ИЗМЕРЕНИЕ ХАРАКТЕРИСТИК ИОННОЙ КОМПОНЕНТЫ ЛАЗЕРНОЙ ПЛАЗМЫ ВРЕМЯ-ПРОЛЕТНЫМ МЕТОДОМ

А. Н. Балабаев, А. А. Васильев, <u>А. А. Лосев</u>, В. К. Рерих, Ю. А. Сатов, И. А. Хрисанов, А. В. Шумшуров,

ФГБУ ГНЦ РФ «ИТЭФ» НИЦ «Курчатовский институт», г. Москва

В работе проведено исследование характеристик ионной компоненты плазмы, создаваемой импульсами CO_2 лазера при плотности потока излучения на мишени $1,5 \cdot 10^{11}$ Bt/см². Актуальность работы определяется необходимостью исследования лазерной плазмы в рамках фундаментальных исследований и для различных приложений в науке и технике, таких как генерация пучков заряженных частиц и ионизирующего излучения, моделирование космической плазмы и астрофизических процессов и объектов, металловедческие приложения радиационного излучения и пучков заряряженных частиц и т. п. Целью работы является развитие время-пролетного метода диагностики плазмы и получение данных о генерации многозарядных ионов различных элементов.

Рис. 1. Схема экспериментальной установки: 1 – мишенная камера, 2 – цилиндрическая мишень, 3 – сферическое зеркало, 4 – плоское зеркало, 5 – диафрагма с отверстием, 6 – времяпролетная труба, 7 – насос, 8 – электроста-тический дефлектор, 9 – ВЭУ

Схема экспериментальной установки приведена на рис. 1. Для генерации лазерного импульса использовался модуль импульсно-периодического действия, накачиваемый самостоятельным разрядом в смеси $CO_2/N_2/He$ атмосферного давления [1]. В генераторе лазера использовался неустойчивый конфокальный резонатор с увеличением $M_1 = 2,76$, базой $B_1 = 137,2$ см и диаметром выходной апертуры $d_1 = 30$ мм. Для транспортировки излучения на расстояние около 30 м до камеры взаимодействия I пучок расширялся с помощью зеркального телескопического экспандера с параметрами $M_2 = 3,5$, $B_2 = 750$ см и $d_2 = 200$ мм. Фокусировка излучения на поверхность мишени 2 осуществлялась сферическим зеркалом (F/D = 8) 3 в комбинации с плоским зеркалом 4. Временная форма импульса излучения (рис. 2,а) типична для лазера в режиме свободной генерации и состоит из цуга пичков, образованных в результате синхронизации продольных мод. Усредненная форма импульса (рис. 2,б) имеет длительность 28 нс по полувысоте и пиковое значение 106 МВт с среднеквадратическим разбросом менее ±2 % от выстрела к выстрелу. Пространственный профиль фокального пятна на мишени приведен на рис. 3. Центральная часть пучка хорошо описывается функцией Гаусса с характерным диаметром 200 мкм. Расчет плотности потока излучения на мишени дает значение 1,5 · 10¹¹ Bт/см² в центре пятна в момент пика импульса.

Рис. 2. Осциллограмма (а) и усредненная форма (б) импульса излучения. Смесь CO₂/N₂/He = 3:1:3

Рис. 3. Распределение плотности энергии лазерного пучка в фокальной плоскости объектива с *F* = 160 см

Регистрация ионов из расширяющейся плазмы выполнены в направлении нормали к мишени с помощью время-пролетной методики, сочетающей использование дрейфовой трубы 6 и электро-

статического дефлектора 8 с углом разворота 90°. Для устранения влияния остаточного газа на энергию ионов в дрейфовом пространстве устанавливался дополнительный высоковакуумный насос 7. С той же целью на входе во время-пролетное пространство установлена диафрагма, защищающая стенки трубы от облучения из области плазмы и последующей абляции со стенок. Детектором заряженных частиц являлся вторично-эмиссионный электронный умножитель 9, сигнал которого записывается на цифровой осциллограф одновременно с импульсом лазерного излучения. Установка входной и выходной щели с размером 40мкм обеспечивала разрешение анализатора $\Delta E/E \approx 10^{-3}$. Настройка энергии анализатора осуществлялась с помощью стабилизированного источника напряжения.

Измерения проводились в импульсно-периодическом режиме работы лазера с частотой повторения 0,1 Гц. В одной точке настройки анализатора накапливалось 10 измерений, которые усреднялись. Данные обрабатывались программно с учетом изменения коэффициента вторичной эмиссии [2] от зарядового номера и энергии ионов. Результаты обработки измерений для мишени из углерода приведены на рис. 3, 4 в виде энергетических спектров разлета и парциальных токов ионов различной зарядности.

Рис. 4. Спектры разлета ионов, генерируемых из плазмы углеродной мишени

Рис. 5. Парциальные токи ионов углерода на дрейфовом расстоянии 2,8 м

Высокое временное разрешение методики, определяемое спектральным разрешением анализатора, точностью задания напряжения настройки и временными характеристиками оборудования (время отклика ВЭУ, полоса пропускания осциллографа), а также одновременная запись лазерного импульса с сигналом ВЭУ позволяет восстановить времена вылета ионов из плазмы. На рис. 6 показаны такие данные для ионов C^{2+} : C^{5+} одновременно с формой потока лазерного излучения на мишени, в качестве ошибки приведен среднеквадратический разброс измеренных данных. Рисунок не отражает количества частиц соответствующей энергии, но соответствует регулярно (более 50 %) получаемым сигналам в серии измерений в одну точку настройки.

Проведенные исследования развивают время-пролетный метод диагностики плазмы и позволяют получить дополнительную информацию о генерации ионов из плазмы, нагреваемой импульсами лазерного излучения. В частности, показано, что в расширяющемся в вакуум потоке плазмы углерода наблюдаются, по крайней мере, две группы ионов: одна с низкой энергией ниже 1÷2 кэВ, другая-высокоэнергетическая до 10÷25 кэВ и выше. Из рис. 6 видно, что первая относительно монохроматичная группа генерируется длительное время, пока температура плазмы поддерживается на достаточном уровне, а вторая с более широким спектром испускается за короткое время в течении пика импульса при высоких интенсивностях лазера. Ионы с наибольшей степенью ионизации, такие как С⁵⁺ и С⁶⁺, генерируются только в пике нагрева, тогда как ионы низкой зарядности образуются долгое время на «хвосте» генерации.

Рис. 6. Восстановленная диаграмма времен вылета ионов углерода из плазмы относительно импульса облучения

Список литературы

1. Сатов Ю. А., Балабаев А. Н., Васильев А. А., Лосев А. А. и др. Пространственно-временные и энергетические характеристики импульсно-периодического CO₂ лазера. Препринт ИТЭФ 7-14 (2014).

2. Gilbert L. Cano. Secondary electron emission from Au, Mo, and CuBe by high charge number laser produced metal ions. Journal of Applied Physics 44, 5293 (1973).