You Z., Zhu Z., Li J., Wu B., Wang Y., Tu C. // Materials Research Bulletin. 2009. Vol. 44. P. 571-575.

6. Malinowski M., Frukacz Z., Szufinska M., Wnuk M., Kaczkan M. // J. Alloys Compd., 2000. P. 300-301.

7. Golab S., Solarz P., Doiniak-Dzik G., Lukasiewicz T., Swirkowicz A., Ryba-Romanowski W. // Appl. Phys. 2002. Vol. 74. P. 237.

8. Lorenzo A., Bausa L., Sanz Garcia J., Garcia Sole J. // J. Phys.: Condens. Matter. 1996. Vol. 8. P. 5781.

9. Li J., Jia G., Zhu Z. Z., You Z., Wang Y., Wu B., Tu C. // J. Phys. D: Appl. Phys. 2007. Vol. 40. P. 5883.