ПОТЕРИ ЭНЕРГИИ ИОНОВ В ПРОСТЫХ ВЕЩЕСТВАХ. II. ИОНЫ ПРОМЕЖУТОЧНЫХ ЭНЕРГИЙ

Д. К. Ковшов РФЯЦ-ВНИИЭФ

Найден нижний предел применимости формулы Бете. Исследованы положение и величина максимума потерь энергии.

Введение

Мы продолжаем исследование тормозной способности простых веществ с помощью аппроксимирующей функции, предложенной в статье І. Рассматриваются параметры, относящиеся к промежуточной области энергий, – граница применимости формулы Бете $E_{\rm rp}$, положение максимума потерь $E_{\rm max}$ и его величина $S_{\rm max}$, – в зависимости от вещества (характеризуемого атомным номером Z_0) и падающего иона (характеризуемого атомным номером Z и атомной массой M). Напомним, что все энергии отнесены к 1 нуклону и измеряются в кэВ/а.е.м.

Экспериментальные данные взяты из публикаций, перечисленных в табл. 1 статьи І.

Граница области быстрых частиц

Границей, выше которой ион может считаться «быстрым», следует считать энергию, при которой отклонения от формулы Бете сравнимы с погрешностью измерения потерь. Оценкой ее служит величина $E_{\rm rp}$, входящая в аппроксимирующую функцию.

В точке $E_{\rm rp}$ левая и правая ветви кривой переходят друг в друга гладко, и смещение этой точки очень слабо влияет на качество аппроксимации (что говорит о размытом характере границы). Это позволяет пренебречь изотопическими эффектами в $E_{\rm rp}$ (возможной зависимостью от M).

В то же время $E_{\rm rp}$ принципиально ограничена снизу вследствие неверного поведения функции Бете при $E < 2,718(I_0/4m_e)$. Кроме того, оказалось, что $E_{\rm rp}$ быстро возрастает с ростом Z.

Исходя из сказанного, зависимость $E_{\rm rp}(Z_0, Z)$ была описана формулой

$$E_{\rm rp}(Z_0, Z) = k_{\rm rp} I_0(Z_0) / 4m_e + E_{\rm rp \ 0} Z^{P_{\rm rp}} , \qquad (1)$$

для параметров которой были найдены значения

$$p_{\rm rp} \approx 4/3, \quad k_{\rm rp} = 4,3 \pm 0,4,$$

 $E_{\rm rp \ 0} = 530 \pm 80 \text{ ksB/a.e.m.} = (10, 7 \pm 1,6) v_E^2.$

Для сравнения укажем, что граница применимости формулы Бете с поправками (Блоха, Баркаша и оболочечными) оценивается для протона в 400– 700 кэВ/а.е.м. [42, 92]. В работах [21, 29, 35, 44–46, 64] величина, аналогичная $E_{\rm rp}$, составляет для α -частицы 150–350 кэВ/а.е.м., тогда как по формуле (1) должно быть 1400–3500 кэВ/а.е.м.; однако эти опыты проводились при энергии не выше 500 кэВ/а.е.м., так что выводы из них относительно $E_{\rm rp}$ недостоверны. Оценок для более тяжелых ионов найти в литературе не удалось.

Положение максимума потерь

Положение максимума E_{max} тоже довольно слабо влияет на качество аппроксимации. Это дает возможность снова пренебречь изотопическими эффектами, а зависимость от Z_0 и Z описать простым выражением

$$E_{\max}(Z_0, Z) = E_{\max 0}(Z_0) Z^{P_E \max} .$$
 (2)

Показатель $p_{E \max} \approx 2/3$; для сравнения укажем, что по данным [9] он составляет 0,77. Значения $E_{\max 0}$ приведены в таблице (в скобках даны значения, найденные интерполяцией).

Положение и величина максимум	а потерь

Вещество	<i>E</i> _{max 0} , кэВ/а.е.м.	S' _{max} , 10 ⁻¹⁵ эВ∙см ² /атом
H ₂	73±4	19±7
Не	99±5	14,2±1,6
Li	(96)	21±4
Be	75±6	$16,2 \pm 1,9$
В	(86)	27±18
С (аморф.)	103±5	28,3 ±2,3
N ₂	92±5	42±8
O ₂	117±16	35±5
F ₂	(120)	(27,5)
Ne	121±12	24,1±2,4
Na	(121)	(25,7)
Mg	120±40	37±11
Al	123±5	37,4±2,3

		Окончание таблицы
Вещество	<i>E</i> _{max 0} , кэВ/а.е.м.	S' _{max} , 10 ⁻¹⁵ эВ∙см ² /атом
Si	87±6	45±4
Р	(84)	(54,1)
S	(73)	(61,3)
Cl ₂	87±11	70±14
Ar	64±3	77±17
К	(65)	(71,2)
Ca	(71)	(70,7)
Sc	(80)	(68,3)
Ti	94±6	67±14
V	109±13	56±8
Cr	138±27	48±5
Mn	160±40	42±5
Fe	149±14	43±4
Со	158±15	38,2±2,9
Ni	160±7	35,5±1,6
Cu	157±7	32,3±1,3
Zn	138±17	36,8±2,6
Ga	(144)	(36,5)
Ge	168±24	47±5
As	(113)	(43,5)
Se	85±23	41±6
Br ₂ (газ)	88±10	62±7
Kr	85±5	63±7
Rb	(84)	(73,5)
Sr	(85)	(78,2)
Y	104±23	72±22
Zr	103±13	81±29
Nb	109±9	80±30
Мо	112±14	69±17
Tc	(124)	(59,4)
Ru	(129)	(55,0)
Rh	(133)	(52,1)
Pd	(135)	49±7
Ag	131±4	50,3±2,0
Cd	(134)	(51,6)
In	(131)	54±8
Sn	105±25	65±8
Sb	160±30	60±9
Te	110±30	67±14
I ₂	(94)	(82,2)
Xe	90±8	91±12
Cs	(93)	(88,1)
Ba	(104)	(88,2)
La	120±19	97±13
Ce	(127)	70±40
Pr	(133)	64±18
Nd	154±28	64±7
Pm	(144)	(69,3)
Sm	(149)	(65,3)
Eu	(154)	(61,6)
Gd	168±14	56±8
Тb	130±40	65±7
Dy	143±21	55±4

Но

Er

Tm

Yb

Lu

160±90

132±25

(174)

(176)

(178)

46±8

53±8

(46, 4)

 46 ± 8

 60 ± 5

Hf	190±24	47±11
Та	190±14	41,4±2,2
W	183±20	47±5
Re	180±20	41±3
Os	(181)	(43,4)
Ir	180±40	44±3
Pt	203±24	40,2±2,9
Au	178±6	46,6±1,1
Hg	(178)	(48,7)
Tl	(176)	(50,8)
Pb	170±30	59±6
Bi	150±30	71±7
U	130±100	_

Величина $E_{\max 0}$ зависит от Z_0 немонотонно (рис. 1). Она максимальна при Z₀ ≈ 2; 8÷12; 25÷29; 46÷49 и минимальна при $Z_0 \approx 3 \div 4$; 18; 34÷40; 54, в полном согласии с результатами [59, 61, 62, 69, 75]. При Z₀ > 60 погрешности E_{max 0} возрастают и определить положение экстремумов не удается.

Осцилляции происходят на фоне общего роста $E_{\rm max 0}$, который грубо может быть описан формулой

$$E_{\max 0} \approx (80 + Z_0)$$
 кэВ/а.е.м. (3)

(показан на рис. 1 пунктиром).

Для лития аппроксимация дала явно заниженное значение $E_{\text{max 0}}$: сказалось влияние данных [88], у которых максимум сильно смещен влево по сравнению с [1, 5, 7]. Для Pd, In и Lu, напротив, E_{max 0} завышены, скорее всего из-за систематической ошибки в данных [91]. Для всех четырех элементов в таблице приведены интерполированные значения.

Проверить наши результаты можно путем сравнения с данными тех работ, в которых исследуемый энергетический диапазон накрывает точку максимума, а для протона и α-частицы, кроме того, - с таблицами Андерсена и Циглера [42, 43]. Это сделано на рис. 2. В разных работах положение максимума различается весьма значительно: среднеквадратический разброс составляет 32 %. Значения, полученные по формуле (2), не выходят за рамки этого разброса; превышение экспериментальных Е_{тах} над расчетными, наблюдаемое на графике для $Z_0 = 29$, не является статистически значимым. Значение $E_{\rm max}$ для ¹²⁷I в золоте, приведенное в [18], находится в вопиющем противоречии не только с расчетным значением, но и с экспериментальными значениями для других ионов и, видимо, должно быть забраковано как грубая ошибка.

Величина максимума потерь

Величина максимума определяется гораздо точнее, чем его положение; поэтому, чтобы удовлетворительно описать ее зависимость от Z, пришлось построить более сложное выражение

$$\frac{1}{S_{\max}(Z_0, Z)} = \frac{1}{S'_{\max}(Z_0)Z^{p'_{S}\max}} + \frac{1}{\frac{1}{S''_{\max}(Z_0)Z^{p''_{S}\max}}}.$$
(4)

Рис. 1. Положение максимума потерь: — – осцилляции (сглаженная кривая); --- – монотонная часть зависимости

Рис. 2. Положение максимума потерь. Сравнение с результатами других авторов: • – данная работа; — – Андерсен и Циглер [42, 43]; • – экспериментальные данные [1–8, 10–23, 25–27, 30, 32, 33, 36, 38–41, 48–53, 55, 56, 59–61, 65–68, 70, 73, 74, 76–81, 84, 85, 87–90]

Масса иона в формулу не входит, потому что результаты аппроксимации свидетельствуют об одинаковой (в пределах погрешности) величине максимума потерь у изотопов одного элемента.

Договоримся, что $p'_{S \max} > p''_{S \max}$; тогда для легких ионов (в пределе $Z \rightarrow 0$) максимальные потери энергии определяются первым слагаемым, для тяжелых – вторым. У тяжелых ионов, как оказалось, максимальные потери зависят от Z_0 монотонно и могут быть аппроксимированы степенной функцией

$$S''_{\max}(Z_0) = \Sigma_{\max \ 0} Z_0^{p_S \max \ 0} .$$
 (5)

Параметры формул (4), (5) принимают значения

$$p'_{S \max} \approx 2;$$
 $p''_{S \max} \approx 1;$ $p_{S \max} \approx 2/3;$
 $\Sigma_{\max 0} = (9,00 \pm 0,13) \cdot 10^{-15} \text{ } 3B \cdot \text{cm}^2/\text{atom} = (0,940 \pm 0,013) \Sigma_E.$

Таким образом, у легких ионов зависимость $S_{max}(Z)$ близка к квадратичной; с ростом атомного номера иона зависимость слабеет и у тяжелых ионов переходит в линейную. Это совпадает с результатами экспериментов [9] и расчетов [86].

Значения параметра S'_{max} даны в таблице. Он испытывает периодичность по Z_0 (рис. 3); максимумы соответствуют $Z_0 \approx 7 \div 8$; 17÷22; 39÷41; 54÷57, минимумы – $Z_0 \approx 2 \div 4$; 10; 29; 46÷47; 73÷78. Это согласуется с результатами работ [59, 61, 69, 75], а также с картиной периодичности $S(Z_0 | E = \text{const})$ в области $E/Z^{2/3} = 50 \div$ ÷ 500 кэВ/а.е.м., полученной экспериментально [7, 21, 30, 31, 41, 54, 58, 63, 78], путем компиляции экспериментальных данных [33, 34, 42, 43] и расчетным путем [24, 28, 34, 37, 47, 57, 71, 72, 82, 83]. (Надо, однако, заметить, что результаты разных работ плохо согласуются между собой: положение экстремумов имеет разброс 3-5 единиц Z_0 , а двух последних – до 15 единиц.)

В большинстве расчетных работ и в некоторых экспериментах наблюдается «тонкая структура» периодичности: минимум при $Z_0 \approx 24 \div 25$ и максимум при $Z_0 \approx 25 \div 26$ [21, 24, 28, 33, 34, 72, 83]; максимум при $Z_0 \approx 34 \div 35$ и минимум при $Z_0 \approx 35 \div 36$ [24, 28, 34, 57, 82, 83]; минимум при $Z_0 \approx 41 \div 42$ и максимум при $Z_0 \approx 43$ [24, 28, 34, 47]. Ее признаки имеются и на рис. 3, но они не выходят за пределы погрешностей.

Осцилляции S'_{max} также сопровождаются общим ростом:

$$S'_{\text{max}} \approx 15 \cdot 10^{-15} Z_0^{1/3} \text{ эВ·см}^2/\text{атом.}$$
 (6)

Для Ca и Rh параметр S'_{max} имеет очень большую погрешность (превышающую величину самого параметра), так как имеющиеся данные лежат слишком далеко от максимума. Для этих элементов в таблице приведены интерполированные значения S'_{max} .

Сравнение с экспериментальными данными было выполнено так же, как для E_{max} . Среднеквадратический разброс экспериментальных значений S_{max} составляет 12 %; значения, рассчитанные по формулам (4), (5), не выходят за пределы этого разброса (рис. 4).

Рис. 3. Величина максимума потерь: — – осцилляции (сглаженная кривая); --- – монотонная часть зависимости

Рис. 4. Величина максимума потерь. Сравнение с результатами других авторов: • – данная работа; — – Андерсен и Циглер [42, 43]; • – экспериментальные данные [1–8, 10–23, 25–27, 30, 32, 33, 36, 38–41, 48–53, 55, 56, 59–61, 65–68, 70, 73, 74, 76–81, 84, 85, 87–90]

Список литературы

1. Haworth L. J., King L. D. P. // Phys. Rev. 1938. Vol. 54, No. 1. P. 48–50.

2. Dunbar D. N. F., Reynolds H. K., Wenzel W. A., Whaling W. // Bull. Am. Phys. Soc. 1952. Vol. 27, No. 6. P. 6.

3. Phillips J. A. // Phys. Rev. 1953. Vol. 90, No. 4. P. 532–537.

4. Weyl P. K. // Phys. Rev. 1953. Vol. 91, No. 2. P. 289–296.

5. Warters W. D., Fowler W. A., Lauritsen C. C. // Phys. Rev. 1953. Vol. 91, No. 4. P. 917–921.

6. Reynolds H. K., Dunbar D. N. F., Wenzel W. A., Whaling W. // Phys. Rev. 1953. Vol. 92, No. 3. P. 742–748.

7. Bader M., Pixley R. E., Mozer F. S., Whaling W. // Phys. Rev. 1956. Vol. 103, No. 1. P. 32–38.

8. Porat D. I., Ramavataram K. // Proc. Roy. Soc. A. 1959. Vol. 252, No. 1270. P. 394–410.

9. Теплова Я. А., Николаев В. С., Дмитриев И. С., Фатеева Л. Н. // ЖЭТФ. 1962. Т. 42. Вып. 1. С. 44-60.

10. Allison S. K., Cuevas J., Garcia-Munoz M. // Phys. Rev. 1962. Vol. 127, No. 3. P. 792–798.

11. Ormrod J. H., Duckworth H. E. // Can. J. Phys. 1963. Vol. 41, No. 9. P. 1424–1442.

12. Wolke R. L., Bishop W. N., Eichler E. et al. // Phys. Rev. 1963. Vol. 129, No. 6. P. 2591–2596.

13. Park J. T., Zimmerman E. J. // Phys. Rev. 1963. Vol. 131, No. 4. P. 1611–1618.

14. Cuevas J., Garcia-Munoz M., Torres P., Allison S. K. // Phys. Rev. 1964. Vol. 135, No. 2A. P. 335–345.

15. Booth W., Grant I. S. // Nucl. Phys. 1965. Vol. 63, No. 3. P. 481–495.

16. Sautter C. A., Zimmerman E. J. // Phys. Rev. 1965. Vol. 140, No. 2A. P. 490–498.

17. White W., Mueller R. M. // J. Appl. Phys. 1967. Vol. 38, No. 9. P. 3660–3662.

18. Bridwell L. B., Northcliffe L. C., Datz S. et al. // Phys. Rev. 1967. Vol. 159, No. 2. P. 276–277.

19. Ormrod J. H. // Can. J. Phys. 1968. Vol. 46, No. 6. P. 497–502.

20. Pierce T. E., Blann M. // Phys. Rev. 1968. Vol. 173, No. 2. P. 390–405.

21. Chu W. K., Powers D. // Phys. Rev. 1969. Vol. 187, No. 2. P. 478–490.

22. White W., Mueller R. M. // Phys. Rev. 1969. Vol. 187, No. 2. P. 499–503.

23. Thompson D. A., Mackintosh W. D. // J. Appl. Phys. 1971. Vol. 42, No. 10. P. 3969–3976.

24. Rousseau C. C., Chu W. K., Powers D. // Phys. Rev. A. 1971. Vol. 4, No. 3. P. 1066–1070.

25. Bourland P. D., Chu W. K., Powers D. // Phys. Rev. B. 1971. Vol. 3, No. 11. P. 3625–3635.

26. Chu W. K., Powers D. // Phys. Rev. B. 1971. Vol. 4, No. 1. P. 10–15.

27. Ward D., Graham R. L., Geiger J. S. // Can. J. Phys. 1972. Vol. 50, No. 19. P. 2302–2312.

28. Chu W. K., Powers D. // Phys. Lett. A. 1972. Vol. 38, No. 4. P. 267–268.

29. Powers D., Chu W. K., Robinson R. J., Lodhi A. S. // Phys. Rev. A. 1972. Vol. 6, No. 4. P. 1425–1435.

30. Valenzuela A., Meckbach W., Kestelman A. J., Eckardt J. C. // Phys. Rev. B. 1972. Vol. 6, No. 1. P. 95–102.

31. Chu W. K., Ziegler J. F., Mitchell I. V., Mackintosh W. D. // Appl. Phys. Lett. 1973. Vol. 22, No. 9. P. 437–439.

32. Ziegler J. F., Brodsky M. H. // J. Appl. Phys. 1973. Vol. 44, No. 1. P. 188–196.

33. Lin W. K., Olson H. G., Powers D. // Phys. Rev. B. 1973. Vol. 8, No. 5. P. 1881–1888.

34. Ziegler J. F., Chu W. K. // At. Data Nucl. Data Tables. 1974. Vol. 13, No. 5. P. 463–498.

35. Lodhi A. S., Powers D. // Phys. Rev. A. 1974. Vol. 10, No. 6. P. 2131–2140.

36. Lin W. K., Matteson S., Powers D. // Phys. Rev. B. 1974. Vol. 10, No. 9. P. 3746–3755.

37. Latta B. M., Scanlon P. J. // Phys. Rev. A. 1975. Vol. 12, No. 1. P. 34–39.

38. Harris J. M., Nicolet M.-A. // Phys. Rev. B. 1975. Vol. 11, No. 3. P. 1013–1019.

39. Langley R. A. // Phys. Rev. B. 1975. Vol. 12, No. 9. P. 3575–3583.

40. Langley R. A., Blewer R. S. // Nucl. Instr. Meth. 1976. Vol. 132. P. 109–117.

41. Forster J. S., Ward D., Andrews H. R. et al. // Nucl. Instr. Meth. 1976. Vol. 136, No. 2. P. 349–359.

42. Andersen H. H., Ziegler J. F. Hydrogen Stopping Powers and Ranges in All Elements. (The Stopping and Ranges of Ions in Matter. Vol. 3.) N.Y.: Pergamon Press, 1977.

43. Ziegler J. F. Helium: Stopping Powers and Ranges in All Elemental Matter. (The Stopping and Ranges of Ions in Matter. Vol. 4.) N.Y.: Pergamon Press, 1977.

44. Matteson S., Powers D., Chau E. K. L. // Phys. Rev. A. 1977. Vol. 15, No. 3. P. 856–864.

45. Chau E. K. L., Brown R. B., Lodhi A. S. et al. // Phys. Rev. A. 1977. Vol. 16, No. 4. P. 1407–1414.

46. Chau E. K. L., Powers D., Lodhi A. S., Brown R. B. // J. Appl. Phys. 1978. Vol. 49, No. 4. P. 2346–2349.

47. Ziegler J. F. // Nucl. Instr. Meth. 1978. Vol. 149, No. 1–3. P. 129–135.

48. Matteson S., Harris J. M., Pretorius R., Nicolet M.-A. // Nucl. Instr. Meth. 1978. Vol. 149, No. 1–3. P. 163–167.

49. Carnera A., Della Mea G., Drigo A. V. et al. // Phys. Rev. B. 1978. Vol. 17, No. 9. P. 3492–3500.

50. Fontell A., Luomajarvi M. // Phys. Rev. B. 1979. Vol. 19, No. 1. P. 159–162.

51. Mertens P., Krist Th. // Nucl. Instr. Meth. 1980. Vol. 168, No. 1–3. P. 33–39.

52. Knudsen H., Andersen H. H., Martini V. // Nucl. Instr. Meth. 1980. Vol. 168, No. 1–3. P. 41–50.

53. Demond F. J., Kalbitzer S., Mannsperger H., Muller G. // Nucl. Instr. Meth. 1980. Vol. 168, No. 1–3. P. 69–74.

54. Geissel H., Armbruster P., Kitahara T. et al. // Nucl. Instr. Meth. 1980. Vol. 170, No. 1–3. P. 217–219.

55. Santry D. C., Werner R. D. // Nucl. Instr. Meth. 1980. Vol. 178, No. 2–3. P. 523–530.

56. Santry D. C., Werner R. D. // Nucl. Instr. Meth. 1980. Vol. 178, No. 2–3. P. 531–537.

57. Gertner I., Meron M., Rosner B. // Phys. Rev. A. 1980. Vol. 21, No. 4. P. 1191–1196.

58. Geissel H., Laichter Y., Schneider W. F. W., Armbruster P. // Nucl. Instr. Meth. 1982. Vol. 194, No. 1– 3. P. 21–29.

59. Mertens P., Krist Th. // Nucl. Instr. Meth. 1982. Vol. 194, No. 1–3. P. 57–60.

60. Baumgart H., Arnold W., Berg H. et al. // Nucl. Instr. Meth. 1983. Vol. 204, No. 2–3. P. 597–604.

61. Krist Th., Mertens P. // Nucl. Instr. Meth. 1983. Vol. 218, No. 1–3. P. 790–794.

62. Gowda R., Olson H. G., Powers D. // Phys. Rev. A. 1983. Vol. 27, No. 6. P. 3365–3368.

63. Ribas R. V., Seale W. A., Rao M. N. // Phys. Rev. A. 1983. Vol. 28, No. 6. P. 3234–3237.

64. Powers D., Olson H. G., Gowda R. // J. Appl. Phys. 1984. Vol. 55, No. 5. P. 1274–1277.

65. Bauer P., Aumayr F., Semrad D., Scherzer B.M.U. // Nucl. Instr. Meth. B. 1984. Vol. 1, No. 1. P. 1–8.

66. Baumgart H., Berg H., Huttel E. et al. // Nucl. Instr. Meth. B. 1984. Vol. 2, No. 1–3. P. 145–148.

67. Bauer P., Semrad D., Golser R. // Nucl. Instr. Meth. B. 1984. Vol. 2, No. 1–3. P. 149–152.

68. Shima K., Ishihara T., Mikumo T. // Nucl. Instr. Meth. B. 1984. Vol. 2, No. 1–3. P. 222–226.

69. Sirotinin E. I., Tulinov A. F., Khodyrev V. A., Mizguin V. N. // Nucl. Instr. Meth. B. 1984. Vol. 4, No. 3. P. 337-345.

70. Santry D. C., Werner R. D. // Nucl. Instr. Meth. B. 1984. Vol. 5, No. 3. P. 449–454.

71. Sabin J. R., Oddershede J. // Phys. Rev. A. 1984. Vol. 29, No. 4. P. 1757–1762.

72. Kaneko T. // Phys. Rev. A. 1984. Vol. 30, No. 4. P. 1714–1720.

73. Semrad D., Mertens P., Bauer P. // Nucl. Instr. Meth. B. 1986. Vol. 15, No. 1–6. P. 86–90.

74. Reiter G., Baumgart H., Kniest N. et al. // Nucl. Instr. Meth. B. 1987. Vol. 27, No. 2. P. 287–292.

75. Sirotinin E. I. // Nucl. Instr. Meth. B. 1987. Vol. 27, No. 2. P. 323–325.

76. Lantschner G. H., Eckardt J. C., Jakas M. M. et al. // Phys. Rev. A. 1987. Vol. 36, No. 10. P. 4667–4671.

77. Mertens P., Bauer P. // Nucl. Instr. Meth. B. 1988. Vol. 33, No. 1–4. P. 133–137.

78. Kuronen A., Raisanen J., Keinonen J. et al. // Nucl. Instr. Meth. B. 1988. Vol. 35, No. 1. P. 1–6.

79. Eppacher Ch., Semrad D. // Nucl. Instr. Meth. B. 1988. Vol. 35, No. 2. P. 109–117.

80. Abdesselam M., Stoquert J. P., Guillaume G. et al. // Nucl. Instr. Meth. B. 1991. Vol. 61, No. 4. P. 385–393.

81. Abdesselam M., Stoquert J. P., Guillaume G. et al. // Nucl. Instr. Meth. B. 1992. Vol. 72, No. 3–4. P. 293–301.

82. Kaneko T. // At. Data Nucl. Data Tables. 1993. Vol. 53, No. 2. P. 271–340.

83. Cui N., Wang Y.-N., Ma T.-C. // Nucl. Instr. Meth. B. 1993. Vol. 73, No. 2. P. 123–129.

84. Valdes J. E., Martinez Tamayo G., Lantschner G. H. et al. // Nucl. Instr. Meth. B. 1993. Vol. 73, No. 3. P. 313–318.

85. Niemann D., Oberschachtsiek P., Kalbitzer S., Zeindl H. P. // Nucl. Instr. Meth. B. 1993. Vol. 80/81, Pt. I. P. 37–40.

86. Chadderton L. T., Zhu J. L., Cruz S. A. et al. // Nucl. Instr. Meth. B. 1994. Vol. 91, No. 1–4. P. 168–171.

87. Bak H. J., Bae Y. D., Kim C. S., Kim M. S. // Nucl. Instr. Meth. B. 1994. Vol. 93, No. 3. P. 234–240.

88. Eppacher Ch., Diez Muino R., Semrad D., Arnau A. // Nucl. Instr. Meth. B. 1995. Vol. 96, No. 3–4. P. 639–642.

89. Martinez-Tamayo G., Eckardt J. C., Lantschner G. H., Arista N. R. // Phys. Rev. A. 1996. Vol. 54, No. 4.

P. 3131-3138.

90. Vakevainen K. // Nucl. Instr. Meth. B. 1997. Vol. 122, No. 2. P. 187–193.

91. Hu Bitao, Wu Ying, Zhang Xiaodong et al. // Nucl. Instr. Meth. B. 2000. Vol. 160, No. 2. P. 195–202.

92. Sakamoto N., Ogawa H., Tsuchida H. // Nucl. Instr. Meth. B. 2000. Vol. 164/165. P. 250–258.

Статья поступила в редакцию 25.12.2004.