УДК 539.125.5.03

Исследование характеристик макета коммутируемого ²³⁸ Pu-Ве источника нейтронов

В. Е. Аблесимов, А. А. Дружинин, В. Н. Вячин, М. Ю. Максимов, В. Н. Михеев, И. В. Поленов На основе препарата ²³⁸Ри высокой степени изотопной чистоты (99,7 %) и металлического бериллия изготовлен демонстрационный образец (макет) коммутируемого источника нейтронов. Максимальный выход нейтронов исследованного макета составляет в расчете на 1 г плутония 1,1·10⁷ нейтр./(с·г) ²³⁸Ри. Фоновый выход нейтронов не превышает 1,5–2 % от выхода нейтронов в состоянии "включено". Максимальная мощность дозы гамма-излучения в положении "выключено" составила: вплотную 130 мкЗв/ч, на расстоянии 20 см – 5 мкЗв/ч.

Введение

Изотопные источники, постоянно излучающие нейтроны, получили широкое распространение в различных областях науки и техники [1]. По сравнению с ними существенными преимуществами могут обладать изотопные источники с изменяемым (переключаемым) выходом нейтронов, практически от нулевого выхода до максимального (~ $10^6 - 10^7$ нейтр./с). Один из возможных вариантов подобного изотопного источника описан в [2, 3]. Переключение нейтронного выхода в нем осуществлялось перемещением по окружности закрепленной на оси бериллиевой мишени, изготовленной в виде сектора круга, мимо неподвижного излучателя альфа-частиц, также выполненного в виде сектора круга.

Применение коммутируемых источников перспективно при исследованиях кинетических характеристик активных зон ядерных реакторов. Основная задача при исследовании размножающих систем заключается в определении ее состояния относительно критичности. Одним из классических методов решения данной задачи является метод "сброса" источника нейтронов из подкритической размножающейся системы, находящейся в равновесном состоянии. Естественно, что после удаления источника размножающаяся система начинает релаксировать к новому равновесному состоянию, при этом характер переходного процесса будет однозначно связан с эффективным коэффициентом ее размножения.

Традиционный способ изменения мощности источника нейтронов заключается в быстром удалении (приближении) источника от размножающей системы посредством некой механической (пневматической) системы, что в зависимости от условий эксперимента не всегда легко осуществимо. Поэтому альтернативный изотопный источник нейтронов, изменяющий свою мощность за счет внешнего механического управления реакцией (α , *n*) в диапазоне от 10⁴ до 10⁷ с⁻¹ и имеющий характерный размер ~ 5 см, может служить достаточно простым и мощным инструментом при решении задач кинетики реактора.

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК МАКЕТА КОММУТИРУЕМОГО ²³⁸Pu-Be ИСТОЧНИКА НЕЙТРОНОВ

Практически коммутируемый изотопный нейтронный генератор (КИНГ) может быть выполнен на основе таких альфа-активных изотопов, как ²³⁸Pu или ²⁴¹Am, и мишени из легкого вещества, например бериллия.

Некоторые свойства этих альфа-активных изотопов приведены в табл. 1.

Таблица 1

Изотоп	Период альфа- распада, год	Актив- ность (А), Бк/г	Средняя энергия альфа- частиц, МэВ	Удельный выход (У), нейтр./10 ⁶ α-частиц для мишени из Ве	Выход для тонкого слоя (<i>N</i>), нейтр./(с·г)	Период спонтанно- го деления, год	Удельный выход нейтронов спонтанного деления, нейтр./(с.г)
²³⁸ Pu	87,7±0,3	6,338·10 ¹¹	5,487	79	2,50.107	4,7-10 ¹⁰	2,61-10 ³
²⁴¹ Am	$432,2 \pm 0,7$	1,270.1011	5,479	79	5,08·10 ⁶	1,15.1014	1,19

Альфа-излучающие изотопы и их свойства [4, 5]

Зависимость удельного выхода нейтронов Y в веществе от начальной энергии альфачастицы E_0 при условии, что она полностью тормозится от начальной энергии до нуля только на атомах этого вещества, дается выражением [5]

где

$$Y = kE_0^m$$
 (нейтр./10° альфа-частиц),

$$k = 0,080; m = 4,05$$
 для $4,1 < E_0 < 5,7$ МэВ;
 $k = 0,80; m = 2,75$ для $5,7 < E_0 < 10,0$ МэВ. (1)

Выход нейтронов для тонкого слоя альфа-излучателя рассчитывается по формуле

$$N = AY\Omega/10^{\circ} . \tag{2}$$

Обозначения те же, что в табл. 1, множитель Ω учитывает эффективный телесный угол выхода альфа-частиц. При наличии воздушного промежутка между излучателем и мишенью часть энергии альфа-частиц поглощается в воздухе. Потери энергии альфа-частиц при прохождении воздушного промежутка между пластинами приводят в соответствии с выражением (1) к уменьшению удельного выхода нейтронов из мишени. Таким же образом влияют потери энергии при прохождении альфа-частиц в веществе слоя альфа-излучателя. Ниже приводятся результаты измерений основных характеристик изготовленного нами демонстрационного образца (макета) коммутируемого нейтронного источника с расчетным выходом нейтронов примерно ~ 10^4 нейтр./с.

Эксперимент и результаты

Демонстрационный образец КИНГа (см. рисунок) представляет собой цилиндрическую кассету из оргстекла диаметром 66 мм и высотой 40 мм. Внутри нее размещены: 1 – излучатель альфа-частиц (²³⁸PuO₂); 2 – бериллиевая мишень в виде диска диаметром 20 мм и толщиной 0,13 мм и 3 – затвор из нержавеющей стали толщиной 1,2 мм в виде полоски длиной 70 мм и шириной 32 мм. Габариты макета были выбраны такими, чтобы КИНГ разместился в измерительном кана-

ле установки для счета нейтронов (диаметр канала 80 мм). Во избежание самопроизвольного перемещения затвора в конструкции образца предусмотрен стопорный винт, который фиксирует положение затвора в рабочем и нерабочем состояниях образца.

Схема демонстрационного образца КИНГа

В качестве излучателя альфа-частиц в настоящем макете используется тонкий слой радиоактивного изотопа ²³⁸Pu, нанесенный на металлический диск из титана или тантала диаметром 24 мм и толщиной 0,2 мм. Диаметр "активного" пятна равен ($18 \pm 0,2$) мм. Всего было изготовлено четыре излучателя альфа-частиц (табл. 2). Последовательно помещая их в корпус КИНГа (см. рисунок), были получены четыре варианта КИНГа для исследований. Расстояние *H* между слоем-излучателем и бериллиевым диском было выбрано равным 7,17 мм. С мишенью № 2 были проведены измерения при расстоянии H = 2,87 мм.

Таблица 2

Абсолютная активность	(macca)	238Pu	в излучато	еле альфа-ча	стиц макета КИН

Номер	Активность 238	Manage 238 D.		
мишени	Гамма-спектрометрия	Альфа-радиометрия	Macca Fu, MKI	
1	$1,88 \pm 0,10$		297 ± 15	
2	$3,74 \pm 0,20$	-	590 ± 32	
3	5,35 ± 0,32		844 ± 50	
4	0,396 ± 0,020	0,363 ± 0,010	58 ± 2	

70

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК МАКЕТА КОММУТИРУЕМОГО ²³⁸Ри-Ве ИСТОЧНИКА НЕЙТРОНОВ

Для изготовления излучателя альфа-частиц был взят препарат ²³⁸Ри высокой степени изотопной чистоты (99,7 %), полученный в 1993 году на электромагнитном сепараторе изотопов С-2 [6]. Плутоний электролитическим способом из спиртового раствора был нанесен на подложки из титана и тантала. Предварительно исходный препарат плутония был очищен от радиоактивных и инертных примесей. Осаждение плутония проводилось три раза на одну и ту же подложку из титана. Таким способом был изготовлен альфа-излучатель с последовательно увеличивающейся массой плутония (мишени № 1, 2, 3). Самый "тонкий" излучатель № 4 был изготовлен однократным осаждением плутония на танталовую подложку.

Определение массы плутония на изготовленных излучателях проводилось методом гаммаспектрометрии путем измерений интенсивности собственного гамма-излучения ²³⁸Pu с энергией 99,9 и 152,7 кэВ, имеющего квантовые выходы $(7,35 \pm 0,08) \cdot 10^{-3}$ и $(9,37 \pm 0,10) \cdot 10^{-4}$ % соответственно. Результаты измерений приведены в табл. 2. Для контроля масса плутония, нанесенного на мишень № 4, была определена другим методом – по интенсивности альфа-излучения, измеряемой методом счета альфа-частиц в камере с малым телесным углом. Видно, что результаты измерений, полученные разными методами, согласуются между собой.

Исследование характеристик КИНГа

Для каждого из четырех вариантов КИНГа был измерен выход нейтронов. Измерения проводились на счетчике нейтронов "Корона" [7], состоящем из 20 борных счетчиков СНМ-11 в парафиновом замедлителе. Замедлитель имеет вид куба размером 450 × 450 × 450 мм, в центре которого имеется сквозной горизонтальный канал диаметром 80 мм для размещения анализируемых образцов. Вокруг канала по двум концентрическим окружностям радиусом 65 и 85 мм расположены счетчики СНМ-11, работающие в режиме коронного разряда.

Выход нейтронов из макета КИНГа определялся по формуле

$$Q = \frac{N_x}{\varepsilon} K , \qquad (3)$$

где N_x – средняя скорость счета при измерениях макета КИНГа на установке "Корона", имп./с; ε – эффективность счета нейтронов установки "Корона", определяемая по нейтронным эталонным источникам; K – поправка на различие спектров нейтронов макета и эталона.

Эффективность счета є определялась с помощью источников с известным выходом нейтронов. В настоящей работе использовались следующие эталоны: ²³⁹Pu-Ве источник с выходом нейтронов (1,130 ± 0,045)·10⁴ нейтр./с и два эталона на основе спонтанно делящихся изотопов ²⁵²Cf и ²⁴⁴Cm с нейтронным выходом (1,544 ± 0,038)·10⁴ и (1,14 ± 0,03)·10³ нейтр./с соответственно (в расчете на февраль 2005 года). Эффективность регистрации нейтронов и фон были практически постоянными в период проведения измерений (две недели) и составили є = 1,90 ± 0,04 %, $N_{\phi o H} =$ = 0,041 ± 0,005 имп./с.

Результаты измерений нейтронного выхода макета КИНГа приведены в табл. 3. Видно, что результаты измерений и расчета нейтронного выхода макета КИНГа в пределах ~ 10 % согласуются друг с другом. В результаты измерений введена поправка на различие спектров нейтронов

измеряемого макета КИНГа и эталонов на основе ²⁵²Cf и ²⁴⁴Cm. Поправка была определена экспериментально путем измерения эффективностей регистрации нейтронов эталонного ²³⁹Pu – Ве источника, имеющего спектр нейтронов, практически тождественный спектру нейтронов КИНГа, и эталонов на основе спонтанно делящихся изотопов ²⁵²Cf и ²⁴⁴Cm. Она составила $K_1 = \varepsilon \binom{252}{\Gamma} \binom{239}{\Gamma} = 1,57 \pm 0,08$. Эффективность регистрации нейтронов для эталонов на основе ²⁵²Cf и ²⁴⁴Cm в пределах экспериментальных погрешностей была практически одинакова: $K_2 = \varepsilon \binom{252}{\Gamma} / \varepsilon \binom{244}{\Gamma} = 1,03 \pm 0,06$.

Расчет выхода нейтронов для геометрии эксперимента учитывал поглощение энергии альфа-частиц в воздушном промежутке и соответствующее снижение удельного выхода нейтронов из мишени. По программе МК [8] рассчитывалось распределение по остаточному пробегу числа частиц, пересекающих поверхность мишени. Далее, следуя [9], определялась остаточная энергия альфа-частиц, попадающих на бериллиевую мишень, для каждой группы альфа-частиц определялся выход нейтронов согласно выражению (2) и суммированием находился полный расчетный выход нейтронов из макета. Расчетный удельный выход из макета при расстоянии между пластинами 7,17 мм составил 37,9 нейтр./10⁶ альфа-частиц, при расстоянии 2,87 мм – 56,4 нейтр./ 10⁶ альфа-частиц при значении эффективного телесного угла соответственно 0,146 и 0,272.

Таблица 3

Масса ²³⁸ Ри в Ак излу- но чателе, ²³⁸ Р мкг	тив- ость чи, Бк впол имп	сть Скорость а счета о- в положении и "выкл", ', имп./с 'c	Экспери- менталь- ный выход нейтронов, нейтр./с	Расчет- ный вы- ход ней- тронов, нейтр./с	Экспери- мент/рас- чет	Выход нейтро- нов на 1 г ²³⁸ Рu, × 10 ⁶ нейтр./(с·г)
--	------------------------------------	---	---	---	------------------------------	--

Результаты измерения выхода нейтронов из макета КИНГа

Расстояние между излучателем и бериллием 7,17 мм								
58	3,96E+07	2,686	0,060 ± 0,008	222	219	1,01	3,83	
297	1,88E+08	13,5	0,16 ± 0,04	1116	1039	1,07	3,76	
590	3,74E+08	27,603	0,427 ± 0,027	2281	2067	1,10	3,87	
844	5,35E+08	34,503	0,627 ± 0,046	2851	2957	0,96	3,38	

Расстояние между излучателем и бериллием 2,87 мм.

297	1,88E+08	38,1	0,180 ± 0,013	3148	2888	1,09	10,6
297	1,88E+08	39,4	0,180 ± 0,013	3254	2888	1,13	11,0

Экспериментальная проверка влияния поглощения альфа-частиц в воздушном промежутке между слоем окиси ²³⁸Pu и мишенью из Ве на величину выхода нейтронов была проведена следующим образом.

Использовался вариант макета № 3 с мишенью из плутония (844 мкг), находящейся на расстоянии 7,17 мм от бериллиевой пластины. Макет был размещен внутри металлического сосуда (~2 л), соединенного с откачанным буферным сосудом. Вся сборка располагалась у переднего торца парафинового куба установки "Корона".

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК МАКЕТА КОММУТИРУЕМОГО 238 Ри-Ве ИСТОЧНИКА НЕЙТРОНОВ

Первое измерение было проведено при атмосферном давлении внутри первого сосуда, а следовательно, и в макете КИНГа. Последующее – после снижения давления до 0,35 атм (по манометру ОБМВ1-100) за счет соединения первого сосуда с буферным. При снижении давления воздуха в макете КИНГа от атмосферного (1 ата) до 0,35 ата выход нейтронов увеличился в 1,82 \pm 0,13 раза. Полученное значение хорошо согласуется с расчетным увеличением в 1,70 раза выхода нейтронов из макета при снижении давления в воздушном промежутке до указанной величины.

Для изготовленного в настоящей работе макета КИНГа в диапазоне массы плутония от 60 до 844 мкг среднее значение выхода нейтронов макета при H = 7,17 мм составило $3,7\cdot10^6$ нейтр./(с·г)²³⁸Pu, при H = 2,87 мм – $10,8\cdot10^6$ нейтр./(с·г)²³⁸Pu, что хорошо согласуется с расчетными значениями.

Уменьшение выхода нейтронов на 1 г²³⁸Ри для мишени № 4 можно связать с поглощением энергии альфа-частиц в материале самого слоя.

Таким образом, результаты измерений и расчетов выхода нейтронов макета КИНГа практически совпадают, что подтверждает справедливость основных положений и оценок, выполненных при обсуждении характеристик коммутируемого ²³⁸Pu – Ве источника нейтронов.

Выводы

1. На основе имеющегося препарата ²³⁸Ри высокой степени изотопной чистоты (99,7 %) и металлического бериллия изготовлен демонстрационный образец (макет) коммутируемого источника нейтронов.

2. С использованием установки "Корона"" (борные счетчики СНМ-11 в парафиновом замедлителе) проведено измерение выхода нейтронов в состоянии "включено". Для изготовленного в настоящей работе макета КИНГа в диапазоне массы плутония от 60 до 844 мкг среднее значение выхода нейтронов макета при H = 7,17 мм составило $3,7\cdot10^6$ нейтр./(с·г) ²³⁸Pu, при H = 2,87 мм – $10,8\cdot10^6$ нейтр./(с·г) ²³⁸Pu, что хорошо согласуется с расчетными значениями.

3. При снижении давления воздуха в макете КИНГа от атмосферного (1 ата) до 0,35 ата выход нейтронов увеличивается в 1,82 ± 0,13 раза. Это хорошо согласуется с расчетным увеличением в 1,70 раза выхода нейтронов из макета при снижении давления в воздушном промежутке до указанной величины.

4. Выход нейтронов в состоянии "выключено" не превышает 1,5-2 % от выхода нейтронов в состоянии "включено".

5. Измерена мощность дозы гамма-излучения в положении "выключено". Она составила со стороны дна макета: вплотную 130 мкЗв/ч, на расстоянии 20 см – 5 мкЗв/ч.

6. Применение коммутируемого нейтронного источника существенно снижает дозовую нагрузку на персонал, смягчает требования к защите источника при транспортировке в выключенном состоянии.

Список литературы

1. Бак М. А., Шиманская Н. С. Нейтронные источники. М.: Атомиздат, 1969.

2. U.S.Patent No. 4829191, May 9, 1989.

74

3. Rhodes E. A., Bowers D. L. et al. Report ANL/ACVT-95/2/.

4. Фролов В. В. Ядерно-физические методы контроля делящихся веществ. М.: Энергоатомиздат, 1989.

5. Hertz K. L., Hilton N. R., Lund J. C., J. M. Van Scyoc. Alfa-emitting radioisotopes for switchable neutron generators // Nuclear Instruments and Methods in Physics Research. 2003. Vol. A 505. P. 41-45.

6. Vesnovskii S. P., Polynov V. N. Highly enriched isotopes of uranium and transuranium elements for scientific investigation // Nuclear Instruments and Methods in Physics Research. 1992. Vol. B70. P. 9–11.

7. Дружинин А. А., Винокуров В. А., Григорьев В. К. и др. Детекторы нейтронов на основе коронных счетчиков СНМ-11 // Труды ВНИИЭФ. 1968, № 8. С. 18-22.

8. Кочубей Ю. К., Житник А. К., Артемьева Е. В. и др. Программа С-95. Моделирование совместного переноса нейтронов и гамма-квантов методом Монте-Карло // ВАНТ. Сер. Математическое моделирование физических процессов. 2000. Вып. 2. С. 49–52.

9. Машкович В. П. Защита от ионизирующих излучений: Справочник. М.: Энергоатомиздат, 1982.

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК МАКЕТА КОММУТИРУЕМОГО ²³⁸Ри-Ве ИСТОЧНИКА НЕЙТРОНОВ

Research of Characteristics of the Demonstration Sample Switchable ²³⁸Pu – Be Neutron Source

V. E. Ablesimov, A. A. Druzhinin, V. N. Vjachin, M. J. Maksimov, V. N. Miheev, I. V. Polenov

The demonstration sample of a switchable neutron source is made on the basis of a preparation 238 Pu a high degree of isotopic purity (99.7 %) and metal Be. The maximal yield of neutrons of the investigated sample in position "on" is $1.1 \cdot 10^7$ neutron/s per 1 gramme of 238 Pu. The background yield of neutrons in position "off" does not exceed 1.5-2 % from an output of neutrons in position "on". The maximal doze rate of gamma-radiation in position "off" is closely 130 μ Sv/h, on distance 20 cm - 5 μ Sv/h.