ВЛИЯНИЕ ПАРАМЕТРА ЦАЛЛИСА НА ВЫСОКОТЕМПЕРАТУРНОЕ УРАВНЕНИЕ СОСТОЯНИЯ ТОМАСА-ФЕРМИ

А. Ю. Мадянов, С. А. Холин РФЯЦ-ВНИИЭФ

В высокотемпературной модели Томаса–Ферми вместо функции распределения Ферми–Дирака используется функция распределения Цаллиса. Рассмотрено изменение давления, внутренней энергии и показателя адиабаты углерода и золота при температурах 50, 100, 200, 300 эВ, характерных для проблем инерционного термоядерного синтеза.

В работе [1] Цаллисом предложено обобщение статистики Максвелла-Больцмана, зависящее от параметра Цаллиса q, которое при $q \rightarrow 1$ преобразует статистику Цаллиса в обычную статистику. Функция распределения Цаллиса является решением уравнения Фоккера-Планка с коэффициентом диффузии, зависящим от энергии [2]. Решение уравнения Фоккера-Планка позволяет получить обобщения статистик Бозе-Эйнштейна и Ферми-Дирака, зависящие от параметра Цаллиса q. К сожалению, ни в работе [1], ни в многочисленных последующих публикациях не содержится алгоритма, позволяющего определить величину параметра Цаллиса q. Обычно решалась обратная задача. Если использование экспериментальных данных позволяет получить функцию распределения и она отличается от классической, то подбирается значение параметра Цаллиса q, при котором функция распределения Цаллиса удовлетворительно описывает экспериментальные данные. В работах [3-5] описаны различные примеры, в которых параметр Цаллиса q отличен от 1 и может достигать 1,3.

Обычно для определения уравнения состояния высокоплотной нагретой плазмы используют высокотемпературную модель Томаса–Ферми [6]. В данной работе анализируется влияние на уравнение состояния замены в модели Томаса–Ферми функции распределения Ферми–Дирака на соответствующую функцию распределения Цаллиса. Приведены результаты расчетов для золота и углерода при температурах, характерных для инерционного термоядерного синтеза.

1. Функция распределения Цаллиса свободного электронного газа

Формальный переход от обычных статистик Максвелла-Больцмана, Бозе-Эйнштейна и Ферми-Дирака к статистике Цаллиса осуществляется заменой в составе функций распределения экспоненциальной функции e^x на *q*-экспоненциальную функцию, а логарифм заменяется на *q*-логарифм [1, 2]

$$\exp_q(x) = e_q(x) = (1 + (1 - q)x)^{\frac{1}{1 - q}} \Theta(1 + (1 - q)x); \quad (1.1)$$

$$\ln_q x = \frac{x^{1-q} - 1}{1-q}, \qquad (1.2)$$

где $\Theta(1+(1-q)x)$) — функция Хевисайда. Если $q \to 1$, то $e_q^x \to e^x$ и $\ln_q x \to \ln x$.

Для фермионов функция распределения теперь имеет вид

$$f = \frac{1}{\exp_q\left(\frac{\varepsilon - \mu}{kT}\right) + 1},$$
 (1.3)

где ε – кинетическая энергия частицы; μ – химический потенциал; k – постоянная Больцмана; T – температура.

Для электронов плотность энергетических уров-

ней
$$g(\varepsilon) = V \frac{\sqrt{2}m^{\frac{3}{2}}}{\pi^2\hbar^3} \sqrt{\varepsilon}$$
.

Для числа частиц N, их кинетической энергии E_k и давления p в статистике Цаллиса справедливы выражения аналогичные выражениям в статистике Ферми–Дирака

$$N = \sum_{i} \frac{1}{\exp_{q}\left(\frac{\varepsilon_{i} - \mu}{kT}\right) + 1} \approx \int_{0}^{\infty} \frac{g(\varepsilon)d\varepsilon}{\exp_{q}\left(\frac{\varepsilon - \mu}{kT}\right) + 1}; \qquad (1.4)$$

$$E_k = \sum_i \varepsilon_i N_i \approx \int_0^\infty \frac{\varepsilon g(\varepsilon) d\varepsilon}{\exp_q \left(\frac{\varepsilon - \mu}{kT}\right) + 1}; \quad (1.5)$$

$$pV = \frac{2}{3}E$$
. (1.6)

Введем обозначения $z = \frac{\varepsilon}{kT}$, $\xi = \frac{\mu}{kT}$. При реше-

нии уравнения Томаса-Ферми используются функции Ферми-Дирака $J_n(\xi) = \int_0^\infty \frac{z^n dz}{\exp(z-\xi)+1}$, которые опре-

деляют зависимость плотности, энергии и давления от химического потенциала при фиксированной температуре. При обращении к статистике Цаллиса потребуются новые функции, которые будем называть обобщенными функциями Ферми–Дирака

$$Jq_{n}(\xi,q) = \int_{0}^{\infty} \frac{z^{n} dz}{e_{q}(z-\xi)+1}.$$
 (1.7)

В статистике Цаллиса через обобщенные функции Ферми–Дирака определяются плотность числа частиц, плотность кинетической энергии и давление вещества (1.4), (1.5), (1.6).

$$n = \frac{(2mkT)^{\frac{3}{2}}}{2\pi^{2}\hbar^{3}} Jq_{\frac{1}{2}}(\xi, q); \qquad (1.8)$$

$$E_k = \frac{\left(2mkT\right)^5}{4m\pi^2\hbar^3} Jq_{3/2}(\xi,q); \qquad (1.9)$$

$$p = \frac{2}{3} \frac{(2mkT)^{\frac{3}{2}}}{4m\pi^2 \hbar^3} Jq_{\frac{3}{2}}(\xi,q) .$$
(1.10)

Отношения $Y_1 = Jq_{1/2}(\xi)/J_{1/2}(\xi)$, $Y_2 = Jq_{3/2}(\xi)/J_{3/2}(\xi)$ определяют отношение плотностей энергий и давлений при одном и том же значении химического

давлении при одном и том же значении химического потенциала и температуры при различных значениях параметра Цаллиса к их значениям в статистике Ферми-Дирака.

На рис. 1, 2, 3, 4 приведены эти отношения при значениях параметра Цаллиса $q = 1 \pm 0,001, 1 \pm 0,01, 1 \pm 0,11.$

Рис. 3. Зависимость от химического потенциала ξ отношения $Y_1 = Jq_{1/2}(\xi)/J_{1/2}(\xi)$ плотности энергии в статистике Цаллиса к плотности в статистике Ферми–Дирака для q > 1:

Если q > 1, то плотность числа частиц, плотность энергии и давление в статистике Цаллиса меньше, чем в статистике Ферми–Дирака при одинаковой температуре и химическом потенциале. При q < 1 – наоборот.

2. Модель атома Томаса-Ферми

Во внешнем поле с потенциалом φ , полная энергия электронов равна $\varepsilon - e\varphi$. Обозначив $z = \frac{\varepsilon}{kT}$, получим по аналогии со свободным газом

3

$$n = \frac{(2mkT)^{\frac{1}{2}}}{2\pi^{2}\hbar^{3}} Jq_{\frac{1}{2}} \left(\frac{e\varphi + \mu}{kT}, q\right);$$
(2.1)

$$E_{k} = \frac{(2mkT)^{5}}{4m\pi^{2}\hbar^{3}} Jq_{3/2} \left(\frac{e\varphi + \mu}{kT}, q\right); \qquad (2.2)$$

$$p = \frac{2}{3} \frac{(2mkT)^{\frac{3}{2}}}{4m\pi^{2}\hbar^{3}} Jq_{\frac{3}{2}} \left(\frac{e\varphi + \mu}{kT}, q\right).$$
(2.3)

Подставив в уравнение Пуассона, связывающее *n* и ϕ , полученное выражение для концентрации числа частиц, имеем

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\phi}{dr} \right) = \frac{1}{r} \frac{d^2}{dr^2} (r\phi) = 4\pi ne =$$
$$= 4\pi e \frac{(2mkT)^3}{2\pi^2 \hbar^3} Jq_{1/2} \left(\frac{e\phi + \mu}{kT}, q \right).$$
(2.4)

Введя новые переменные $s = \frac{r}{d}$ и $\beta = s \frac{e\varphi + \mu}{kT}$, где

 $d = \sqrt{\frac{\pi \hbar^3}{2me^2 \sqrt{2mkT}}}$, получаем в статистике Цаллиса

уравнение Томаса-Ферми в безразмерном виде, зависящее от параметра Цаллиса *q*

$$\frac{d^2\beta}{ds^2} = sJq_{1/2}\left(\frac{\beta}{s},q\right).$$
(2.5)

Граничными условиями являются:

при
$$r \to 0 \cdots \phi \to \frac{Ze}{r}$$
 или $\beta(0) = \frac{Ze^2}{kTd}$;
 $\frac{d\phi}{dr}\Big|_{r=r_0} = 0$ или $\frac{d(\beta/s)}{ds}\Big|_{s=s_0} = 0$.

Вычисленное значение потенциала ϕ позволяет вычислить потенциальную энергию E_p и полную энер-

гию $E_{\text{полн}} = E_k + E_p$.

Зависимость давления от энергии записывается по аналогии с идеальным газом в виде $p = (\gamma - 1)\rho E$. В уравнение состояния входит энергия, которая должна обращаться в нуль при нулевом давлении и температуре. Для того, чтобы обеспечить это, целесообразно из пол-

атома при T = 0. $E = E_{\text{полн}} - E_t$. Энергия свободного атома равна $E_t = -0,769 \frac{e^2}{a_0} Z^{\frac{7}{3}}$ (a_0 – Боровский радиус, $a_0 = \hbar^2 / me^2$). Полная энергия вычисляется с помощью теоремы вириала $E_p + 2E_k = 3pV$, откуда $E_{\text{полн}} = \frac{3}{2} pV + \frac{1}{2}E_p$. Расчет потенциальной энергии производится с помощью рассчитанных интегральных кривых $\beta(s)$. Потенциальная энергия равна сумме энергии взаимодействия электронов с ядром и энергии взаимодействия электронов между собой $E_p = E_p{}^n + E_p{}^e =$ $= -Ze^2 \int \frac{n}{r} dV - \frac{1}{2} e \int n\varphi_e dV$. Электронный потенциал φ_e можно найти из формулы $\varphi = \varphi_e + \frac{Ze}{r} = \frac{1}{e} \left(kT \frac{\beta}{s} - \mu \right)$. Так как на границе атома $\varphi=0$, то $\mu = kT \frac{\beta_0}{s_0}$. При полу-

ной энергии сжатого атома отнять энергию свободного

чении E_p используем выражение для n (2.1).

В итоге, приходим к формуле

$$E_{p} = -kT \frac{d^{3}}{\pi \hbar^{3}} (2mkT)^{3/2} \int_{0}^{s_{0}} sJq_{1/2} \left(\frac{\beta}{s}, q\right) \times \left(\beta(0) + \beta - \frac{\beta_{0}}{s_{0}}s\right) ds, \qquad (2.6)$$

где $s_0 = \frac{r_0}{d}$, $\beta_0 = \beta(s_0)$. При $\xi >> 1$ разложение

 $Jq_{1/2}(\xi,q) \approx \frac{2}{3}\xi^{\frac{3}{2}}$. Следовательно, вблизи нуля несобственный интеграл

$$E_p = \int_0^x s Jq_{\frac{1}{2}} \left(\frac{\beta}{s}, q\right) \left(\beta(0) + \beta - \frac{\beta_0}{s_0}s\right) ds \approx$$
$$\approx -\frac{4}{9} \sqrt{x} \left(x\frac{\beta_0}{s_0} - 6\beta(0)\right) \beta(0)^{\frac{3}{2}}.$$
 (2.7)

3. Результаты расчетов

Программа расчета уравнения Томаса-Ферми с квантовыми функциями распределения Цаллиса написана на языке Fortran. Уравнение решается численными методами квазилинеаризации и прогонок. Полученные численные значения потенциала Томаса–Ферми φ использованы для вычисления давления p и плотности энергии ρE .

Результаты численного интегрирования при некоторых значениях *T*, ρ , *Z*, *A* приведены в табл. 1, 2. В этих таблицах значения давления *p* и плотности энергии ρE выражены в 10^{15} эрг/см³, а плотности ρ в г/см³. После таблиц приведены графики зависимостей показателей адиабаты от параметра Цаллиса *q* (рис. 5, 6). Значения этих величин при *q* = 1 соответствуют традиционному уравнению состояния Томаса–Ферми, обычной статистике Ферми–Дирака.

В табл. 1 и 2 приведены, полученные расчетно давления и плотности энергии для золота (Z = 79, A = 197) и углерода (Z = 6, A = 12) для q = 1, 1±0,05, 1±0,1.

Золото (см. табл. 1) и углерод (см. табл. 2) выбраны в качестве примера веществ, которые применяются в исследованиях лазерного термоядерного синтеза. Температуры, при которых они рассмотрены (50, 100, 200, 300 эВ), также характерны для лазерного термоядерного синтеза. Значения q > 1,1 и q < 0,9 не рассматривались, так как большие отклонения от 1 представляются сегодня маловероятными для этих температур.

Проведенные расчеты показали:

– при фиксированной энергии давление при q < 1 растет, при q > 1 уменьшается (соответственно меняется показатель адиабаты);

 при уменьшении плотности влияние параметра Цаллиса возрастает;

 при увеличении температуры влияние параметра Цаллиса уменьшается.

При использовании функции распределения Цаллиса, как свидетельствует график (см. рис. 5), зависимости показателя адиабаты от q, при q > 1 показатель адиабаты уменьшается, т. е. плотности в процессе сжатия возрастают, а при q < 1 показатели адиабаты растут и плотности уменьшаются.

Для иллюстрации на рис. 6 приведена в относительных единицах зависимость плотности электронов в атоме золота от радиуса при плотности золота 100 Γ/cm^3 и температуре 300 эВ.

Здесь $R_0 = 9 \cdot 10^{-9}$ см – внешний радиус атома, $n(R/R_0)$ – плотность электронов в атоме. $D(R/R_0)$ =

Таблица 1

			15	2				
		- E -	1013	- / 3	T = 50	100	200	200 aD
параметры уравнения состояния золоте	пи	nr. R	TU 'AT	M°/CM	$100 \mu I = 50$	11111	2000	100 AB
rupumerph ypubliciting coeroniting sonore	$\mu p n$	PL D	10 21		inpir 1 50	, 100	, 200,	, 500 S D ,

			1	1	1 I	1	
<i>Т</i> , эВ	ρ, г/см ³	<i>р</i> и <i>ρE</i> , 10 ¹⁵ эрг/см ³	<i>q</i> = 0,9	<i>q</i> = 0,95	<i>q</i> = 1	<i>q</i> = 1,05	<i>q</i> = 1,1
50	1	р	0,00766	0,00436	0,00266	0,00172	0,00116
		ρΕ	0,0236	0,0161	0,0119	0,00945	0,00790
	5	р	0,0272	0,0178	0,0123	0,00900	0,00682
		ρΕ	0,0783	0,0589	0,0470	0,0394	0,0346
	19,3	р	0,0877	0,0658	0,0519	0,0425	0,0360
		ρΕ	0,2112	0,1667	0,1368	0,1155	0,0998
100	1	р	0,0261	0,0143	0,00838	0,00521	0,00341
		ρΕ	0,0761	0,0493	0,0348	0,0263	0,0211
	5	р	0,0905	0,0561	0,0370	0,0257	0,0187
	5	ρΕ	0,249	0,177	0,135	0,108	0,0912
	19,3	р	0,2711	0,1900	0,1407	0,1088	0,0872
		ρΕ	0,6672	0,5060	0,4031	0,3337	0,2849
200	1	р	0,0858	0,0453	0,0258	0,0155	0,00981
		ρΕ	0,239	0,149	0,101	0,0736	0,0572
	5	р	0,298	0,177	0,112	0,0743	0,0519
		ρΕ	0,791	0,535	0,390	0,302	0,245
	19,3	р	0,863	0,5696	0,3989	0,2929	0,2237
		ρΕ	2,115	1,535	1,181	0,9514	0,7959
300	1	р	0,169	0,0872	0,0488	0,0289	0,0181
		ρΕ	0,454	0,277	0,185	0,133	0,101
	5	p	0,592	0,342	0,211	0,138	0,0942
		ρΕ	1,528	1,009	0,719	0,545	0,435
	19,3	р	1,700	1,086	0,739	0,528	0,393
		ρΕ	4,116	2,915	2,204	1,754	1,457

плотностях 1, 5, 19,3 г/см³ и при различных параметрах Цаллиса *q*

Параметры уравнения состояния углерода p и ρE в 10^{15} эрг/см³ при T = 50, 100, 200, 300 эВ, плотностях 1, 1,8 г/см³ и при различных параметрах Цаллиса q

<i>Т</i> , эВ	ρ, Γ/cm ³	<i>р</i> и ρ <i>E</i> , 10 ¹⁵ эрг/см ³	<i>q</i> = 0,9	<i>q</i> = 0,95	q = 1	<i>q</i> = 1,05	<i>q</i> = 1,1
50 1,8	1	р	0,0294	0,0201	0,0146	0,0111	0,00870
	1	ρΕ	0,0575	0,0415	0,0317	0,0253	0,0209
	1,8	р	0,0476	0,0341	0,0258	0,0203	0,0166
		ρΕ	0,0890	0,0663	0,0520	0,0424	0,0358
100	1	р	0,0799	0,0522	0,0363	0,0264	0,0201
	1	ρΕ	0,150	0,104	0,0768	0,0594	0,0478
	1.8	р	0,130	0,0884	0,0635	0,0479	0,0374
	1,0	ρΕ	0,239	0,170	0,128	0,101	0,0823
200 1,8	1	р	0,199	0,125	0,0845	0,0594	0,0444
	1	ρΕ	0,350	0,233	0,167	0,126	0,0997
	1.9	р	0,327	0,215	0,149	0,109	0,0826
	1,0	ρΕ	0,572	0,394	0,287	0,220	0,175
300	1	р	0,333	0,200	0,132	0,0926	0,0662
	1	ρΕ	0,561	0,356	0,250	0,186	0,143
	1,8	p	0,546	0,346	0,235	0,167	0,128
		ρΕ	0,921	0,611	0,436	0,328	0,262

Рис. 5. Зависимость показателя адиабаты от параметра Цаллиса для углерода и золота при плотности 1 г/см³ и различных температурах

Рис. 6. Зависимость в относительных единицах плотности электронов n(R) в атоме золота от радиуса R при плотности 100 г/см³ и температуре 300 эВ

= $4\pi (R/R_0)^2 n(R/R_0)$ – функция плотности электронов, D_m – ее среднее значение. $D_m = 8,517 \cdot 10^9$ при q == 0,9, $D_m = 8,513 \cdot 10^9$ при q = 1 и $D_m = 8,510 \cdot 10^9$ при q = 1,1.

Различие в профиле плотности электронов оказалось невелико, что обусловило слабую зависимость показателя адиабаты золота от параметра Цаллиса при плотности 100 г/см³, температуре 300 эВ.

Список литературы

1. Tsallis C. Possible generalization of Boltzmann-Gibbs statistics // J. Stat. Phys. 1988. Vol. 52. P. 479.

2. Kaniadakis G., Quarati P. Polynomial expansion of diffusion and drift coefficients for classical and quantum statistics // Physica. 1997. Vol. A 237. P. 229.

3. Lavagno A. Anomalous diffusion in nonequilibrium relativistic heavy-ion rapidity spectra, arXiv: hep-ph//0111135 v1 12 Nov 2001, c1-8.

4. Wilka G., Wlodarczykb Z. Application of nonextensive statistics to particle and nuclear physics, arXiv: hep-ph/0108315 v1 25 Aug 2001, c1-4.

5. Tsallis C. Nonextensive statistical mechanics: A brief review of its present status, arXiv: cond-mat/0205571 v1 27 May 2002, c1-18.

6. Feynman R., Metropolis N., Teller E. Equations of state of elements based on the generalized Fermi-Thomas theory // Phys.Rev. 1949. Vol. 75, No. 10. P 1561–1573.

Статья поступила в редакцию 11.05.2006.