ИССЛЕДОВАНИЕ ЭНЕРГЕТИЧЕСКИХ И ВРЕМЕННЫХ ПАРАМЕТРОВ СПЕКТРАЛЬНЫХ СОСТАВЛЯЮЩИХ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ЭЛЕКТРОРАЗРЯДНОГО HF/DF-ЛАЗЕРА

А. В. Бурцев, С. Д. Великанов, <u>Э. А. Газизова,</u> Р. В. Порубов, В. В. Щуров

ФГУП «РФЯЦ-ВНИИЭФ» ИЛФИ, г. Саров Нижегородской обл.

Проведены экспериментальные исследования по измерению расходимости лазерного излучения электроразрядного импульсно-периодического химического HF(DF)-лазера.

С использованием внешнего неустойчивого резонатора проведены исследования спектрального состава лазерного излучения электроразрядного химического лазера.

Также представлено распределение энергии по полосам и спектральным линиям в процентах от общей энергии излучения. На основании полученных данных представлено распределение энергии по спектральным областям.

Измерение расходимости лазерного излучения проводилось методом калиброванных диафрагм. Схема измерения приведена на рис. 1 [1].

Рис. 1. Схема измерения расходимости лазерного излучения: 1 – лазер, 2 – зеркала резонатора, 3 – сферическое зеркало *F* = 10000 мм, 4 – клин из CaF₂, 5 – диафрагма, 6₁ – измеритель полной энергии, 6₂ – измеритель энергии, прошедшей через диафрагму

Излучение лазера I, сформированное неустойчивым резонатором 2, подавалось на длиннофокусное зеркало 3. С помощью клина 4 излучение делилось на две части. Одна часть попадала на измеритель 6_1 , который фиксировал полную энергию лазерного импульса, вторая – на диафрагму 5, находящуюся в фокусе зеркала 3. Измеритель 6_2 регистрировал энергию, прошедшую через диафрагму.

По соотношению показаний измерителей определялась доля энергии, прошедшая через диафрагму. Эксперименты проводились с десятью разными диафрагмами с размером отверстия от 0,66 до 5,06 мм.

Расходимость излучения в оценивалась по формуле:

$$\theta = d/F, \tag{1}$$

где *d* – диаметр диафрагмы, *F* – фокус зеркала.

Результаты измерения расходимости приведены на рис. 2. Там же даны расчетные кривые, выполненные по программе «Fresnel» [2].

Отличие экспериментальных значений от расчетных кривых может быть обусловлено неточностью изготовления поверхности зеркал резонатора лазера. Тем не менее, для обоих типов лазера половина энергии лежит в угле менее 100 мкрад.

Рис. 2. Зависимость энергии от расходимости излучения: точки – эксперимент, кривые – расчет

На рис. 3 приведены экспериментально зарегистрированные ближняя и дальняя зоны лазерного излучения.

Рис. 3. Фотографии ближней (а) и дальней (б) зон лазера

Как видно, максимальный диаметр пятна в дальней зоне излучения, находящейся в фокальной плоскости сферического зеркала с F = 10000 мм, не превышает 2 мм, что соответствует расходимости 200 мкрад.

На рис. 4 приведено распределение энергии в дальней зоне излучения, снятое с помощью клина Рогульского, образованного алюминированным зеркалом и пластиной с интерференционным диэлектрическим покрытием, имеющим коэффициент пропускания порядка 50 %.

Рис. 4. Распределение энергии в дальней зоне, снятое с клина Рогульского

Сравнение двух распределений показывает, что диаметры пятен во всех порядках отражения примерно одинаковы, независимо от того, покоится рабочая смесь или движется. Следовательно, можно сделать вывод о малом влиянии неоднородностей плотности рабочей среды на расходимость излучения.

Изучение спектрального состава излучения электроразрядного химического лазера с неустойчивым резонатором (коэффициент увеличения M = 2,5) проводилось по схеме, приведенной на рис. 5 [1].

Рис. 5. Схема измерений спектрального состава излучения: 1 – лазер; 2, 3 – зеркала резонатора, 4 – клин из CaF₂, 5 – реплика дифракционной решетки 100 штр/мм, 6 – зеркало сферическое, 7 – щелевая диафрагма шириной 3 мм; 8, 8₁ – диффузно рассеивающий экран; 9, 9₁ – измеритель формы лазерного импульса Vigo System PD-3, 10 – юстировочный лазер, λ = 527 нм; 11 – поворотное зеркало

Часть излучения отводилась клином 4 на реплику дифракционной решетки 5. От реплики на сферическое зеркало 6 подавалась требуемая часть спектра (для HF-лазера это область между пятым и шестым порядками отражения, для DF-лазера – между седьмым и восьмым). В фокусе зеркала 6 устанавливалась щелевая диафрагма, вырезавшая отдельную линию спектра лазерного излучения. Спектральная линия ослаблялась диффузно рассеивающим экраном 8 и регистрировалась фотоприемником 9. Для регистрации всего лазерного импульса применялся приемник 9_1 , на который попадало излучение, отраженное диффузным экраном 8_1 . Сравнение сигналов с двух фотоприемников позволяло определить задержку генерации на определенном переходе относительно начала импульса излучения.

Для определения энергии линии излучения в схему вместо диффузно рассеивающего экрана устанавливался измеритель энергии Molectron. Так как длина оптического пути от выходного зеркала резонатора до приемника излучения составляла примерно 13 м, то для HF-лазера вводилась соответствующая поправка на поглощение излучения парами воды, содержащимися в атмосфере.

Типичные интегральные импульсы мощности излучения HF- и DF-лазеров приведены на рис. 6, там же дано распределение во времени энергии импульсов.

Рис. 6. Распределение мощности и энергии импульсов HF- и DF-лазеров во времени

Видно, что при общей длительности лазерных импульсов порядка 500 нс (по уровню 0,1 интенсивности) 80 % энергии выделяется за время порядка 300 нс. Увеличение длительности лазерного импульса по сравнению с импульсом тока объясняется протеканием химической реакции. В целом формы лазерных импульсов практически идентичны. Длительность импульсов по уровню 0,1 максимальной амплитуды составляет для HF-лазера $t_{0,1}^{\text{HF}} \approx 480$ нс и для DF лазера $t_{0,1}^{\text{DF}} \approx 460$ нс, но по полувысоте импульс излучения HF-лазера длиннее примерно на 50 нс.

Средняя мощность импульсов может быть рассчитана по формуле [3]:

$$W = \sum_{i=1}^{N} \frac{W_i}{N}.$$
(2)

Для HF-лазера $W_{\rm HF} \approx 83$ отн. ед., для DF-лазера $W_{\rm DF} \approx 64$ отн. ед. Пиковые мощности в отдельные моменты времени гораздо выше.

Спектральный состав излучения DF-лазера приведен на рис. 7.

Рис. 7. Спектральный состав излучения DF-лазера

Распределение энергии по полосам и спектральным линиям в процентах от общей энергии излучения приведено в табл. 1.

Видно, что спектр состоит из 28 линий излучения, сосредоточенных в области длин волн от 3,6 до 4,1 мкм. Наиболее энергетичной является полоса 2 – 1, в ней сосредоточено 42,6 % всей лазерной энергии. В этой же полосе находятся и наиболее сильные линии излучения – P₂(9) и P₂(10), на них приходится свыше 20 % энергии [4].

Таблица 1

Полоса	Линия	Длина волны, мкм	Энергия линии, %	Энергия полосы, %
	P1(6)	3,612182	1,0	
1 – 0	P1(7)	3,644939	1,8	
	P1(8) 3,678932		3,1	
	P1(9)	3,714186	3,7	22,7
	P1(10)	3,750755	4,1	
	P1(11)	3,788654	7,5	
	P1(12)	3,827927	1,5	

Распределение энергии генерации по спектру DF-лазера

Окончание табл. 1

-				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Полоса	Линия	Длина волны, мкм	Энергия линии, %	Энергия полосы, %
	P2(4)	3,666334	0,5	
2 – 1	P2(5)	3,697897	1,6	
	P2(6)	3,730689	2,1	
	P2(7)	3,764763	0,9	
	P2(8)	3,800143	7,2	42,6
	P2(9)	3,836842	9,9	
	P2(10)	3,874933	11,9	
	P2(11)	3,914431	7,0	
	P2(12)	3,955368	1,5	
	P3(5)	3,820323	1,9	
	P3(6)	3,854441	2,2	
	P3(7)	3,8899	4,8	
3 - 2	P3(8)	3,926743	6,6	30,0
	P3(9)	3,964966	6,6	
	P3(10)	4,004645	5,9	
	P3(11)	4,045798	1,9	
	P4(3)	3,88152	0,6	
	P4(6)	3,983969	1,0	
4-3	P4(7)	4,020893	1,5	4,7
	P4(8)	4,059249	0,9	
	P4(9)	4,099083	0,6	

В табл. 2 приведено распределение лазерной энергии по различным спектральным диапазонам.

Таблица 2

Диапазон, мкм	Энергия лазерного излучения в диапазоне, отн. ед.	Доля энергии от общей, %
3,6-3,7	2,6	8,1
3,7-3,8	5,8	18,3
3,8-3,9	12,8	40,0
3,9-4,0	7,3	22,7
4,0-4,1	3,5	10,9

Распределение энергии по спектральным диапазонам

Из данных табл. 2 следует, что около 40 % всей лазерной энергии сосредоточено в диапазоне длин волн от 3,8 до 3,9 мкм, около 80 % энергии лежит в диапазоне от 3,7 до 4,0 мкм.

На рис. 8 и в табл. 4 приведены результаты экспериментального исследования спектрального состава излучения НF-лазера. Данные пересчитаны на торец лазера, учтено поглощение излучения в атмосфере. Данные по коэффициентам поглощения отдельных линий были взяты из базы данных Hitran, значения их приведены в табл. 3.

Из экспериментальных данных видно, что основная энергия генерации (≈ 82 %) сосредоточена в пяти линиях: P₁(8), P₁(9), P₂(6), P₂(7), P₂(8), находящихся в спектральном диапазоне от 2,78 до 2,91 мкм [4].

Рис. 8. Спектральный состав излучения HF-лазера

Таблица 3

Коэффициенты поглощения

Коэффициент поглощения, 1/атм×км	Длина волны, мкм	Переход
431,2265	2,639658	$P_1(4)$
0,646727	2,70752	$P_1(6)$
1612,604	2,744129	$P_1(7)$
5483,211	2,782642	$P_1(8)$
491,0698	2,823136	$P_1(9)$
24,2752	2,957267	$P_1(12)$
2006,789	2,760364	$P_2(4)$
3160,98	2,795271	$P_2(5)$
8022,77	2,83181	$P_2(6)$
314,4386	2,870568	$P_2(7)$
29,63291	2,911064	P ₂ (8)
844,4047	2,953913	$P_2(9)$
2123,584	2,854044	$P_{3}(3)$

Таблица 4

Распределение энергии генерации по спектру HF-лазера

Полоса	Линия	Длина волны, мкм	Энергия линии, %	Энергия полосы, %
1 – 0	P1(4)	2,639658	0,06	
	P1(6)	2,70743	0,12	
	P1(7)	2,744041	4,67	41,48
	P1(8)	2,782562	18,32	
	P1(9)	2,823064	18,31	
2 – 1	P2(3)	2,727471	0,19	
	P2(4)	2,760433	0,30	
	P2(5)	2,795217	3,27	
	P2(6)	2,83189	20,48	51,06
	P2(7)	2,870519	14,45	
	P2(8)	2,911174	10,65	
	P2(9)	2,953948	1,72	

Окончание табл. 4

Полоса	Линия	Длина волны, мкм	Энергия линии, %	Энергия полосы, %
3 – 2	P3(4)	2,888979	1,30	
	P3(5) 2,925696		2,40	
	P3(6) 2 P3(7) 2	2,964421	1,90	7 46
		3,00525	1,39	/,40
	P3(8)	3,048241	0,14	
	P3(9)	3,093495	0,33	

В табл. 5 приведено распределение лазерной энергии по различным спектральным диапазонам НF лазера.

Таблица 5

Диапазон, мкм	Энергия лазерного излучения в диапазоне, отн. ед.	Доля энергии от общей, %
2,6-2,7	0,03	0,1
2,7-2,8	11,6	26,9
2,8-2,9	23,4	54,4
2,9-3,0	7,2	16,7
3,0-3,1	0,8	1,9

Распределение энергии по спектральным диапазонам

Из данных табл. 5 следует, что свыше 50 % всей энергии HF-лазера сосредоточено в диапазоне длин волн от 2,8 до 2,9 мкм, около 98 % энергии лежит в диапазоне от 2,7 до 3,0 мкм.

По данным табл. 2 и 5 можно построить график распределения энергии по спектральным областям, он приведен на рис. 9.

Рис. 9. Распределение энергии HF- и DF-лазеров по спектральным областям

В табл. 6 и 7 приведены временные и энергетические характеристики линий излучения HF-и DF-лазера.

Таблица 6

Спектральные, энергетические и временные характеристики линий излучения HF-лазера

	KM	KM		Время, нс			
Молекула	Линия	Длина волны, м	Энергия линии отн.ед.	Задержка генерации	Длительность по уровню 0,1 амплитуды	Длительность по уровню 0,5 амплитуды	От начала до максимума
	P1(4)	2,639658	0,03	50	35	15	22
	P1(6)	2,70743	0,05	75	80	45	30
	P2(3)	2,727471	0,08	25	60	30	20
	P1(7)	2,744041	2,00	70	330	200	60
	P2(4)	2,760433	0,13	25	130	70	60
	P1(8)	2,782562	7,88	90	600	250	100
	P2(5)	2,795217	1,41	60	210	120	80
	P1(9)	2,823064	7,84	200	600	260	80
НЕ	P2(6)	2,83189	8,81	0	560	250	170
111	P2(7)	2,870519	6,21	30	700	370	150
	P3(4)	2,888979	0,56	45	70	50	30
	P2(8)	2,911174	4,58	140	550	200	60
	P3(5)	2,925696	1,03	65	140	80	50
	P2(9)	2,953948	0,74	140	500	220	50
	P3(6)	2,964421	0,82	110	300	140	50
	P3(7)	3,00525	0,6	175	280	180	60
	P3(8)	3,048241	0,06	280	220	140	70
	P3(9)	3,093495	0,14	120	200	130	30

Таблица 7

Спектральные, энергетические и временные характеристики линий излучения DF-лазера

		KM	1,	Время, нс			
Молекула	Линия	Длина волны, м	Энергия линии отн.ед.	Задержка генерации	Длительность по уровню 0,1 амплитуды	Длительность по уровню 0,5 амплитуды	От начала до максимума
	P1(6)	3,612182	0,33	80	70	35	25
	P1(7)	3,644939	0,54	70	140	30	20
	P2(4)	3,666334	0,16	30	70	50	55
DE	P1(8)	3,678932	1,00	70	280	140	30
DF	P2(5)	3,697897	0,50	40	90	45	45
	P1(9)	3,714186	1,15	80	500	280	30
	P2(6)	3,730689	0,68	40	150	50	45
	P1(10)	3,750755	1,30	30	550	300	110

		KM	l,	Время, нс			
Молекула	Линия	Длина волны, м	Время, нс инни гонцо гонцо время, нс инни гонцо гонцо	От начала до максимума			
	P2(7)	3,764763	0,29	35	170	60	55
	P3(4)	3,787506	0,20	0	150	90	90
	P1(11)	3,788654	2,33	80	700	310	100
	P2(8)	3,800143	2,3	40	360	200	60
	P3(5)	3,820323	0,67	20	130	60	60
	P1(12)	3,827927	0,47	0	700	500	300
	P2(9)	3,836842	3,11	40	600	300	100
	P3(6)	3,854441	0,80	0	480	60	75
	P2(10)	3,874933	3,80	40	700	400	140
	P4(3)	3,88152	0,21	55	80	50	25
DE	P3(7)	3,8899	1,70	30	270	150	70
DF	P2(11)	3,914431	2,22	55	600	450	50
	P3(8)	3,926743	2,31	30	480	270	110
	P4(5)	3,948449	0,10	40	60	20	30
	P2(12)	3,955368	0,46	130	400	250	50
	P3(9)	3,964966	2,36	40	700	340	140
	P4(6)	3,983969	0,31	55	80	50	35
	P3(10)	4,004645	2,10	50	750	480	160
	P4(7)	4,020893	0,49	80	220	150	70
	P3(11)	4,045798	0,65	80	680	250	100
	P4(8)	4,059249	0,30	140	330	200	100
	P4(9)	4,099083	0,20	250	380	240	90

Окончание табл. 7

Табл. 6 и 7 дают наглядное представление о временном распределении энергии по спектральным линиям.

Список литературы

1. Ананьев Ю. А. Оптические резонаторы и проблема расходимости лазерного излучения – М.: 1979.

2. Серов Р., Малютин А. и др. «FRESNEL 4.8» – М.: 2010.

3. Степанов Б. Н. Методы расчета оптических квантовых генераторов. Минск. Т. 1. 1966.

4. Гросс Р., Ботт Д. Химические лазеры. – М.: 1980.