ИСКУССТВЕННАЯ ВЯЗКОСТЬ В МЕТОДАХ СКВОЗНОГО СЧЕТА ДЛЯ БОРЬБЫ С ЧИСЛЕННОЙ НЕУСТОЙЧИВОСТЬЮ ТИПА «КАРБУНКУЛ»

А. В. Родионов, И. Ю. Тагирова

Российский федеральный ядерный центр – Всероссийский НИИ экспериментальной физики, г. Саров

1. Введение

Многие популярные методы сквозного счета, базирующиеся на точном или приближенном решении задачи Римана (например, схема Годунова, схема Роу, схема HLLC), подвержены феномену «карбункула», который также называют ударно-волновой неустойчивостью [1, 2]. Известные методы решения этой проблемы не являются универсальными: они ориентируются только на методы приближенного решения задачи Римана и представляют собой либо их модификации, либо их различные комбинации в зависимости от локальных условий течения.

Недавно авторами данной работы был предложен новый метод решения проблемы «карбункула» [3, 4], являющийся внешним по отношению к конкретной схеме и не меняющий алгоритм расчета «невязких» потоков. Идея метода заключается в следующем: на фронте УВ в базовый метод решения уравнений Эйлера добавляется некоторое количество диссипации в форме правых частей уравнений Навье–Стокса, но с заменой коэффициента молекулярной вязкости на коэффициент искусственной вязкости. Предложенное выражение для коэффициента искусственной вязкости согласуется с [5], но имеет отличительные черты: обобщение на многомерность, введение «пороговой» величины и добавление искусственной теплопроводности.

В данной работе новый подход к подавлению «карбункул»-неустойчивости находит свое развитие: используемая ранее формула для коэффициента искусственной вязкости корректируется, на модельных задачах типа задачи Керка [2] выбираются входящие в нее свободные коэффициенты и проводится всестороннее тестирование нового метода.

2. Искусственная вязкость для подавления «карбункула»

Прежде перейти к описанию предлагаемого метода подавления «карбункул»-неустойчивости, обратимся к тестовой задаче Керка, различные модификации которой далее будут активно использоваться для апробации и настройки нового метода.

2.1. Тестовая задача Керка

В тестовой задаче Керка (четно-нечетное разделение) [2] рассчитывается плоская ударная волна, распространяющаяся вдоль прямоугольного канала. Расчетная область [0, 800]×[0, 20] в плоскости *xy* покрывается регулярной сеткой, состоящей из квадратных ячеек единичного размера $(h_x = h_y = 1)$; начальное состояние газа (компоненты скорости, плотность и давление) в ячейках следующие: $(u_x, u_y, \rho, P) = (0, 0, 1, 1)$. На нижней, верхней и правой границах расчетной области задается непроницаемая стенка. Слева задается втекающий поток с параметрами $(u_1, 0, \rho_1, P_1)$, которые определяются ударно-волновым числом Маха и показателем адиабаты:

$$u_{S} = \sqrt{\gamma}M_{S}, \quad u_{1} = u_{S}\frac{2(M_{S}^{2}-1)}{(\gamma+1)M_{S}^{2}}, \quad \rho_{1} = \frac{(\gamma+1)M_{S}^{2}}{(\gamma-1)M_{S}^{2}+2}, \quad P_{1} = \frac{2\gamma M_{S}^{2}-(\gamma-1)}{(\gamma+1)},$$

где u_S – скорость распространения ударной волны по неподвижному газу.

В задаче Керка неустойчивость плоской ударной волны инициируется ничтожно малым возмущением центральной линии сетки: $\hat{y}_{i,jmid} = y_{i,jmid} + \delta(-1)^i$, где *i* и *j* – сеточные индексы, соответственно, в продольном и поперечном направлениях, *jmid* = 10, $\delta = 10^{-6}$. Неустойчивость обычно обнаруживается визуально, через возмущение ударной волны при ее прохождении по каналу. Для этой же цели могут использоваться и более чувствительные критерии, когда отклонение решения от одномерного потока каким-либо образом измеряется. Так, в некоторых работах ударно-волновая неустойчивость выявляется по росту максимальной величины поперечной компоненты скорости. В настоящей работе для измерения степени отклонения решения от одномерного потока будет использоваться величина

$$\varepsilon_0 = \max_{i,j} \left\{ \left| \rho_{i,j} - \overline{\rho}_i \right| \right\}, \qquad \overline{\rho}_i = \frac{1}{J} \sum_{j=1}^J \rho_{i,j}$$

На рис. 1 показаны зависимости ε_0 от расстояния, пройденного ударной волной $(X_S = u_S t)$, для различных схем и ударно-волновых чисел Маха. Здесь и далее (если не оговорено особо) предполагается, что $\gamma = 1,4$, а число Куранта CFL = 0,8. Данные, полученные по схеме Годунова (сплошные линии для нескольких значений M_S) и по схемам Роу и HLLC (значки для $M_S = 2,4$ и 3,0), представлены на рис. 1,*a*. Видно, что уменьшение интенсивности ударной волны приводит к ослаблению ее неустойчивости: наклон кривых плавно уменьшается вплоть до горизонтального уровня, соответствующего устойчивому расчету ударной волны. Схема Годунова, схема Роу и схема HLLC демонстрируют примерно одинаковую динамику роста возмущений при превышении порогового значения $M_S^C \approx 2,3$.

Рис. 1. Развитие неустойчивости в задаче Керка для различных схем и ударно-волновых чисел Маха

На рис. 1,6 представлены данные, полученные по схеме AUSM⁺. Напомним, что в работе [6] AUSM⁺ была отнесена к схемам, слабо подверженных «карбункулу» (*light carbuncle prone schemes*). Представленные данные это наглядно подтверждают: при использовании схемы AUSM⁺ неустойчивость развивается очень медленно. Обратим внимание на то, что здесь расчеты задачи Керка проводились на вдвое более протяженной расчетной области. Видно, что при достижении $X_S = 800$ отклонение от одномерности течения во всех случаях настолько мало, что обнаружить его визуаль-

но по повреждению формы ударной волны не представляется возможным. Пороговое значение ударно-волнового числа Маха для схемы $AUSM^+$ заметно выше: $M_S^C \approx 3$.

2.2. Введение искусственной вязкости

Теперь опишем метод подавления «карбункул»-неустойчивости через добавление диссипации в виде правых частей уравнений Навье-Стокса с заменой коэффициента молекулярной вязкости на коэффициент искусственной вязкости. При таком подходе алгоритм расчета невязких потоков не меняется, поэтому новый метод может использоваться в сочетании со схемами различного типа.

Подбор формулы для коэффициента искусственной вязкости начнем с рассмотрения выражения, являющегося обобщением идей Неймана и Рихтмайера [5] на многомерный случай:

$$\mu_{AV} = \begin{cases} C_{AV} \rho h^2 \left| \nabla \vec{u} \right|, & \text{если } \nabla \vec{u} < 0, \\ 0, & \text{в противном случае,} \end{cases}$$
(1)

где C_{AV} – безразмерный параметр, h – характерный размер расчетной ячейки.

Выражение вида (1) подразумевает добавление диссипации не только на фронте ударной волны, но и в областях безударного сжатия; отчего точность решения в этих областях может заметно понижаться. Поэтому вместо (1) мы предлагаем использовать формулу

$$\mu_{AV} = \begin{cases} C_{AV} \rho h^2 \sqrt{\left(\nabla \vec{u}\right)^2 - \left(C_{th} a/h\right)^2}, & \text{если } \nabla \vec{u} < -C_{th} a/h, \\ 0, & \text{в противном случае,} \end{cases}$$
(2)

где $C_{th} > 0$ – пороговый коэффициент, *a* – скорость звука. Новый член в формуле (2) представляет собой порог на сжатие. Благодаря ему действие искусственной вязкости ограничивается только фронтом ударной волны. Это дает дополнительную выгоду: в областях, где $\mu_{AV} = 0$, вязкие члены можно не рассчитывать (экономия вычислительных ресурсов). Исходя из анализа большого количества тестовых расчетов, для порогового коэффициента было выбрано следующее значение: $C_{th} = 0,05$.

Другое отличие предлагаемой методики от метода работы [5] заключается в использовании искусственной теплопроводности наравне с искусственной вязкостью. Хотя искусственная теплопроводность не требуется для цели подавления «карбункул»-неустойчивости, но она полезна по другой причине. Так, в работе [7] было показано, что применение искусственной вязкости без теплопроводности может приводить к заметному усилению энтропийных следов. На основе предварительных тестовых расчетов мы также убедились в полезности добавления искусственной теплопроводности. (Отдельно заметим, что такое добавление является физически оправданным.) Таким образом, во всех представленных далее расчетах наравне с искусственной вязкостью добавлялась искусственная теплопроводность, которая рассчитывалась через коэффициент

$$\lambda_{AV} = \frac{\mu_{AV} C_P}{\Pr},$$

где *C_P* – удельная теплоемкость при постоянном давлении, Pr – число Прандтля, полагаемое равным 3/4.

Сначала продемонстрируем эффективность нового метода на задаче Керка; в этом случае для характерного размера ячейки имеем: $h = h_x = h_y$. На рис. 2 показана динамика роста возмущений для ударной волны с $M_S = 6$ при различных значениях коэффициента C_{AV} . Видно, что с увеличением C_{AV} неустойчивость ударной волны сначала ослабляется, а затем полностью подавляется. Для данного тестового варианта минимальная величина C_{AV} , достаточная для подавления неустой-

чивости, составляет $C_{AV}^{\min} \approx 0,24$. Обратим также внимание на интересную особенность расчетов при значениях C_{AV} немного меньших C_{AV}^{\min} . В этом случае неустойчивость, хотя и характеризуется заметным темпом роста возмущений (наклон кривых на рис. 2), но обнаруживается с большой задержкой (по этой причине расчетная область была удлинена). Мы объясняем такую особенность следующими причинами.

Рис. 2. Применение искусственной вязкости в задаче Керка для $M_S = 6$

В тестовой задаче Керка неустойчивость инициируется четно-нечетным возмущением центральной линии сетки. Поэтому на начальном этапе счета осцилляции газодинамических параметров (относительно одномерного течения) формируются в окрестности центральной линии тока и имеют линейчатый спектр. По мере развития неустойчивости осцилляции распространяются в пространстве, и происходит наполнение спектра колебаний (переход к сплошному спектру). Поскольку для гарантированного подавления колебаний различной частоты требуется различное количество добавочной диссипации, то возникает следующая ситуация.

Использование значения $C_{AV}^{\min} = 0,24$ оказывается достаточным, чтобы интенсивно подавлять все колебания из начального спектра. Однако в случае, если они подавляются, но не достаточно интенсивно (например, когда $C_{AV}^{\min} = 0,23$), то спектр колебаний, хотя и медленно, но успевает заполниться. Такой сплошной спектр имеет слабый фоновый уровень, но в нем уже содержатся колебания тех частот, которые не подавляются текущим значением C_{AV}^{\min} . Поэтому амплитуда таких появившихся колебаний начинает неограниченно расти.

2.3. Модификации задачи Керка

С целью проведения более адекватной апробации и настройки нового метода борьбы с «карбункулом» и с учетом обнаруженной выше особенности базовой задачи Керка, она (задача Керка) была модифицирована в трех вариантах: вариант с поступательной УВ, вариант с отраженной УВ и вариант со стационарной УВ. Во всех трех вариантах неустойчивость ударной волны инициируется возмущением сетки вдоль поперечной линии i = 10, причем величина возмущения сетки варьируется от точки к точке с использованием генератора случайных чисел. Тем самым сразу (уже на начальном этапе счета) задается очень широкий спектр колебаний.

По трем новым (модифицированным) тестовым задачам было проведено большое количество расчетов, в которых варьировались расчетные схемы, ударно-волновое число Маха, показатель адиабаты, число Куранта, форма и коэффициент растяжения расчетной сетки. Некоторые результаты обработки этих расчетов приведены далее.

3. Апробация и настройка нового метода борьбы с «карбункулом»

На рис. З показаны зависимости коэффициента неодномерности ε_0 от расстояния, пройденного ударной волной ($X_S = u_S t$), для случая с поступательной УВ. Рис. З,*а* относится к схеме Годунова без добавления искусственной вязкости; варьируется ударно-волновое число Маха, M_S . Здесь и далее (если не оговорено особо) $\gamma = 1,4$, а число Куранта CFL = 0,8. Из этого рисунка видно, что неустойчивость развивается при $M_S > 2,2$. На рис. З,*б* показаны данные для случая $M_S = 6$ при добавлении искусственной вязкости; варьируется свободный параметр C_{AV} в формуле для коэффициента искусственной вязкости. Видно, что в данном случае значение $C_{AV} = 0,28$ оказывается достаточным для подавления неустойчивости.

Рис. 3. Развитие неустойчивости в тестовой задаче с поступательной УВ для схемы Годунова

На рис. 4 показаны аналогичные данные для случая с отраженной УВ. Видно, что в этом случае неустойчивость развивается при $M_S > 2,1$, а для подавления неустойчивости оказывается достаточно положить $C_{AV} = 0,18$.

На рис. 5 показаны данные для случая со стационарной УВ; здесь зависимость коэффициента неодномерности ε_0 дана не от расстояния, пройденного УВ (ударная волна стоит), а от номера расчетного шага N_{STEP} . Видно, что для стационарной УВ неустойчивость развивается при $M_S > 1,55$, а подавление неустойчивости для $M_S = 6$ наступает при $C_{AV} = 0,26$.

Рис. 4. Развитие неустойчивости в тестовой задаче с отраженной УВ для схемы Годунова

Рис. 5. Развитие неустойчивости в тестовой задаче со стационарной УВ для схемы Годунова

Далее целью ставится выбор такого значения C_{AV} , при котором ударно-волновая неустойчивость будет подавляться во всех расчетных вариантах. Для этого сначала перебираются различные варианты расчета УВ, и для каждого варианта находится минимальное значение свободного параметра, величина C_{AV}^{\min} , так, чтобы при $C_{AV} \ge C_{AV}^{\min}$ неустойчивость не проявлялась.

На рис. 6,*а* показана зависимость C_{AV}^{\min} от ударно-волнового числа Маха для схемы Годунова. Видно, что с увеличением M_S в каждой из трех тестовых задач величина C_{AV}^{\min} выходит на постоянное значение. Поэтому все дальнейшие расчеты проводятся при $M_S = 20$, когда значения C_{AV}^{\min} близки к максимальным. На рис. 6,*б* показана зависимость C_{AV}^{\min} от соотношения продольного и поперечного размеров сетки, h_V/h_x (все предыдущие расчеты проводились на квадратной сетке с $h_y = h_x$). Кроме схемы Годунова показаны также данные расчетов по схеме Poy и схеме HLLC. Видно, что во всех случаях использование величины $C_{AV} = 0,6$ гарантирует устойчивый счет.

Рис. 6. Зависимость C_{4V}^{\min} от ударно-волнового числа Маха и от коэффициента растяжения сетки

На рис. 7,а показана зависимость C_{AV}^{\min} от числа Куранта для нескольких наиболее критичных вариантов расчета из набора, представленного на рис. 6б. Видно, что величина $C_{AV} = 0,6$ может использоваться при всех допустимых значениях числа Куранта. На рис. 7,6 показана зависимость C_{AV}^{\min} от показателя адиабаты. Эти данные позволяют сделать поправку в случае расчетов с произвольным у: $C_{AV} = 0.6 \cdot \frac{\gamma + 1}{2}$.

Рис. 7. Зависимость C_{AV}^{\min} от числа Куранта и от показателя адиабаты

4. Заключение

В данной работе предложен новый подход к борьбе с «карбункул»-неустойчивостью, суть которого заключается в следующем. В базовый метод решения уравнений Эйлера добавляется некоторое «дозированное» количество диссипации в форме правых частей уравнений Навье–Стокса, причем делается это только на фронте сильной УВ. При этом коэффициент молекулярной вязкости заменяется коэффициентом искусственной вязкости, а теплопроводность рассчитывается в предположении Pr = 3/4.

Для коэффициента искусственной вязкости подобрано выражение, согласующееся с искусственной вязкостью Неймана–Рихтмайера, но имеющее свои особенности (обобщение на многомерность; введение «порогового» ограничителя). Входящие в это выражение коэффициенты выбраны в результате проведения большого количества тестовых расчетов.

Литература

1. Peery K. M., Imlay S. T. Blunt body flow simulations // AIAA Paper 88-2924, 1988.

2. Quirk J. J. A contribution to the great Riemann solver debate // Int. J. Numer. Meth. Fluids. 1994. Vol. 18. P. 555–574.

3. Родионов А. В., Тагирова И. Ю. Искусственная вязкость в схемах типа Годунова как метод подавления «карбункул»-неустойчивости // Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов. 2015. Вып. 2. С. 3–11.

4. Родионов А. В., Тагирова И. Ю. Применение искусственной вязкости для борьбы с «карбункул»-неустойчивостью в схемах типа Годунова // Математическое моделирование. 2015. Т. 27, № 10. 47-641.

5. von Neumann J., Richtmyer R. D. A method for the numerical calculation of hydrodynamic shocks // J. Appl. Phys. 1950. Vol. 21. P. 232–237.

6. Pandolfi M., D'Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the «carbuncle» phenomenon // J. Comput. Phys. 2001. Vol. 166. P. 271–301.

7. Noh W. F. Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux // J. Comput. Phys. 1987. Vol. 72. 78-120.

ОПТИМИЗАЦИЯ ОПЕРАЦИЙ С МАТРИЦАМИ В ПАКЕТЕ ПРОГРАММ ЛОГОС

И. П. Рыжачкин

Российский федеральный ядерный центр – Всероссийский НИИ экспериментальной физики, г. Саров

Введение

В настоящее время для расчета задач гидродинамики и тепломассопереноса используются неявные методы, где алгоритмы дискретизации, равно как и методы математического моделирования должны соответствовать некоторым критериям в силу разнообразия физических процессов и неоднородности типов уравнений вычислительной гидродинамики. Моделирование течений вязкого сжимаемого газа производится при помощи методик, которые основываются на решении полной системы уравнений Навье–Стокса [1]. При этом значительная часть вычислительных ресурсов тратится на решение систем линейных алгебраических уравнений (СЛАУ). Так, в модуле ЛОГОС TVD на решение СЛАУ тратится от 40 % времени счета задачи. Создание алгоритмов, повышающих эффективность решения СЛАУ, является одним из основных оптимизационных направлений. Векторизация вычислений является одним из перспективных методов оптимизации.

В модуле TVD пакета программ ЛОГОС [2] при решении задач аэродинамики используется алгебраический многосеточный решатель. При этом уравнения Навье-Стокса описываются блоч-