ВЕРИФИКАЦИЯ БЛОКА РАСЧЕТА НЕЙТРОННОЙ КИНЕТИКИ РАЗНОСТНОЙ МЕТОДИКИ ARCTUR НА ОСНОВЕ СРАВНЕНИЯ ЧИСЛЕННЫХ И ТОЧНЫХ АНАЛИТИЧЕСКИХ РЕШЕНИЙ ЗАДАЧИ МИЛНА

Н. Б. Бабичев, Н. В. Колобянина, И. В. Лутиков, С. В. Мжачих, А. А. Севастьянов

ФГУП "РФЯЦ-ВНИИЭФ", 607188, г. Саров Нижегородской обл.

Численно решен ряд вариантов задачи Милна по программе ARCTUR, для которых имеются также соответствующие точные аналитические решения кинетического уравнения. Сравнение результатов численных расчетов с точными теоретическими решениями позволило выполнить верификацию методики ARCTUR в блоке расчета нейтронной кинетики.

Введение

Задача Милна в теории переноса нейтронов заключается в отыскании поля нейтронов в полубесконечном однородном веществе путем точного аналитического решения кинетического уравнения. Получить эти решения удалось (см. [1–3]) благодаря тому, что был допущен ряд физических упрощений^{*}.

Точные аналитические решения позволяют выявить общие закономерности нейтронной кинетики и проверить возможности различных методов численного решения кинетического уравнения.

Основной целью данной работы является верификация блока расчета нейтронной кинетики математической методики ARCTUR [4] в опоре на известные стационарные и нестационарные аналитические решения задачи Милна.

1. Известные точные аналитические решения задачи Милна

Для определенности будем считать, что однородная среда находится в области положительных x, а при x < 0 полубесконечное пространство пустое.

Принятым упрощающим предположениям соответствует односкоростное кинетическое уравнение

$$\frac{1}{V}\frac{\partial\psi(t,x,\mu)}{\partial t} + \mu\frac{\partial\psi(t,x,\mu)}{\partial x} + \alpha\psi(t,x,\mu) = \frac{h\alpha}{2}n(t,x), \quad (1)$$

которому подчиняется функция распределения нейтронов $\psi(t, x, \mu)$.

Мы пользуемся следующими обозначениями: $n(t,x) = \int_{-1}^{+1} d\mu' \psi(t,x,\mu')$ – нейтронная плотность; V –

скорость нейтронов; μ – косинус угла между осью *OX* и направлением полета нейтрона; $\alpha = n_{\rm g}(\sigma_s + \sigma_f + \sigma_c)$ – полное макроскопическое сечение (обратный пробег нейтрона); $h = \frac{\nu \sigma_f + \sigma_s}{\sigma_s + \sigma_f + \sigma_c}$ – активность вещества

(h=1 -инертное вещество, для размножающего нейтроны делящегося материала h > 1, а в случае нейтронопоглощающей среды h < 1); $n_{\rm g}$ – плотность ядер; σ_s , σ_f , σ_c – элементарные сечения рассеяния, деления и поглощения; ν – среднее число вторичных нейтронов, возникающих в одном акте деления активного ядра^{*}.

Если кинетическое уравнение проинтегрировать по µ, то получим

$$\frac{1}{V}\frac{\partial n(t,x)}{\partial t} + \frac{\partial j(t,x)}{\partial x} + \alpha n(t,x) = h \alpha n(t,x) .$$
(2)

* Если вещество состоит из смеси ядер, то приведенные формулы несколько усложняются:

$$\alpha = \frac{N_A \rho}{\sum_i C_i A_i} \sum_i C_i \left(\sigma_{si} + \sigma_{fi} + \sigma_{ci} \right), \qquad h = \frac{\sum_i C_i (\sigma_{si} + v_i \sigma_{fi})}{\sum_i C_i (\sigma_{si} + \sigma_{fi} + \sigma_{ci})}.$$

Здесь C_i – концентрации ядер с массовыми числами A_i ; ρ – плотность вещества; N_A – число Авогадро.

^{*} Предполагается, что ядра неподвижны, нейтроны характеризуются одинаковой по величине скоростью и постоянными макроскопическими сечениями взаимодействия с веществом, сечение неупругого рассеяния равно нулю и индикатриса упругого рассеяния изотропна.

Величина $j(t,x) = \int_{-1}^{+1} d\mu' \, \mu' \, \psi(t,x,\mu')$ – это вектор-

ный поток, который иногда называют нейтронным то-ком.

В подразделах 1.1 и 1.2 приведены имеющиеся решения соответственно стационарного и нестационарного вариантов задачи Милна, справедливые в пределах среды, т. е. при $x \ge 0$.

Стационарные решения были получены из кинетического уравнения

$$\mu \frac{d\psi(x,\mu)}{dx} + \alpha \psi(x,\mu) = \frac{h\alpha}{2} n(x) , \ x \ge 0$$
(3)

с граничным условием

$$\psi(x=0,\,\mu>0)=0\,. \tag{4}$$

Разные авторы (см. [1, 2]), решая уравнение (3), предполагали также, что в бесконечно удаленной точке $x = +\infty$ задан стационарный поток нейтронов.

Нестационарные решения, подчиняющиеся экспоненциальному закону изменения функций

$$\psi(t, x, \mu) = e^{\lambda_{\infty} t} \psi(x, \mu) ; \quad n(t, x) = e^{\lambda_{\infty} t} n(x) ;$$
$$j(t, x) = e^{\lambda_{\infty} t} j(x) , \qquad (5)$$

представлены в работе [3].

В случае полубесконечной и бесконечной сред

$$\lambda_{\infty} = (h-1)\alpha V . \tag{6}$$

Для не зависящих от времени частей функций (5) справедливы уравнения

$$\mu \frac{d\psi(x,\mu)}{dx} + h \,\alpha \,\psi(x,\mu) = \frac{h \,\alpha}{2} n(x) \,, \ x \ge 0 \,,$$

$$\psi(0,\,\mu > 0) = 0 \,, \tag{7}$$

$$\frac{dj(x)}{dx} = 0.$$
 (8)

Равенство нулю дивергенции векторного потока нейтронов (8) вытекает из уравнения (2).

Из (8) следует постоянство векторного потока нейтронов внутри среды

$$j = \text{const} \,. \tag{9}$$

Очевидно, что в случае h=1 кинетические уравнения (7) и (3) совпадают. Далее будем использовать безразмерную переменную

$$z = \beta x = h \alpha x . \tag{10}$$

Известно, что решение задачи Милна для нейтронной плотности n(z) внутри вещества можно представить в виде суммы его асимптотической части $n_0(z,h)$ и отрицательной функции $\Delta n(z,h)$, которая существенна лишь вблизи границы z = 0, мала при z порядка единицы и пренебрежимо мала в области z >> 1.

$$n(z,h) = n_0(z,h) + \Delta n(z,h).$$
 (11)

Приведем три стационарных решения (см. [1, 2]) задачи Милна и полученное в работе [3] нестационарное решение.

1.1. Основные стационарные решения

Ниже аналитические формулы выписаны только для асимптотических нейтронных плотностей. Полный набор формул можно найти в работах [1, 2]. Там же имеются ссылки на соответствующие первоисточники и изложена история вопроса о проблеме Милна в теории переноса нейтронов.

1.1.1. Стационарное решение в случае инертной среды

$$n_1(z, h = 1) = n_{01}(z, h = 1) + \Delta n_1(z, h = 1);$$
 (12)

$$n_{01}(z,h=1) = z + z_0. \tag{13}$$

1.1.2. Стационарное решение для размножающей (активной) среды

$$n_2(z,h>1) = n_{02}(z,h>1) + \Delta n_2(z,h>1); \quad (14)$$

$$n_{02}(z,h>1) = A_k \sin\left[\frac{k}{h}(z+z_0)\right].$$
 (15)

Здесь A_k – нормировочная константа, постоянная k удовлетворяет трансцендентному уравнению

$$h \operatorname{arctg}(k) = k . \tag{16}$$

1.1.3. Стационарное решение для поглотителя нейтронов

$$n_3(z,h<1) = n_{03}(z,h<1) + \Delta n_3(z,h<1); \quad (17)$$

$$n_{03}(z,h<1) = B_k \operatorname{sh}\left[\frac{k}{h}(z+z_0)\right];$$
 (18)

$$h \operatorname{arth}(k) = k . \tag{19}$$

1.2. Равновесное нестационарное решение

Решение нестационарного варианта задачи Милна представлено в работе [3], а здесь кратко изложены лишь некоторые результаты. В работе [3] показано, что пространственно-угловая часть $\psi(z,\mu)$ нестационарной функции распределения нейтронов внутри среды

$$\psi(t, z, \mu) = \psi(z, \mu) \exp[(h-1)\alpha V t]$$
(20)

не зависит от ее ядерно-физических характеристик и, в частности, от активности *h*.

Очевидно, что указанным свойством обладает и пространственная часть *n*(*z*) квазистационарной функции

$$n(t,z) = \int_{-1}^{+1} d\mu' \,\psi(t,z,\mu') = n(z) \exp[(h-1)\alpha V t]. \quad (21)$$

При любых *h* имеют место следующие равенства (см. [3]):

$$n(z) = n_1(z, h = 1);$$
 (22)

$$n(z) = n_0(z) + \Delta n(z); \tag{23}$$

$$n_0(z) = n_{01}(z, h = 1) = z + z_0;$$
(24)

$$\Delta n(z) = \Delta n_1(z, h = 1). \tag{25}$$

2. Результаты и анализ численных расчетов ARCTUR

2.1. Основные решения, справедливые в пределах среды ($x \ge 0$)

По программе ARCTUR [4] решалось следующее однородное кинетическое уравнение для нейтронов:

$$\frac{1}{V}\frac{\partial\psi(t,x,\mu)}{\partial t} + \mu\frac{\partial\psi(t,x,\mu)}{\partial x} + \alpha \ \psi(t,x,\mu) = \frac{h\alpha}{2}n(t,x) \ . \ (26)$$

Полубесконечная среда моделировалась оптически толстой пластиной с веществом в области $x \in [0; x_{\max}]$. Толщина пластины в расчетах варьировалась. В большинстве расчетов было принято: $x_{\max} = 100$ см.

Использовались граничные условия

$$\psi(t, x = 0, \mu > 0) = 0, \ \psi(t, x = x_{\max}, \mu < 0) = 0$$
 (27)

и начальное условие

$$\psi(t=0, 0 \le x \le x_1, \mu) = \psi_0 = \text{const}$$
. (28)

Величина x_1 в большинстве расчетов принималась равной 4 см, а в одном из расчетов $x_1 = x_{max} = 100$ см.

Параметры h и α выбирались из условия, при котором безразмерный аргумент $z = h \alpha x$ численно совпадает с координатой x точки наблюдения, если последнюю, как и пробег нейтрона $l = \frac{1}{\alpha}$, измерять в сантиметрах

$$h\alpha = 1. \tag{29}$$

По существу соотношение (29) является условием подобия большинства из рассмотренных ниже плоских систем (см. приложение).

Сводка обсуждаемых в этом подразделе расчетов дана в табл. 1.

Прямые результаты расчетов ниже всюду переводятся в функции (например, $\psi(\tau, z, \mu)$) от безразмерных аргументов $z = h \alpha x$ и $\tau = h \alpha V t$.

Необходимо отметить, что при переходе к новым переменным формула (6) для величины λ_{∞} должна быть изменена на следующую:

$$\Lambda_{\infty} = \frac{h-1}{h} \,. \tag{30}$$

Таблица 1

Сводка основных задач ARCTUR с вариацией размеров и параметров, характеризующих ядерно-физические свойства веществ

Номер расчета	<i>х</i> _{max} , см	<i>х</i> ₁ , см	h	α, 1/см
1	100	4	2	0,5
2	100	4	1	1
3	100	4	0,95	1,0526
4	150	4	0,95	1,0526
5	100	100	0,95	1,0526

Очевидно, что при этом выполняется тождество

$$\exp(\lambda_{\infty} t) \equiv \exp(\Lambda_{\infty} \tau). \tag{31}$$

На рис. 1 для трех значений активности приведены графики зависимостей логарифмической производной общего числа нейтронов в системе N от времени τ , полученные в расчетах 1–3.

Рис. 1. Эволюция во времени логарифмической производной полного числа нейтронов $\frac{1}{N(\tau)} \frac{dN(\tau)}{d\tau}$ в задачах ARCTUR 1–3

Из рисунка следует, что функция $N(\tau)$ во всех рассмотренных случаях вышла на предельный экспоненциальный закон с собственными значениями (C3)*

$$\Lambda \approx \lim_{\tau \to \infty} \left[\frac{1}{N(\tau)} \frac{dN(\tau)}{d\tau} \right]$$
, представленными в табл. 2.

Таблица 2

СЗ для систем из разных материалов, полученные в расчетах после выхода решения для *N*(т) на предельное

Номер расчета	x _{max} , см	<i>х</i> ₁ , см	h	α, 1/см	Λ	Λ_∞
1	100	4	2	0,5	0,4997	0,5
2	100	4	1	1	-0,000318	0
3	100	4	0,95	1,0526	-0,05295	-0,05263
4	150	4	0,95	1,0526	-0,05281	-0,05263
5	100	100	0,95	1,0526	-0,05295	-0,05263

Для сравнения в табл. 2 представлены соответствующие значения параметра Λ_{∞} , который определяет скорость размножения (убывания) нейтронов в бесконечной (полубесконечной) однородной среде.

По данным табл. 2 можно сделать следующие выводы.

Близость величин Λ и Λ_{∞} указывает на то, что принятая выше толщина пластины $x_{\text{max}} = \Delta = 100 \div 150$ см оказалась вполне достаточной для моделирования геометрии задачи Милна в расчетах ARCTUR.

Расчет ARCTUR 4 (h = 0.95) при $\Delta = 150$ см привел к сближению величин Λ и Λ_{∞} , если сравниваться с аналогичными расчетами 3, 5 с $\Delta = 100$ см. Из последних трех расчетов таблицы видно, что точность моделирования Λ_{∞} определяется величиной Δ и не зависит от параметра x_1 в начальном условии (28).

Изучим вопрос о формировании равновесного предельного пространственного распределения нейтронов в среде. При этом сначала рассмотрим нестационарную стадию, а потом предельные численные нестационарные решения сравним с их частным стационарным случаем (12), (13) (h=1, $\Lambda_{\infty} = 0$ и $\Lambda \approx 0$). Для последнего имеются табличные данные Марка [5].

$$M(z) = \frac{n_1(z, h=1)}{n_1(z=0, h=1)}.$$
(32)

Табличные функции $n_1(z, h = 1)$ из работы [5] и M(z)

Z	$n_1(z, h=1)$	M(z)
0	0,5773	1
0,01	0,5982	1,03620
0,02	0,6154	1,06600
0,03	0,6312	1,09337
0,05	0,6607	1,14447
0,1	0,7279	1,26087
0,2	0,8495	1,47151
0,3	0,9633	1,66863
0,4	1,0731	1,85883
0,5	1,1803	2,04452
0,6	1,2858	2,22726
0,7	1,3901	2,40793
0,8	1,4935	2,58704
0,9	1,5963	2,76511
1	1,6985	2,94214
1,2	1,9019	3,29447
1,5	2,2051	3,81968
2	2,7079	4,69063
2,5	3,2092	5,55898
3	3,7098	6,42612
3,5	4,2101	7,29274
4	4,7102	8,15902

В работе [6] в рамках односкоростной нейтронной кинетики развита теория подобия нестационарных однородных систем. Эта теория применима к решаемой здесь задаче Милна не только после выхода нестационарного процесса на предельный режим, но и на его предварительной стадии. Укажем основные результаты [6] применительно к плоской геометрии задачи Милна. Если решение исходного кинетического уравнения с граничным и начальным условиями

$$\left\lfloor \frac{\partial}{\partial \tau} + \left(\mu \frac{\partial}{\partial z} \right) \right\rfloor \psi(\tau, z, \mu) + \frac{1}{h} \psi(\tau, z, \mu) = \frac{n(\tau, z)}{2}; \quad (33)$$

$$\psi(\tau, z = 0, \mu > 0) = 0; \ \psi(\tau, z = z_{\text{max}}, \mu < 0) = 0;$$
 (34)

$$\psi(\tau = 0, 0 \le z \le z_1 \le z_{\max}, \mu) = \psi_0 = \text{const}$$
 (35)

искать в виде

$$\psi(\tau, z, \mu) = \exp\left(-\frac{\tau}{h}\right) f(\tau, z, \mu), \qquad (36)$$

то для новой функции распределения $f(\tau, z, \mu)$ получится

$$\left\lfloor \frac{\partial}{\partial \tau} + \left(\mu \frac{\partial}{\partial z} \right) \right\rfloor f(\tau, z, \mu) = \frac{n(\tau, z)}{2}; \quad (37)$$

$$f(\tau, z = 0, \mu > 0) = 0; f(\tau, z = z_{\max}, \mu < 0) = 0;$$
 (38)

$$f(\tau = 0, 0 \le z \le z_1 \le z_{\max}, \mu) = f_0.$$
 (39)

Из инвариантного по отношению к преобразовани-

ям подобия $z \to z' = \frac{h\alpha}{h'\alpha'} z$, $\tau \to \tau' = \frac{h\alpha}{h'\alpha'} \tau$ кинетиче-

^{*} Строго говоря, Λ – это главное значение собственного числа кинетического уравнения, которое возникает после выхода нестационарного процесса на предельный режим.

ского уравнения (37) вытекает (см. [6]) свойство универсальности (независимости от h и α) решений исходного нестационарного уравнения (33). Универсальными в нашем случае являются следующие функции:

$$F(\tau, z, \mu) = \frac{\Psi(\tau, z, \mu)}{\Psi(\tau, z = 0, \mu)}; \qquad (40)$$

$$\Phi(\tau, z) = \frac{n(\tau, z)}{n(\tau, z = 0)} .$$
(41)

Зависимость (41) от безразмерного времени τ должна быть одинаковой при любых *h*. Подтвердим это численными расчетами.

Результаты расчетов ARCTUR 1–3 представлены графически на рис. 2, а также в табл. 4.

Рис. 2. Зависимости M(z) (точки) и универсальной функции $\Phi(\tau, z)$ (задачи ARCTUR 1–3 – сплошные линии)

Таблица 4

Сравнение расчетных «предельных» нестационарных функций $\Phi(\tau, z)$ с табулированной функцией M(z)

Z	$\Phi(\tau = 1800, z)$	$\frac{M(z)}{\Phi(\tau=1800,z)}$	$\Phi(\tau=3000,z)$	$\frac{M(z)}{\Phi(\tau=3000,z)}$	$\Phi(\tau=3000,z)$	$\frac{M(z)}{\Phi(\tau=3000,z)}$
	h	= 2	h	=1	h = 0),95
0	1	1	1	1	1	1
0,1	1,26069	1,00014	1,26073	1,00011	1,26072	1,00012
0,2	1,47115	1,00024	1,47126	1,00017	1,47129	1,00015
0,3	1,66812	1,00031	1,66825	1,00023	1,66827	1,00021
0,4	1,85795	1,00047	1,85820	1,00034	1,85818	1,00035
0,5	2,04339	1,00055	2,04371	1,00039	2,04374	1,00038
1	2,93889	1,00111	2,94004	1,00072	2,94010	1,00069
1,2	3,28982	1,00142	3,29146	1,00092	3,29156	1,00089
1,5	3,81239	1,00191	3,81506	1,00121	3,81515	1,00119
2	4,67690	1,00293	4,68202	1,00184	4,68209	1,00182
2,5	5,53590	1,00417	5,54463	1,00259	5,54469	1,00258
4	8,08564	1,00907	8,11379	1,00557	8,11390	1,00556

Основной вывод из данных рис. 2 и табл. 4: как и ожидалось, при достаточно больших τ функция $\Phi(\tau, z)$, выйдя на равновесный закон, с высокой точностью совпала с табличной зависимостью M(z).

Очень существенно также, что выполненные расчеты подтвердили свойство универсальности нестационарной функции $\Phi(\tau, z)$: она оказалась одинаковой для всех рассмотренных выше значений активности (h = 2; 1; 0,95).

В случаях h = 1 и h = 0,95 «предельные» функции $\Phi(\tau, z)$ были получены на момент времени $\tau = 3000$, а для активной среды зависимость $\Phi(\tau, z)$ по причине очень сильного экспоненциального умножения нейтронов в расчетах удалось «дотянуть» только до момента $\tau = 1800$. Поэтому погрешности расчетов $\Phi(\tau, z)$ при h = 2 оказались наибольшими. Активность h = 2 заметно выше, чем у традиционных делящихся материалов. Чтобы несколько улучшить точность $\Phi(\tau, z)$ для активной среды, дополнительно был проведен расчет ARCTUR 6 c h = 1,05 ($\alpha = 0,9524$ cm⁻¹). В нем получено $\Phi(\tau = 3000, z = 4) = 8,11375$. Погрешность расчета $\left(\frac{M(z)}{\Phi(\tau=3000,\,z=4)}\right) =$ ARCTUR 6 составляет 0,558 % =1,00558. Таким образом, для одинаковых τ точность

расчетов при h = 1,05; 1; 0,95 оказалась одной и той же и это не случайно, так как соответствует результатам статьи [6]*.

Из табл. 4 видно, что точность расчетной равновесной функции $\Phi(\tau >> 1, z) \approx M(z)$ падает по мере увеличения *z*.

Вопросы о влиянии размеров x_1 и x_{max} на формирование предельного решения и на его точность были изучены на примере поглощающей среды (h = 0.95) в расчетах ARCTUR, результаты которых представлены графиками рис. 3 и табл. 5.

В табл. 5 приведены значения функции $\Phi(\tau, z)$ в точке z = 4, в которой ее расчетная погрешность максимальна.

Обсудим полученные результаты.

Если точность величины Λ определяется (см. выше) значением параметра x_{max} и не зависит от x_1 , то при формировании пространственного распределения нейтронов ситуация противоположна. Скорость выхода решения на равновесное и точность последнего увеличиваются с ростом x_1 и не зависят от величины x_{max} .

Из табл. 5 видно, что увеличение x_1 с 4 до 100 см приводит к заметному повышению точности расчетов «предельной» функции $\Phi(\tau >> 1, z) \approx M(z)$ в точке z = 4.

Рис. 3. Зависимости M(z) (точки) и универсальной функции $\Phi(\tau, z)$ для h = 0,95 (задачи ARCTUR 3, 4, 5 – сплошные линии)

^{*} Отметим, что счетная сетка в задачах с разными h была совершенно одинаковой.

Сравнение расчетных «предельных» функций $\Phi(\tau, z)$ с табулированной функцией M(z) при z = 4 в задачах с вариацией размеров для систем с h = 0.95

Φ(τ = 3000, 4),	$\frac{M(4)}{\Phi(\tau = 3000, 4)},$	Φ(τ = 3000, 4),	$\frac{M(4)}{\Phi(\tau = 3000, 4)},$	Φ(τ = 3000, 4),	$\frac{M(4)}{\Phi(\tau = 3000, 4)},$ $x_{\text{max}} = 100 \text{ cm},$ $x_{1} = 100 \text{ cm}$
$x_{max} = 100 \text{ cm},$	$x_{\text{max}} = 100 \text{ см},$	$x_{max} = 150 \text{ cm},$	$x_{\text{max}} = 150 \text{ см},$	$x_{max} = 100 \text{ cm},$	
$x_{l} = 4 \text{ cm}$	$x_1 = 4 \text{ см}$	$x_1 = 4 \text{ cm}$	$x_1 = 4 \text{ см}$	$x_{l} = 100 \text{ cm}$	
8,11390	1,00556	8,11379	1,00557	8,12969	1,00361

Плачек в работе [7] получил точную аналитическую формулу для углового распределения $\varphi(\eta)$ нейтронов, вылетающих из инертной среды (h = 1) в вакуум через границу z = 0, и с большой точностью затабулировал $\varphi(\eta)$ (см. табл. 6).

$$\varphi(\eta) = \frac{1}{2\sqrt{1+\eta}} \exp\left\{\frac{1}{\pi} \int_{0}^{\pi/2} \frac{dy \operatorname{varctg}[\eta \operatorname{tg}(y)]}{1 - \operatorname{vctg}(y)}\right\}.$$
 (42)

Здесь $\eta = -\mu$ – косинус угла между вектором \vec{V} скорости нейтронов и направленной в сторону вакуума нормалью к плоскости z = 0.

$$\int_{0}^{1} d\eta \varphi(\eta) = 1.$$
 (43)

 $\varphi(\eta) d\eta$ – вероятность вылетевшим в направлении с косинусом η нейтронам находиться в интервале между η и $\eta + d\eta$.

гаолица о	Га	aб	л	И	Ц	а	6	
-----------	----	----	---	---	---	---	---	--

Табличная функция Плачека $\phi(\eta)$

η	φ(η)
0	0,5
0,01	0,51713
0,02	0,53114
0,03	0,5441
0,04	0,55642
0,05	0,56829
0,06	0,57982
0,07	0,59108
0,08	0,60212
0,09	0,61298
0,1	0,623675
0,2	0,725176
0,3	0,821261
0,4	0,914638
0,5	1,006389
0,6	1,097067
0,7	1,186988
0,8	1,276352
0,9	1,365294
1	1,453905

Расчет ARCTUR 7, выполненный «на сходимость» по числу угловых интервалов $\Delta \mu_i = -\Delta \eta_i$, как это следует из рис. 4, 5, очень хорошо передал зависимость табл. 6.

Из-за большого числа угловых интервалов (их количество в диапазоне $\eta \in [0,1]$ равно 128^*) в задаче ARCTUR 7 графики рис. 4 выглядят нерельефно: на них гистограмма практически слилась с пунктирной линией. Поэтому на рис. 5 дан крупномасштабный фрагмент графиков рис. 4 в области малых значений η .

Замечание: в работе [3] показано, что аналитические равновесные угловые распределения нейтронов не зависят от ядерно-физических свойств вещества (в том числе от его активности h) и в области $z \in [0, +\infty)$ они совпадают с угловыми распределениями из стационарной задачи Милна в инертной среде. Выше это утверждение было проверено в точке z = 0, для которой справедлива формула (42). Оно подтверждено также несколькими расчетами по программе ARCTUR, результаты которых здесь мы опустили.

На рис. 6 графически представлены результаты расчетов нормированной на единицу $\begin{pmatrix} +1 \\ \int_{-1}^{1} d\mu \,\psi(z,\mu) = 1 \end{pmatrix}$

пространственно-угловой части равновесной функции распределения $\psi(z, \mu)$. Можно также сказать, что зависимости рис. 6 – это угловые распределения нейтронов в точках z = 0; 0, 1; 0, 5; 2.

Численные расчеты $\psi(z, \mu)$ проводились при различных h(2; 1; 0,95) и графики рис. 6 отображают факт независимости функции $\psi(z, \mu)$ от активности среды.

Обратим внимание на то, что $\psi(z = 0, \mu) = \varphi(-\eta)$, где $\varphi(\eta) - \phi$ ункция Плачека (42).

Из рис. 6 следует, что нейтроны, вылетевшие из среды, назад не возвращаются ($\psi(z = 0, \mu > 0) = 0$). Вблизи границы нейтронов, летящих вглубь вещества, сравнительно мало (см. график при z = 0,1). Их относительное количество по мере увеличения z растет.

^{*} В задаче ARCTUR 7 количество угловых интервалов увеличено в два раза по сравнению с аналогичной задачей ARCTUR 6 (h = 1,05).

Рис. 4. Сравнение расчетной функции φ(η) (гистограмма из сплошных линий) с табличной зависимостью Плачека (пунктир)

Рис. 5. Фрагмент графиков рис. 4

Рис. 6. Зависимости функции распределения от *z* и µ из расчетов с полным числом угловых интервалов, равным 64

2.2. Численное моделирование решений задачи Милна, полученных из кинетического уравнения с заданным постоянным потоком нейтронов в бесконечно удаленной точке z = +∞

Здесь моделируются решения подраздела 1.1, основанные на стационарном кинетическом уравнении (3) с соответствующими граничными условиями.

Приведем результаты численного решения нестационарного кинетического уравнения с граничным условием $\psi(t, x = 0, \mu > 0) = 0$ на левой границе среды и с заданным на правой границе $x = x_{max} = 100$ см постоянным потоком нейтронов. Было принято также начальное условие (28) со значением $\psi_0 = 0$.

В случае
$$h = 2$$
 ($\alpha = 0,5 \text{ см}^{-1}$) полученное в задаче

ARCTUR 8 численное решение вышло на предельное равновесное пространственное распределение, которое представлено в первых двух столбцах табл. 4. Оно характеризуется линейным изменением асимптотической нейтронной плотности $n_0(z) = z + z_0$. Если же предположить справедливость решения (14)–(16), то в случае h > 1 задача ARCTUR должна была бы привести к периодической синусоидальной зависимости $n_{02}(z, h > 1) \sim \sin \left[\frac{k}{h} (z + z_0) \right]$. Полученный численный результат указывает на ошибочность решения (14)–(16).

В этом нет ничего нового. Хорошо известно, что обсуждаемое периодическое решение не является физическим, страдая тем очевидным недостатком, что приводит к возникновению внутри среды областей с отрицательной плотностью нейтронов.

В случае h < 1 решение кинетического уравнения с заданным на бесконечности постоянным потоком является стационарным и экспоненциально возрастающим в области больших *z*, что соответствует формулам (17) – (19).

Справедливость формулы (18) подтвердим, например, обратившись к задаче ARCTUR 9 (h = 0, 5, $\alpha = 2 \text{ см}^{-1}$). В ней получена равновесная предельная

зависимость
$$\Phi_3(\tau >> 1, z) = \frac{n_3(z, h = 0, 5)}{n_3(z = 0, h = 0, 5)}$$
, изобра-

женная на рис. 7 сплошной кривой. Пунктирная кривая рис. 7 – это результат вычисления асимптотической функции $\Phi_{03}(z) = \frac{n_{03}(z, h = 0, 5)}{n_{03}(z = 0, h = 0, 5)}$ по формуле (18)

со значениями параметров k = 0,957 (корень трансцендентного уравнения (19) с h = 0,5) и $z_0 = 0,7205$ (см. [8,9]).

Из рис. 7 следует, что уже при $z \sim 1$ численное стационарное решение $n_3(z, h = 0, 5)$ слабо отличается от точного асимптотического решения $n_{03}(z, h = 0, 5)$.

Рис. 7. Аналитическое решение $\Phi_{03}(z)$ (пунктир) и «предельная» стационарная пространственная зависимость $\Phi_3(\tau >> 1, z)$ (сплошная кривая), полученная в численном расчете для среды с h = 0,5

Резюме

Сравнение результатов численных расчетов с вычислениями по точным теоретическим формулам позволило выполнить верификацию методики ARCTUR в блоке численного решения нестационарного кинетического уравнения для нейтронов.

Список литературы

1. Дэвисон Б. Теория переноса нейтронов. М.: Изд-во Главного управления по использованию атомной энергии при Совете Министров СССР, 1960.

2. Романов Ю. А. Критические параметры реакторных систем. Точные решения односкоростного кинетического уравнения и их использование для решения диффузионных задач (усовершенствованный диффузионный метод). М.: Госатомиздат, 1960. С. 3–26.

3. Бабичев Н. Б., Лутиков И. В., Незнамов В. П. Особенности односкоростной кинетики нейтронов в оптически толстых однородных системах и решение квазистационарного варианта задачи Милна // ВАНТ. Сер.: Теоретическая и прикладная физика. 2008. Вып. 2. С. 21–31.

4. Мжачих С. В., Грошев Е. В., Юдинцев В. Ф. О некоторых свойствах $\tilde{D}S_n^{\gamma}$ -схем для сферически-

симметричного уравнения переноса // ВАНТ. Сер.: Математическое моделирование физических процессов. 2000. Вып. 2. С. 21–31.

5. Mark C. // Phys. Rev. 1947. Vol. 72. P. 558.

6. Бабичев Н. Б., Лутиков И. В., Севастьянов А. А. Элементы теории подобия нестационарных однородных систем в односкоростной нейтронной кинетике // ВАНТ. Сер.: Теоретическая и прикладная физика. 2008. Вып. 2. С. 18–20.

7. Placzek G. // Phys. Rev. 1947. Vol. 72. P. 556.

8. Feynman R. P. Report LA-608, Series B., August 15, 1946.

9. Marshak R. E., Brooks H., Hurwitz H. // Nucleonics. 1949. Vol. 4, no. 5.

10. Бабичев Н. Б., Лутиков И. В., Незнамов В. П. Теория подобия в рамках односкоростной нейтронной кинетики квазистационарных систем // ВАНТ. Сер.: Теоретическая и прикладная физика. 2008. Вып. 1. С. 56–64.

приложение

О подобии некоторых рассмотренных плоских систем

В работе [10] разработана теория подобия в рамках односкоростной нейтронной кинетики. Из работы [10] следует, что плоские системы подраздела 2.1 подобны, если выполняется условие

$$h_i \alpha_i x_{\max i} = \text{const},$$
 (II1)

i – номер системы или же номер соответствующей задачи ARCTUR.

Таким образом, системы задач 1, 2, 3, 5 (в них $x_{\max i} = 100$ см) подобны и для них условие (П1) переходит в соотношение (29). Из теории подобия [10] вытекает, что если для какой-то системы с номером *m* СЗ Λ_m известно, то для любой другой подобной системы с номером $i \neq m$ СЗ Λ_i можно определить по формуле

$$\Lambda_i = \frac{1}{h_i} \left[\frac{h_i}{h_m} \left(1 + h_m \Lambda_m \right) - 1 \right]. \tag{II2}$$

Легко убедиться в том, что величины Λ табл. 2 в случае систем 1, 2, 3, 5 удовлетворяют формуле (П2).

Статья поступила в редакцию 07.09.2009